平均数5PPT课件
合集下载
平均数ppt课件
灯泡只数
5
10
12
17
6
【思考】 用全面调查的方法考察这批灯泡的平均使用寿命合适吗? 不合适,因为考察具有破坏性.
用样本平均数估计总体平均数.
用样本属性估计总体属性是统计学中的常用的思想方法
练习 种菜能手李大叔种植了一批新品种黄
瓜,为了考察这种黄瓜的生长情况,
他随机抽查了部分黄瓜藤上长出的黄
瓜根数,得到如图的条形图.请估计 这个新品种黄瓜平均每株结多少根黄
●数据出现的次数形式 次数为权.
( x1 f1 + x2 f2 +···+ xk fk )
5
值代表各组的实际数据,把各组
20
频数看作相应组中值的权.
22
例如在1≤x<21之间的载客量近
18
似地看作组中值11,组中值11的
15
权是它的频数3.
解:
11×3+31×5+51×20 +71×22 +91×18+111×15 3 + 5 + 20 + 22 + 18 + 15
≈73(人)
答:这天5路公共汽车平均每班的载客量约是73人.
结论: 权变化,加权平均数就会变化,最后的结果也会随之变化.
思考 (1)加权平均数在数据分析中的作用是什么? 当一组数据中各个数据重要程度不同时,加权平均数能更好 地反映这组数据的平均水平.
(2)权的作用是什么? 权反映数据的重要程度,数据权的改变一般会影响这组数据 的平均水平.
例题 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个 方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%、演讲 能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制). 进入决赛的前两名选手的单项成绩如下表所示:
《平均数》课件PPT 小学数学人教版四年级下册
11 10
10
9
8
先合并 再平均分
8 7
7
7
6
5
总数量÷总份数=平均数
4 3
3
2
1
0
次数
第一次 第二次 第三次 第四次
探究新知
观察表格,你有什么发现?
场次 第一次 第二次 第三次 第四次 平均数
个数 3
8
7
10 7 (3+8+7+10)÷4=7(个)
个数 3
8
7
2 5 (3+8+7+2)÷4=5(个)
个数 3
8
7
6 6 (3+8+7+6)÷4=6(个)
前三次的数 据没有变化
第四次数据引 起平均数变化
平均数易变化
探究新知
比较一下超过的部分与不到的部分,你发现了什么?
个数 15
14
13
12
11
10
9 8 7 6
8 7
6
Hale Waihona Puke 54 33
2
1
0
次数
第一次 第二次 第三次
3=2+1
个数 15
14
13
12
11
10 9
个数
15
14
13
12
通过移多补少得到的这组同样多的数
11
10 9
叫作这组数的 平均数 。
8
7 6
6
5 4
6是3、8、7这3个数的平均数,它反映
3
2 1
的是这个同学3次投篮个数的整体水平。
0 第一次 第二次 第三次 次数
平均数数学PPT课件
张思思 137 33
09 巩固练习
1. (选自教材P93 T1)
本周气温记录 周一:10-21℃ 周二:10-21℃ 周三:12-22℃ 周四:12-24℃ 周五:11-22℃ 周六:11-21℃ 周日:11-23℃
一 二 三 四 五 六 日 平均 最高气温/℃ 21 21 22 24 22 21 23 22 最低气温/℃ 10 10 12 12 11 11 11 11
A 小组:100÷5=20(个) B 小组:114÷6=19(个)
19<20 A 小组的成绩好些。
10 课堂小结
这节课你们都学会了哪些知识?
1. 平均数的含义:一组数据的和除以这组数据的个数,所得的商叫做平均数。 2. 求平均数的方法: (1)移多补少法。 (2)计算公式求平均数法(总数量÷总份数=平均数)。
男生队
女生队
姓名 王小飞 刘东 李雷 谢明明 孙奇
踢毽个数 19 15 16 20 15
姓名 杨羽 曾诗涵 李玲 张倩
踢毽个数 18 20 19 19
哪个队的成绩好?
06 知识点
男生队成绩好! 男生 19+15+16+20+15=
85(个) 女生 18+20+19+19=
8756>(个7)6
这样比较不公平, 因为两队的人数 不一样啊!
07 知识提炼
平均数能较好地反映一组数据的总体情况,可以用平均数 来比较两组或几组同类数据的总体情况。
08 小试牛刀
下表是某小组6名同学的身高和体重情况。(选自教材P92 T2)
姓名 身高∕cm 体重∕kg
刘子涵 139 34
李强 140 38
高风 135 35
陈莉 138 34
平均数平均数课件ppt
公式
$(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$
调和平均数
定义
将一组数据的倒数和的倒数称为调和平均数。
公式
$(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})^{-1}$
03
平均数的应用
国民经济核算
国民经济核算体系
财务管理
投资收益
在投资领域,平均数被用来衡量投资组合的收益水平,帮助投资者做出理性的投 资决策。
财务分析
通过计算财务比率、制作财务比率图表等手段,利用平均数对企业的偿债能力、 盈利能力、营运能力和发展能力进行分析和评价。
市场调研
消费者调查
在市场调研中,平均数常被用来反映消费者对产品或服务的 整体评价和满意度。
市场分割
通过计算各个市场部分的平均收入、平均消费水平等指标, 帮助企业更好地了解市场需求和消费者行为。
04
平均数的局限与不足
不能反映极端值
平均数不能真实反映数据分布的实际情况。当数据集中存在 极端值时,平均数会受到极大影响,导致结果失真。
例如,在衡量收入水平时,如果一个国家中只有极少数人拥 有极高收入,而大多数人的收入较低,那么平均收入会受到 这些高收入人群的影响,不能真实反映全国人民的收入水平 。
平均数平均数课件ppt
xx年xx月xx日
contents
目录
• 什么是平均数 • 平均数的计算方法 • 平均数的应用 • 平均数的局限与不足 • 平均数与其他统计指标的关系 • 平均数的实际案例分析
01
什么是平均数
定义与计算
平均数的定义
平均数是一组数据的总和除以数据个数,是表示数据集中趋 势的统计量。
$(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$
调和平均数
定义
将一组数据的倒数和的倒数称为调和平均数。
公式
$(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})^{-1}$
03
平均数的应用
国民经济核算
国民经济核算体系
财务管理
投资收益
在投资领域,平均数被用来衡量投资组合的收益水平,帮助投资者做出理性的投 资决策。
财务分析
通过计算财务比率、制作财务比率图表等手段,利用平均数对企业的偿债能力、 盈利能力、营运能力和发展能力进行分析和评价。
市场调研
消费者调查
在市场调研中,平均数常被用来反映消费者对产品或服务的 整体评价和满意度。
市场分割
通过计算各个市场部分的平均收入、平均消费水平等指标, 帮助企业更好地了解市场需求和消费者行为。
04
平均数的局限与不足
不能反映极端值
平均数不能真实反映数据分布的实际情况。当数据集中存在 极端值时,平均数会受到极大影响,导致结果失真。
例如,在衡量收入水平时,如果一个国家中只有极少数人拥 有极高收入,而大多数人的收入较低,那么平均收入会受到 这些高收入人群的影响,不能真实反映全国人民的收入水平 。
平均数平均数课件ppt
xx年xx月xx日
contents
目录
• 什么是平均数 • 平均数的计算方法 • 平均数的应用 • 平均数的局限与不足 • 平均数与其他统计指标的关系 • 平均数的实际案例分析
01
什么是平均数
定义与计算
平均数的定义
平均数是一组数据的总和除以数据个数,是表示数据集中趋 势的统计量。
《平均数》ppt课件
男生套圈成绩统计图
(个)
10月18日
11
10
9
8
7
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
学生活动: 观察男生成绩统计图,
想一想,怎样使他们每人套 中的个数相等?
04
任务二
男生套圈成绩统计图
(个)
11
10 9
9
8
77
6
7 6
6
5
4
3
2
1
0
李
张
王
陈
小
晓
钢
明
宇
杰
可以把多的补给 少的。
男生平均每人套 中7个。
作业设计
【知识技能类作业】
必做题:
2.学校象棋队七名队员的体重如下表,求出七名队员的平均身高。
姓名 王强 刘平 李海 孙亮 陈冬 肖俊 赵斌
体重/kg 52
29 48
33 37
32 35
(52+29+48+33+37+32+35)÷7
=266÷7
=38(kg)
答:七名队员的平均身高是38kg。
06
23×4+35×4-29×7
=92+140-203
=232-203
=29
答:中间那个数是29。
06
作业设计
【知识技能类作业】
必做题:
1.把第5次的( 1 )个给第1次,第5次的( 2
第2次,再把多出来的
( 1 )个给第4次,
5次的数量同样多。
人教版八年级下册2011平均数课件(共15张PPT)
20.1.1用样本平均数估计 总体平均数
当所考察的对象很多,或者对考察对象带 有破坏性时,我们该如何求取平均数?
在统计中我们常常通过用样本估计总体的 方法来获得对总体的认识.因此,我们可以用样 本的平均数来估计总体的平均数.
例3 某灯泡厂为测量一批灯泡的使用寿命, 从中随机抽查了50只灯泡.它们的使用寿命如表 所示.这批灯泡的平均使用寿命是多少?
145
解:
x 150 6 16010 170 20 180 4 6 10 20 4
165.5(cm)
答:该班学生平均身高为165.5cm.
3.为了检查一批零件的质量,从中随机抽取10件, 测得它们的长度(单位:mm)如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35 根据以上数据,估计这批零件的平均长度.
解:根据以上数据,得
x =22.36 2 22.353 22.34+22.33+22.32+22.37+22.38
10
= 22.351
即样本平均数为 22.351
答:这批零件的平均长度大约是22.351mm.
x 800 5 120010 160012 200017 24006
1672,
50 用全面调查的方法考
察这批灯泡的平均使
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
某次数学测试成绩统计如图,试根据统计图中 的信息,求这次测试的平均成绩.
解:x 10 55 20 65 25 75 20 85 595 =73.7(5 分)
均年龄(保留一位小数)?
当所考察的对象很多,或者对考察对象带 有破坏性时,我们该如何求取平均数?
在统计中我们常常通过用样本估计总体的 方法来获得对总体的认识.因此,我们可以用样 本的平均数来估计总体的平均数.
例3 某灯泡厂为测量一批灯泡的使用寿命, 从中随机抽查了50只灯泡.它们的使用寿命如表 所示.这批灯泡的平均使用寿命是多少?
145
解:
x 150 6 16010 170 20 180 4 6 10 20 4
165.5(cm)
答:该班学生平均身高为165.5cm.
3.为了检查一批零件的质量,从中随机抽取10件, 测得它们的长度(单位:mm)如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35 根据以上数据,估计这批零件的平均长度.
解:根据以上数据,得
x =22.36 2 22.353 22.34+22.33+22.32+22.37+22.38
10
= 22.351
即样本平均数为 22.351
答:这批零件的平均长度大约是22.351mm.
x 800 5 120010 160012 200017 24006
1672,
50 用全面调查的方法考
察这批灯泡的平均使
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
某次数学测试成绩统计如图,试根据统计图中 的信息,求这次测试的平均成绩.
解:x 10 55 20 65 25 75 20 85 595 =73.7(5 分)
均年龄(保留一位小数)?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能说说小明这样做的道理吗?
2020年10月2日
10
一般地,如果在n个数中, x1出现f1次,x2出
现f2次, ……,xk出现fk次 (这时f1+f2+……+fk=n),那么这n个数的算 术平均数
xx1f1x2f2 xkfk n
这种形式的平均数叫做 加权平均数
2020年10月2日
11
例1 某广告公司欲招聘广告策划策略人员一名,对A、B、C三名 候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
xC=
674703671 =68.125(分)
431
因 2020年10月2日 此 B 将 被 录 用
13
(1)、(2)的结果不一样说明了什么?
实际问题中,一组数据的各个数据的 “重要程度”未必相同。因此,在计算这组 数据的平均数时,往往给每个数据一个 “权”,如例1中4,3,1分别是创新、综合 知识、语言三项测试成绩的权,而称
x =(10+12+13.5+21+40.8+19.5+20.8+25+16+30) ÷10=20.86(元)
答:这10名同学平均捐款20.86元
2020年10月2日
15
练习2:某校规定学生的平时成绩由三部分组成:早锻炼及课 外活动表现占成绩的确20%,体育理论成绩测试占30%,体育 技能测试占50%,小颖的上述三项成绩依次是92分、80分、 84分,则小颖这学期的体育成绩是多少?
1.98
27
1.93
24
1.98
29
2.14
22
2.02
22
2020年10月2日
上海东方大鲨鱼队
号码 身高/米 年龄/岁
4
1.85
24
5
1.96
21
6
2.02
29
7
2.05
21
8
1.88
21
9
1.94
29
10
1.85
24
11
2.08
34
12
1.98
18
13
1.97
18
14
1.96
23
15
2.23
21
4.上海东方大鲨鱼队平均年龄是多少? 平均年龄 =(24+21+29+21+21+29+24+34+18+18+23+21+24+ 26+16)÷ 15 ≈23
上海东方大鲨鱼队队员更为年轻
2020年10月2日
8
日常生活中,我们常用平均数表示一组数据 的“平均水平”。 一般地,对于n个数x1,x 2,…………,Xn我们把
2020年10月2日
3
CBA(中国篮球协会)2000~2001赛 季冠亚军球队队员的身高、年龄如下:
2020年10月2日
4
号码 4 5 6 7 8 9 10 11 12 13 14 15
八一双鹿队
身高/米 年龄/岁
1.78
31
1.88
23
1.96
32
2.08
20
2.04
21
2.04
22
2.00
31
12
测试项目
测试成绩
A
B
C
创新
72
85
67
综合知识
50
74
70
语言
88
45
67
(2)根据实际需要,公司将创新、综合知识和语言三项
测试得分按4︰3︰1的比例确定各人的测试成绩,此时谁
将被录用?
解:根据题意,xA= xB=
724503881 =65.75(分)
431
854743451 431
=75.875(分)
测试项目
测试成绩
A
B
C
创新
72
85
67
综合知识
50
74
70
语言
88
45
67
(1)如果根据三项测试的平均成绩确定录用人选,那么谁
将被录用?
解:
1 xA=(72+50+883 )÷31=70分 xB=(85+74+45)÷31 3=68分 xC=(67+70+67)÷33 =68分
因此A将被录用。
2020年10月2日
16
1.98
24
17
1.86
18
2.02
26
5
16
猜一猜:
上面两支球队中,哪支球队队员的身材更为高大? 哪支球队的队员更为年轻?你是怎样判断的?与同 伴交流?
2020年10月2日
6
1.八一双鹿队队员的平均身高是多少?
平均身高 =(1.78+1.88+1.96+2.08+2.04+2.04+2.00+1.98+1.93+1.98+ 2.14+2.02)÷12 ≈1.99
724503881 431
为A的三项测试成绩的加权平均数。
2020年10月2日
14
练一练
1.某班10名学生为支援“希望工程”将平时积攒的零花钱 捐献给贫困地区的失学儿童,每人捐款金额如下(单位:元): 10, 12, 13.5, 21, 40.8, 19.5, 20.8, 25, 16, 30 这10名同学平均捐款多少元? 解:
2.上海东方大鲨鱼队平均身高是多少?
平均身高 =(1.85+1.96+2.02+2.05+1.88+1.94+1.85+2.08+1.98+1.97+ 1.96+2.23+1.98+1.86+2.02) ÷ 15 ≈1.98
八一双鹿队队员身材更为高大
2020年10月2日
7
3.八一双鹿队队员的平均年龄是多少? 平均年龄 =(31+23+32+20+21+22+31+27+24+29+22+22) ÷ 12 ≈25
合作学习:
某果农种植的100棵苹果树即将收获。果品公司在伏 给果农定金前,需要对这些苹果树总产量进行估计。
1、果农任意摘下20个苹果,称得这20个苹果的总质量为4 千克。这20个苹果的平均质量是多少? 0.2 千克/个 2、果农从100棵树中任意选出10棵,数出这10棵苹果树上的 苹果数,得到以下数据(单位:个): 154,150,155,155,159,150,152,155,153,155. 你能估计出平均每棵数的苹果个数吗?
(154+150+155+155+159+150+152+155+153+155)÷10= 154
3、根据上述两个问题,你能估计出这100棵树的苹 果总产量吗?
2020年10月2日
1
2020年10月2日
2
动 动 脑:
在篮球比赛中,队员的身高是反映球队
实力的一个重要因素,如何衡量两个球 队队员的身高?怎样理解“甲队队员的 身高比乙队更高”?要比较两个球队队 员的身高,需要收集哪些数据呢?
1 n(x1x2xn)
叫做这n 个数的算术平均数,简称平均数
记作 x(读作x拔)
2020年10月2日
9
想一想
小明是这样计算东方大鲨鱼队队员的平均年龄的:
年龄/岁 16 18 21 23 24 26 29 34
相应队 1 2 4 1 3 1 2 1 员数
平均年龄= (16×1+18×2+21×4+23×1+24×3+26×1+29×2 +34×1)÷(1+2+4+1+3+1+2+1) ≈23.3