初等几何研究答案
初等几何研究试题答案(5)
求证:
AO1┴O2 O3
I F
O3 H
A O2 M B G
C
O
E
D
证明:如上图所示
取 AC 中点 M,连结 MO2、CE、AE、HC ∵ BH=AB BC=CE
★撼海一舟★作品,A用户名 fashengzhongD 1
E
· O 2 B C
证明:
连接 CD EA=EC ∠2=∠EAC 又 CD=BD ∠B=∠DCB 又 ∠2=∠B (外角=内对角) △ACE∽△BCD ∠BCD=∠AEC 又∠BDC+∠CDA=180° ∠AEC+∠CDA=180° A、D、C、E 四点共圆 ∠1=∠2 (同弦所对的圆周角) ∠1=∠B
+ = + + +
∴SQ⊥PR 3、凸四边形 ABCD 的每条对角线皆平分它的面积, 求证:ABCD 是平行四边形。
★撼海一舟★作品,A用户名 fashengzhongB
F O E D C
证明:设 AC 和 BD 相交于点 O,作 AE⊥BD 于 E,CF⊥BD 于 F, 连接 AF,CE ∵对角线 BD 平分四边形 ABCD 的面积 ∴S△ABD=S△CBD ∴AE=CF 又∵AE⊥BD,CF⊥BD ∴AE∥CF ∴四边形 AECF 为平行四边形 ∴AO=CO 同理可得 BO=DO ∴四边形 ABCD 是平行四边形
12. 给定正方形 ABCD , P,Q 分别为 AB,BC 上的点,满足 BP=BQ,自 B 作 BH⊥PC 于 H, 求证:∠DHC=90°。 证明:如图 BH 交 AD 于 F ∵BH⊥PC ∴∠PBH=∠BCP
初等几何研究 第十四章几何题的证明
证明:∵ DE∥AC E
CE∥AF
AC=AF
C
B
∴ ACEF 为菱形
F
∴∠FAE=∠EAC=∠FEA 在△ADF 中
D
A
第 5 题图
AF²=AD²+DF²-2AD·DFcos135° AF= 2 AD=1
DF 1 ( 6 2)
∴ cos DFA
3
∠DFA=30°
2
2
∴∠DAF=45°-∠FAC=45°-∠DAF=45°-30°=15°
初等几何研究习题解
《中学数学教材教法》,主编 赵振武 副主编 章士藻 第三分
册 《初等几何研究》习题解答
第十四章 几何题的证明
习题十四
1. 圆内三弦 AB、CD、EF 两两相交于 P、Q、R,且 PC=QE=RA,
PB=QD=RF,求证:△PQR 是正三角形.
证明:如图圆中三弦 AB、CD、EF 两两相交于 P、Q、R,并且 PC=QE=RA,
B
D
C
第 16 题图
∴ BE BD ① AD AC
CF CD ② AC BC
①×②得 BE CF BD CD AD AC AC BC
AD·BD·CD=BE·CF·BC
即
AD3=BC·BE·CF
17. 已知 AM 是△ABC 中 BC 边上中线,任作一直线交 AB、AC、
AM 于 P、Q、N,求证: AB 、 AM 、 AC 成等差数列
tan∠CAD -tan∠B= 1 ( 5 1)﹥0 2
而
∠CAD、∠B∈(0°, 90°) ∴ ∠CAD﹥∠B
16. 在△ABC 中,已知∠A=90°,AD⊥BC,DE⊥AB,DF⊥
初等几何研究试题答案(李长明版)
初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。
初等几何研究答案
《初等几何研究》作业一、填空题1、对直线a 上任意两点A 、B ,把B 以及a 上与B 在A 同侧的点的集合称作 射线(或半直线),; ,并记作 AB 。
2、在绝对几何中,外角定理的内容是: 三角形的外角大于任一不相邻的内角 。
3、第四组公理由 两 条公理组成,它们的名称分别是 度量公理(或阿基米德公理)和康托儿公理 。
4、欧氏平行公理是:对任意直线a 及其外一点A ,在a 和A 决定的平面上,至多有一条过A 与a 不相交的直线 。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是 前4组公理(或绝对几何) ,不同之处是 平行公理 。
6、几何证明的基本方法,从推理形式上分为 演绎 法与归纳法;从思维方向上分为 综合 法与分析法;从命题结构上分为 直接 证法与间接证法,其中间接证法包括 反证 法与 同一 法。
7、过反演中心的圆,其反演图形是 不过 (过或不过)反演中心的 直线 。
8、锐角三角形的所有内接三角形中,周长最短的是 垂足三角形。
9、锡瓦定理:设⊿ABC 的三边(所在直线)BC 、CA 、AB 上分别有点X 、Y 、Z ,则AX 、BY 、CZ 三线共点(包括平行)的充要条件是1=⋅⋅ZBAZYA CY XC BX 。
10、解作图问题的常用方法有: 交轨法 、三角奠基法、 代数法 、 变换法 等。
11、数学公理系统的三个基本问题是 相容性、 独立性和 完备 性.33.①答案不惟一.34.①(0,+∞),②,(0,π/2),③连续,④单调递减. 35.①平移,②旋转,③轴对称.36. ①1=⋅⋅ZB AZYA CY XC BX (或-1)37.①写出已知与求作,②分析,③作法,④证明,⑤讨论.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的异侧,否则称A、B在a的同侧.13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是外角定理的推论.14、证明直线和圆的连续性时,主要依据了戴德金分割原理.15、罗氏平行公理是:对任意直线a及其外一点A,在a和A决定的平面上,至多有一条过A与a不相交的直线.,16、在罗氏几何中,共面的两条直线有3种关系,它们分别是平行,相交,分散.17、几何证明的通用方法一般有化归法、类比法、构造法、数形结合法、变换法、模型法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有相等的关系.19、尺规可作图的充要条件是所求的量可用已知量的有理式或只含平方根的无理式表出.20.由公理可以证明,线段的合同关系具有反身性、对称性、传递性和可加性.21.如果线段与角对应,那么线段的中点与角的角平分线对应.22.命题:“线段小于任意一条连接其两个端点的折线”是外角定理的推论.23.绝对几何包括有四组公理,它们分别是结合公理、顺序公理、合同公理、连续公理. 24.写出一条与欧氏平行公理等价的命题:.25.在罗氏几何中,两条直线为分散线的充要条件是.26、.常用的几何变换有合同变换、相似变换、射影变换、反演变换等27.托勒密定理:四边形ABCD是圆内接四边形,则1=⋅⋅ZBAZYACYXCBX(或-1).28.请写出两条作图公法:过两点可作一条直线(或其部分)。
初等几何研究试题答案(3)李长明版
三、关于比例相似形⒈从 ABCD 的各顶向不过该顶的对角线引垂线,垂足为E 、F 、G 、H,求证: (ⅰ)EFGH 是 ; (ⅱ) EFGH ∽ ABCD.证明:(ⅰ) ∵AE ⊥BD DH ⊥AC∴A 、D 、E 、H 四点共圆(视角相等) ∴∠OEH=∠OAD 同理 ∠OGF=∠OCB又∵AD ∥BC ∴∠OAD=∠OCB ∴∠OEH=∠OGF ∴EH ∥GF 同理 EF ∥GHDACBEFGGH∴四边形EFGH 为平行四边形 (ⅱ)∵△OEH ∽△OAD∴.OD OHOA OE = ∴BD FHACEG =EFGH 与 ABCD 对角线夹角相等且对角线又成比例 ∴ EFGH ∽ ABCD 2.3.已知:AD 是△ABC 的中线,过C 的一直线分别交AD 、AB 与E 、F 。
求证:A E ·BF=2AF ·ED证明:延长CF 至点H ,使得CE=EH 连结BH ∵点D 是BC 上的中点 ∴DE 是△CBH 的中位线即D E ∥BH 且DE= 21BH∵DE ∥BH∴∠CED=∠CHB=∠AEF ∠AFE=∠BFH ∴△AFE ∽△BFH ∴BFAFBH AE =,且BH=2ED ∴AE ·BF=2AF ·ED4.直线l 与□ABCD 的边AB 、AD 和对角线AC 依次相交于E 、F 和G 。
求证:AGACAF AD AE AB =+证明:连结BF 、BE 、CF 和CE , ∵SS SS AEFACF AEFABF AEAB==S S SS AEFACE AEFADE AFAD==∴AGACAG GC AG AFAD AE AB SS SSS SAEFCEFAEFAEFACEACF=+=+=+=+ABC DE F G5.AB 、CD 是等腰梯形ABCD 的二底,求证:DC AB AD AC ∙+=22证明:(如上图)作CD 的延长线到点H ,使得AH 垂直CH作点C 的延长线,使得CP 垂直ABABCP AD AC DH CH CP AD AC AB BP AP DH CH BP DH AP CH CPB AHD CBPDAC APH CB AD CPB AHD DH CH CP AD DH CH DH CH AD DH CH AD CH DH AD CH AH AC ⋅+=+⋅+==+=+==∆≅∆∴∠=∠=∠==∠=∠+⋅+=-++=-+=+-=+=222222222222222 )( 90)( ))(( )( )( 故有又6.AD 是Rt △ABC 斜边上的高,作DE ⊥AB 于E,DF ⊥AC于F.求证:AD 3=BC ∙BE ∙CFHDCA B证明:∵AD2=BD∙DC,BD2=BE∙BA,CD2=CF∙CA,∴AD4=BE∙CF∙AB∙AC=BE∙CF∙BC∙AD约去AD,得AD3=BC∙BE∙CF7 .在△ABC中,∠A=60°,∠B=80°。
初等数学研究答案(1)
3.已知:在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=.2-1800α求证:∠BA C =∠CAD=∠DAE.思路:证五边形ABCDE 内接于圆,则由等弦⇒等弧⇒等圆周角即得所证。
沿此思路,有多种证法,这里介绍两种教简的方法。
证法1.发挥等腰三角形的性质。
连接BD ,如图1.14,则得△CBD 是等腰的且底角()[]()如分析所述即得所证。
共圆、、、同理,共圆、、、E D C A E D B A BDE CDB ∴-=--=∠∴=--=∠ααααα322211801801801800图1.14EDBCA证法2:巧证等腰梯形。
连接BE ,如图1.15 ∠C=∠D,BC=DE,..3.2在圆上而所对圆周角皆为等弧共圆且底角、、、等腰梯形A A E D D C C B DEB CBE E D C B CDEB ∴=∠==∴=∠=∠⇒⇒ααα图1.15EDACB4.设H 为锐角△ABC 之垂心,若AH 等于外接圆半径,求证:∠BAC=600分析:因条件中的等量关系含有外接圆半径,故宜画出外接圆,以便发现隐含的联系,现介绍三种较简的证法。
证法1:借助平行四边形。
连接CO 并延长交外接圆于D ,如图1.17,则有直径所对圆周角为直角易证BD//AH(同⊥BC), AD//BH(同⊥AC),⇒AHBD 是平行四边形;图1.17DOHCBA60600,21=∠∴=∠∴===A BDC CD R AH BD ,证法2.利用欧拉线的预备定理60600212121217.118.1,=∠=∠=∠∴=∠∴===⊥MOC BOC A MOC OC R AH OM M BC OM 知则由例如图于作图1.18KMDO ABC证法3.利用正弦定理60sin 2sin 2219.1,,=∠∴=∠=∠=⊥⊥A AB C R AHF AH AF AC BF BC AE ,则有如图设图1.19FEABC6.在△ABC 中,先作角A 、B 的平分线,再从点C 作上二角的平分线之平行线,并且连D 、E,若DE//BA ,求证:△ABC 等腰。
初等几何研究第二版朱德祥朱维宗答案
初等几何研究第二版朱德祥朱维宗答案期中考试题1. P18 T5四边形有一双对角互补,则必为圆内接四边形2. P26 T3 两圆O与O’相交于点P,M是OO’的中点,过P任做直线交两圆与A及A’,Q是AA’的中点。
证明MP=MQ。
3. P27 T10 在中,证明BC边的中垂线和角A的平分线相交在外接圆周上;他们的,ABC交点距B、C两点,距内切圆心,距角A的旁切圆心都等远 4. P30 例4 蝴蝶定理5. 证明勾股定理(毕达哥拉斯)6. P39 T11 证明欧拉线7. P41 例3 三角形中,大边上的平分角线较小P18 T5四边形有一双对角互补,则必为圆内接四边形首先证?A+?C=180如图所示,连接DO, BO. 设优角BOD为θ?圆周角等于所对的圆心角的一半??C=1/2?BOD,同理,?A=1/2θ??A+?C=1/2*360=180,即两角互补。
同理可证?ABC+?ADC=180.所以对角互补。
T6 证明:等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高。
S,S,S ,ABP,ACP,ABC111AB*PF--AC*PE=AC*CH AB=AC 222PF--PE=CH圆内接偶数边凸多边形相间诸角之和等于其余各角之和 Tp5226、从圆上一点到其内接四边形一双对边的距离之积,等于从该点到两条对角线的距离之积设圆内接四边形ABCD,P是其外接圆上任一点,过P分别作对角线AC,BD;边,BC,,DA的垂线,垂足依次为E,F;G,H,。
根据简单几何定理:三角形两边之积等于第三边上的高与外接圆直径之积R中 PA*PC=R*PE (1) ,PAC,PDB,PD*PB=R*PF (2),PAD PA*PD=R*PG (3)PB*PC=R*PH (4) ,PBC(1)*(2)=(3)*(4)=所以得证P27 T9 在三角形ABC中,分别以AB和AC为一边向外做等边三角形ABD和ACE,求证CD=BEAE=AC,AB=AD, ?,DAB,,EAC ?,DAC,,EAB ?,AEB,,ACD ?CD,BEP31 4.四边形ABCD中,设AD=BC。
初等几何研究试题答案(4)
。
D B
C
L1
A
E'
E
证明:A.B.C 为 L1 上顺次取的三点,D、E 为 L2 上异于 L1 的两点 。 。 又∵∠AEC=90 , ∠ADB=90 ∴⊿ADB 的外接圆为以 AB 为直径所做的圆,记为⊙O1, ⊿AEC 的外接圆为以 AC 为直径所做的圆, 记为⊙O2. ∴作图可知⊙O1 是⊙O2 中,以 A 为切点的内切圆。 当 L2 向左移动时, 假设 L2 移动后交⊙O1、⊙O2 于点 D’,E’. 过⊙1 的圆心作线段垂直 AB 交⊙O1 于 F,交⊙O2 于 G. (1) 当 D 移至 F 时,AF﹤AD,AG﹤AE. ∵⊙O2 的半径大于⊙O2 的半径 ∴移动相同单位的距离,其所截线段 GF﹤DE ∴⊿ADE 的外接圆半径变小了。 (2) 当 L2 移过 AB 的中点时, 可知 AD﹥AD’,AE﹥AE’, 又∵D’O﹤OD, OE’ 6 证明:棱形 ABCD 两邻边 AB、BC 被其内切圆之任一切线所截的 线段 AM 和 CN 之积为定值。
A E M B F O N G C D
证明:连接 OM、ON(如图) 令∠AOE=∠1,∠EOM=∠2,∠MOF=∠2´,∠FON=∠3,∠NOG=∠3´,∠ GOC=∠1´ ∵A、C 关于点 O 对称 ∴∠1=∠1´ ∵AM、MN 都是⊙O 的切线 ∴∠2=∠2´ ∵NM、NC 都是⊙O 的切线 ∴∠3=∠3´ ∵∠1+∠2+∠2´+∠3+∠3´+∠1´=180° ∴∠1+∠2+∠3=∠1´+∠2´+∠3´=90° ∵∠NOM=∠2´+∠3=90°-∠1,且∠OAM=90°-∠1 ∴∠OAM=∠NOM ∵∠AMO=∠OMN ∠OAM=∠NOM
初等几何研究试题答案(6)李长明版
六、关于共线点与共点线1、证明四边形两双对边中点连线的交点与两对角线之中点共线证明:连接EF.FG.GH.HE.HJ.OJ.OI(如图)∵E.H 分别是AB.AD 的中点, F,G 分别是BC.CD 的中点∴EH =12BD FG=12BD ∵EH ∥FG ∴四边形EFGH 是平行四边形 ∴ OH=OF∵H.J 分别是AD.AC 的中点,F.I 分别是BG.BD 的中点 ∴HJ=12CD IF=12CD ∴HJ ∥IF ∴∠JHO=∠FIO∵∠JHO=∠FIO , HJ=FI,HO=FO ∴△JHO ≅△IFO ∴∠HOJ=∠FOI ∴I.O.J 三点共线∴四边形两双对边中点连线的交点,与两对角线之中点共线2. 已知:E ,F 分别在正方形ABCD 的两边BC,CD 上,是∠EAF=45°,但AC 不是∠EAF 的角平分线,自E,F 作AC 的垂线,垂足分别是P,Q 求证:△BPQ 的外心与B ,C 共线A DCFBEP Q证明: ∵FQ ⊥AC∴∠ABE=∠AQF 又∵∠EAF=45° ∴∠BAE=∠QAF ∴△ABE ∽△AQF 可得AQ AB AFAE同理可得,△AEP ∽△AFD 即AD AP=AFAE∴AQ AB =ABAP利用切割线定理之逆定理,因△BPQ 的外心在BC 上,等价于AB,APQ 是切,割线 ∴△BPQ 的外心在BC 上3.在Rt △AB 为斜边,CH 为斜边上 的高,以AC 为半径作☉A ,过B 作☉A 的任一割线交☉A 于D 、E ,交CH 于F(D 在B 、F 之间),又作∠ABG=∠ABD ,G 在☉A 上,G 与D 在AB 异侧。
求证:(1)A 、H 、D 共圆。
(2)E 、H 、G 共线。
(3)FD 、FE 、BD 、BE 四线段成比例证明:如图所示:连结AE 、AD(1)∵BC 2=BH ·BA(摄影定理) BC 2=BD ·BE(割线定理) ∴BD ·BE=BH ·BA∴A 、H 、D 、E 四点共圆 (2)∵∠ABD=∠ABG∴∠GBH=∠DBH(对称性) 又∵A 、H 、D 、E 四点共圆∴∠FEA=∠DHB(对角等于内对角) ∠AHE=∠EDA (同弧所对的角) 又∵AE=AD ∴∠AEF=∠ADF∴∠AEF=∠DHB=∠GHB=∠ADE=∠AHE ∴∠GHB=∠AHE (对顶角) ∴E 、H 、G 三点共线 (3)∵∠ABD=∠ABG∴由对称知:HB 平分∠DHG(∠GHB=∠DHB) 又∵ CH 垂直AB E 、H 、G 三点共线 ∴HC 平分∠DHE∴HC 、HB 是∠DHE 的内外角平分线 ∴FE DF =HE HD =BEBD4.设P是正方形ABCD内的一点,使PA:PB:PC=1:2:3,将BP 绕B 点朝着BC 旋转90BP 至Q.求证:A 、P 、 Q 共线.证明:连接 CQ ,∵PA:PB:PC= 1:2:3设AP=1 则 BP=2 CP=3 ∵BP 绕B 点朝着BC 旋转90° ∴∠PBQ=90°BP=BQ=2 ①∠BPQ=∠BQP=45°∴PQ =√BP 2+BQ 2=2√2 又∵四边形ABCD 是正方形 ∴AB=BC ②∴∠ABC=∠PBQ= 90°即∠ABP+∠PBC=∠CBQ +∠PBC=90°∴∠ABP=∠CBQ ③∴△ABP≌△CBQ(由①②③可得到)∴PA=QC=1又∵PQ2+QC2=(2√2)2+12=32=PC2∴∠PQC=90°,∠BQC=∠PQC+∠BQP=90+45°=135°又∵∠APB=180°-45°=135°∴∠BQC=∠APB=135°即A、P、Q共线(∠APB、∠BQP是邻补角)5. 在∆ABC中,D,E,F分别在AB.BC.CA上,使得DE=BE,EF=CE.求证:∆ADF的外心O 在∠DEF的角平分线上。
初等几何研究习题2(李长明版)
汕头职业技术学院初等几何研究习题课数学教育(师范类)1. I是△ABC的内心,AI、BI、CI的延长线分别交△ABC的外接圆于D、E、F求证:EF⊥AD。
D AB C EFI 五、关于平行与垂直2. A、B、C、D在圆周上相继的四点,P、Q、R、S分别是弧AB、BC、、CD、DA的中点,求证:PR⊥QS。
ACBP QDRS3. 凸四边形ABCD的每条对角线皆平分它的面积,求证:ABCD是平行四边形。
A BDC4. 已知:△BCX 和△DAY 是□ABCD 外的等边三角形,E 、F 、G 、H 是YA 、AB 、XC 、CD 的中点。
求证:EFGH 是平行四边形。
ABXD C YE F GH5. 在△ABC的各边上向外作正方形BCDE、CAFG、ABHI,其中心依次为O1、O2、O3求证:AO1⊥O2O3。
AO1O2BCO36. 在正方形ABCD 内任取一点E ,连接AE 、BE ,在△ABE 外以AE 、BE 为边作正方形AEMN 和EBFG ,连NC 、AF 。
求证:NC∥AF 。
A BCD E MNFG7. 以□ABCD的对角线AC为一边的两侧各作一个正三角形ACP、ACQ。
求证:BPDQ是□。
ABPDCQ8. 已知:凸五边形的四条边平行于所对的对角线。
求证:第五边也平行于所对的对角线。
CA B DE9.在△ABC中,∠B≠90°,BC边的垂直平分线交AB于D,△ABC的外接圆在A、C两点之切线交于E.求证:DE∥BC.AD EB C10.P 是正方形ABCD 的边CD 上的一点,过D 作AP 的垂线分别交AP 、BC 于Q 、R ,O 是正方形的中心.求证:OP ⊥OR.ABCDOPR12. 给定正方形ABCD ,P 、Q 分别人为AB 、BC 上的点,满足BP=BQ ,自B 作BH ⊥PC 于H ,求证:∠DHQ=900.ABCDO PHQ13. 在△ABC中,AB=AC,O为外心,D为AB的中点,E是△ACD的重心。
初等几何研究第一章习题地问题详解(3)
三、关于比例相似形⒈从 ABCD 的各顶向不过该顶的对角线引垂线,垂足为E 、F 、G 、H,求证: (ⅰ)EFGH 是 ; (ⅱ) EFGH ∽ ABCD. 证明:(1)∵AE ⊥BD DH ⊥AC ∴A 、D 、E 、H 四点共圆(视角相等)∴∠OEH=∠OAD同理 ∠OGF=∠OCB 又∵AD ∥BC ∴∠OAD=∠OCB ∴∠OEH=∠OGF ∴EH ∥GF 同理 EF ∥GH ∴四边形EFGH 为平行四边形(ⅱ)∵△OEH ∽△OAD ∴.OD OHOA OE =∴BDFH AC EG =EFGH 与 ABCD 对角线夹角相等且对角线又成比例 ∴ EFGH ∽ ABCD3.已知:AD 是△ABC 的中线,过C 的一直线分别交AD 、AB 与E 、F 。
求证:AE ·BF=2AF ·ED 证明:延长CF 至点H ,使得CE=EH 连结BH ∵点D 是BC 上的中点 ∴DE 是△CBH 的中位线即DE ∥BH 且DE= 21BH ∵DE ∥BH ∴∠CED=∠CHB=∠AEF ∠AFE=∠BFH∴△AFE ∽△BFH∴BFAFBH AE =,且BH=2ED ∴AE ·BF=2AF ·ED DACBEFGG H4.直线l 与□ABCD 的边AB 、AD 和对角线AC 依次相交于E 、F 和G 。
求证:AGACAF AD AEAB =+ 证明:连结BF 、BE 、CF 和CE , ∵SS SS AEFACF AEFABF AEAB ==SS SS AEFACE AEFADE AFAD==∴AGACAG GC AG AFADAE AB SS SSS SAEFCEFAEFAEFACEACF=+=+=+=+5. AB 证明:作CD 的延长线到点H ,使得AH 垂直CH 作点C 的延长线,使得CP 垂直ABABCP AD AC DH CH CP AD AC AB BP AP DH CH BP DH AP CH CPB AHD CBP DAC APH CBAD CPB AHD DH CH CP AD DH CH DH CH AD DH CH AD CH DH AD CH AH AC ⋅+=+⋅+==+=+==∆≅∆∴∠=∠=∠==∠=∠+⋅+=-++=-+=+-=+=222222222222222 )( 90)( ))(( )( )( 故有又6.AD 是Rt △ABC 斜边上的高,作DE ⊥AB 于E,DF ⊥AC 于F.求证:AD 3=BC •BE •CF证明:∵ AD 2=BD •DC, BD 2=BE •BA, CD 2=CF •CA,B∴ AD 4=BE •CF •AB •AC=BE •CF •BC •AD 约去AD,得AD 3=BC •BE •CF7.在△ABC 中,∠A=60°,∠B=80°。
初等几何研究试题答案(7)
求证:△BCA’, △CAB’, △ABC’与△A’B’C’的外接圆共点
C' 3
B' A
O
5 6 A'
B
4
M1 2
C
证:连接ห้องสมุดไป่ตู้B’M,CM, A’M,
设△BCA’外接圆与△A’B’C’外接圆的另一交点 M(≠A’),如图,
则由 BCMA’,A’MB’C’内接于圆可知
1 2
(∠AO2B+∠BO3C)
∠CDA=
1 2
(∠CO1D+∠DO1A)
∵四边形 O1O2O3O4 顺次 ABCD
∴四边形 ABCD 对角互补
3.设 P、M 分别在正方形 ABCD 的边 DC、BC 上,PM 与⊙A(半径为 AB)相切,线段 PA、 MA 分别交对角线 BD 于 Q、N. 求证:五边形 PQNMC 内接于圆。
证明:连结 MQ、AT ∴∠1=∠1′,∠2=∠2′ ∴∠1′+∠2′=45° ∴α=45°+∠2 β=∠MAP+∠2=45°+∠2 ∴α=β ∴A、B、M、Q 共圆 ∴∠ABM+∠MQA=180°且∠ABM=90° ∴∠MQA=90° ∴M、C、P、Q 共圆 同理 P、N、M、C 共圆 ∴M、C、P、Q、N 五点共圆。
O1
A
O2
D
B
O4
C
O3
证明:设
O1,O2,O3,O4
顺次外切于
ABCD.则∠ABC=
1 2
(∠AO2B+∠BO3C)
∠CDA=
1 2
(∠CO1D+∠DO1A)
再注意到四边形 O1O2O3O4 顺次 ABCD,即知四边形 ABCD 对角互补
初等几何研究试题答案(2)李长明版
初等几何研究试题答案(II )二、关于和、差、倍、分线段(角)1、 等腰ABC 中,0100,A B ∠=∠的平分线交AC 于D ,证明:BD+AD=BC 。
D 'BCA4321证:在BC 上取点D ,,使BD ,=BD,连结DD ,0100A ∠=且BD 平分∠ABC00120,40C ∴∠=∠=又BD=BD ,,0380∴∠=,23C ∠+∠=∠0240∴∠=即2C ∠=∠ ,,CD DD ∴=又03180A ∠+∠=∴点A 、D 、D ,、B 四点共圆且14∠=∠∴DD,=ADBC=BD,+CD ,=BD+AD已知,ABCD 是矩形,BC=3AB,P 、Q 位于BC 上,且BP=PQ=QC, 求证:∠DBC +∠DPC=∠DQC解:作矩形BCEF 与矩形ABCD 相等,在EF 上选取点O 使得FO=2EO.连结BO 、DO 。
由图可知,由BO=DO ,且有△BF O ≌△OED,∵∠FBO+∠BOF=90º ∠BOF=∠DOE ∴∠BOF+∠DOE=90º ∴∠BOD=90º △BOD 为等腰直角三角形 有∠DBO=45º ∴∠DBP+∠QBO=45º ∵∠DPC=∠QBO ∴∠DBP+∠DPC=45º ∵△DQC 为等腰直角三角形∴有∠DQC=45º 因此,有∠DBP+∠DPC=∠DQCP QAB CF EO P D3、圆内接四边形ABCD 的对角线AC 、BD 交于X ,由X 向AB 、BC 、CD 和DA 作垂线,垂足分别为A ´、B ´、C ´和D ´. 求证:A ´B ´+C ´D ´=B ´C ´+D ´A ´证明:(方法一)∵X 、A ´、A 、D ´四点共圆(对角和180°) ∴∠XA ´D ´=∠XAD ´又∵∠XAD ´=∠XBC(圆周角)同理∠XA ´B ´=∠XBC,即∠XA ´D ´=∠XA ´B ´ 同理可得∠XB ´A ´=∠XB ´C ´,∠XC ´B ´=∠XC ´D ´, ∠XD ´C ´=∠XD ´A ´∴X 是四边形A ´B ´C ´D ´的内心。
初等几何研究作业参考答案
《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。
2. ①两,②度量公理(或阿基米德公理)和康托儿公理。
3.①前4组公理(或绝对几何),②平行公理。
4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。
6.①交轨法,②三角奠基法,③代数法,④变换法。
7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。
14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。
24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC).3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。
4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。
2018-2019-初等数学研究李长明-推荐word版 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初等数学研究李长明篇一:初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案初等数学研究(李长明周焕山编) p494第7题,p497第3题,p498第9题答案7.在直角梯形ABCD中,AB是垂直二底的腰,另一腰切以AB为直径之圆于E,过E作底的平行线交AB于F,求证:AC平分EF.证明: ∠DAB=∠ABC=90°, 圆O以AB为直径, ∴AD,BC均与圆O相切; 又圆O与CD相切于E, ∴AD=ED;EC=BC;又AD∥EF∥BC,∴FG/BC=AF/AB=DE/DC=AD/DC=EG/EC=EG/BC.∴EG=FG .即AC平分EF.3.凸四边形ABCD的每条对角线皆平分它的面积.求证:ABCD是平行四边形证明:作AE⊥BD于E,CF⊥BD于F,BM⊥AC于M,DN⊥AC于N.BD平分凸四边形ABCD的面积,∴12BD?AE=12BD?CF?AE=CF.又∠AEO=∠CFO=90?,∠AOE=COF(对顶角相等).??AEO??CFO∴AO=CO,同理易证得:BO=DO.?凸四边形ABCD是平行四边形.(对角线互相平分)9.在?ABC中,∠B≠90,BC边的垂直平分线交求证:DE//BC.?AB于D,?ABC的外接圆在A,C两点之切线交于E.证明:连结OA,OC,CD. AE,CE是圆O的切线,∴∠OAE=∠OCE=90?.∴BD=CD.∴∠DBC=∠DCB.2倍),∠BDC=180?-∠DCB-∠DBC.=∠ACE.(同弧弦切角等于圆周角∴∠AOC+∠AEC=180?. DM是BC的垂直平分线又∠AOC=2∠ABC.(同弧圆心角是圆周角的∴∠ACE=∠ADE.(同弧圆周角相等∴∠ADE=∠ABC.∴DE//BC∴∠BDC=180?-2∠DBC=180?-∠AOC=∠AEC.∴A,D,C,E四点共圆.),∠ABC)篇二:初等几何研究试题答案(1)(李长明版)初等几何研究试题答案(I)一、线段与角的相等1. ⊙O1、⊙O2相交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F, 求证: (1)若∠DBA=∠CBA,则DF=CE; (2) 若DF=CE,则∠DBA=∠CBA.证明:(1)连接AC、AE、AF、AD在⊙O1中,由∠CBA=∠DBA得AC=AF在⊙O2中,由∠CBA=∠DBA得AE=AD由A、C、B、E四点共圆得∠1=∠2由A、D、B、E四点共圆得∠3=∠4所以△ACE≌△AFD∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4∵DF=CE∴△ACE≌△AFD∴AD=AE在⊙O2中,由AD=AE可得∠DBA=∠CBA2. 在△ABC中,AC=BC,∠ACB=90O ,D是AC上的一点,AE⊥BD的延长线于E,又AE=BD, 求证:BD平分∠ABC.12证明:延长AE,BC交于点F∠AED=∠BCA=90? ∠ADE=∠BDC∴∠CBD=∠CAF又∠ACF=∠BCA=90? AC=BC∴?ACF??BCD∴AF=BD11BD∴AE=AF22又ABEE⊥BE又AE=∴BE平分∠ABF即BD平分∠ABC3. 已知在凸五边形ABCDE中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180o-2α,求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD是等腰三角形且底角是∠CDB=[180o-(180o-2α)]÷2=α. ∴∠BDE=(180°-2α)-α=180o -3α ∴A、B、D、E共圆同理A、C、D、E共圆∴∠BAC=∠CAD=∠DAE4. 设H为锐角△ABC的垂心,若AH等于外接圆的半径. 求证:∠BAC=60o证明:过点B作BD⊥BC,交圆周于点D,连结CD、ADC ∵∠DBC=90o, ∴CD是直径,则∠CAD=90o由题,可得AH⊥BC, BH⊥AC∴BD∥AH, AD∥BH∴四边形ADBH是□ ∴AH=BD又∵AH等于外接圆的半径(R) ∴BD=R,而CD=2R ∴在Rt△BCD中,CD=2BD,即∠BCD=30o ∴∠BDC=60o又∵∠BAC=∠BDC∴∠BAC=∠BDC=60o5. 在△ABC中,∠C=90o,BE是∠B的平分线,CD是斜边上的高,过BE、CD之交点O且平行于AB的直线分别交AC、BC于F、G,求证AF=CE.证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO, ∵ ∠5=∠4=∠6,∴CO =CE,∵ FG∥AB,∴AF/CF=BG/CG=GO/CG, 又∵△FCO∽△COG,∴CO/CF=GO/CG=AF /CF, ∴CO=AF,∵CO=CE,∴AF=CE.6. 在△ABC中,先作角A、B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点D、E,若DE∥BA,求证:△ABC等腰.证:如图所示设AC、ED的交点为F∵AD是∠A的平分线∴∠1=∠2 ∵DE∥AB ∴∠1=∠3∵CE∥AD ∴∠3=∠5, ∠4=∠2 ∴∠1=∠2=∠3=∠4=∠5 则△FAD和△FCE是等腰三角形∴AF=DF,EF=CF ∴AC=DE同理可证BC=DE ∴AC=BC∴△ABC是等腰三角形篇三:初等数学研究课后习题答案初等代数研究课后习题201X1115033数学院07(1)杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何a,b∈N,当且仅当a<b时,b>a.(2))对任何a,b∈N,在a<b,a=b,a>b中有且只有一个成立.证明:对任何a,b∈N,设A=a,B=b,,,(1)“?” a<b,则?B?B,使A~B,∴B?B~A,∴b>a ==,,,“?” b>a,则?B?B,使B~A,∴A~B?B,∴a<b综上对任何a,b∈N,a<b?b>a(2)由(1)a<b?b>a ∴a<b与a>b不可能同时成立,,,假设∴a<b与a=b同时成立,则?B?B,使A~B且A~B,∴B~B,与B为有限集矛盾,∴a<b与a=b不可能同时成立,综上,对任何a,b∈N,在a<b,a=b,a>b中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何a,b∈N设M为使等式a+b=b+a成立的所有b组成的集合先证 a+1=1+a,设满足此式的a组成集合k,显然有1+1=1+1成立∴1∈k≠φ,设a∈k,a+1=1+a,则a++1=(a+)+=(a+1)+=(1+a)+=1+a++∴a∈k,∴k=N,取定a,则1∈M≠φ,设b∈M,a+b=b+a,则a+b=(a+b)+++ =(b+a)=b+ + a∴b+∈M,∴M=N∴ 对任何a,b∈N,a+b=b+a3、证明自然数的乘法是唯一存在的证明:唯一性:取定a,反证:假设至少有两个对应关系f,g,对?b∈N,有∈) f(b),g(bN,设M是由使f(b)=g(b)成立的所有的b组成的集合,f(b)=g(b)=a?1 ∴1∈M≠φ设b∈N则f(b)=g(b)∴f(b)+a=g(b)+a∴f(b+)=g(b+),∴b+∈M,∴M=N 即?b∈N,f(b)=g(b)乘法是唯一的存在性:设乘法存在的所有a组成集合K 当a=1时,?b∈N,1?1=1,1?b+=b+=b+1=1?b+1∴1∈k≠φ,设a∈K,?b∈N,有a,b与它对应,且1?a=a,ab=ab+a,对?b∈N,令ab=ab+b ++a+?1=a?1+1=a+1=a+a+b+=ab++b+=ab+a+b+1=(ab+b)+(a+1)=a+b+a+∴a+∈K ∴K=N 即乘法存在p24—5、解:满足条件的A有A1,2},A2={1,2,3},A3={1,2,4},A4={1,2,5}1={A5={1,2,3,,4A}6={1,2,3,5},A7={1,2,4,5},A8={1,2,3,4,5}∴A1=2,A2=A3=A4=3,A5=A6=A7=4,A8=5基数和为2+3?3+4?3+5=28 p24—6、证明:A=a,B=b,A中的x与B中的y对应 ========∴A?B=ab,∴B?A=ba=abA?B=ab ∴A?B=A?B=B? Ap24—8、证明:1)3+4=7+++ 3+1=3=43+2=3+1=(3+1)=4=++++ 3+3=3+2=(3+2)=5=63+4=3+3=(3+3)=6=72)3?4=12 +++3?1=33?2=3?+1=3?1+3= 63?3=3?2+=3?2+3=93?4=3?3+=3?3+3=12p24—12、证明:1)(m+n)=m+n(m+n)=m+n+1=(m+1)+n=m+n++++++++++2)(mn+)+=nm+m+(mn+)+=mn++1=mn+(m+1)=nm+m+p26—36、已知f(m,n)对任何m,n∈N满足f(1,n)=n+1??f(m+1,1)=f(m,2)??f(m+1,n+1)=f(m,f(m+1,n))?求证:1)f(2,n)=n+22)f(3,n)=2n+23)f(4,n)=2n+1-2证明:1)当n=1时,f(2,1)=f(1+1,1)=f(1,2)=2+1=1+2结论成立,假设n=k时,结论成立,即f(2,k)=k+2,当n=k+1时,f(2,k+1)=f(1+1,k+1)=f(1,f(2,k)) =f(1,k+2)=(k+2)+1=(k+1)+2 所以对一切自然数结论都成立2)当n=1时,f(3,n)=f(2+1,n)=f(2,2)=2+2=2?1+2结论成立假设n=k时,结论成立,即f(3,k)=2k+2当n=k+1时,f(3,k+1)=f(2+1,k+1)=f(2,f(3,k)) =f(2,2k+2)=2k+2+2=2(k+1)+2所以对一切自然数结论都成立3)当n=1时,f(4,1)=f(3+1,1)=f(3,2)=2?2-2=2假设n=k时,结论成立,即f(4,k)=2当n=k+1时,k+11+1-2结论成立 -2 f(4,k+1)=f(3,f(4,k))=f(3,2k+1-2)=2(2k+1-2)+2=2k+2-2所以对一切自然数结论都成立p62—1、证明定理2.1证明:?[a,b],[c,d]∈Z,[a,b]+[c,d]=[a+c,b+d]因为自然数加法满足交换律∴[a+c,b+d]=[c+a,d+b]而[c,d]+[a,b]=[c+a,d+b]∴[a,b]+[c,d]=[c,d]+[a,b]?[a,b],[c,d],[e,f]∈Z,[a,b]+[c,d]+[e,f]=[a+c,b+d]+[e,f]=[(a+c)+e,(b+d)+f]以为自然数满足加法结合律∴([a,b]+[c,d])+[e,f]=[a,b]+([c,d]+[e,f]) 即整数加法满足交换律和结合律p62—2、已知[a,b],[c,d]∈Z,求证[a,b]=[c,d]的充要条件是[a,b]-[c,d]=[1,1]证明:“?” 已知[a,b]=[c,d]则a+d=b+c∴[a,b]-[c,d]=[a+d,b+c]=[1,1]“?” 已知[a,b]-[c,d]=[1,1]则[a+d,b+c]=[1,1],a+d=b+c=[c,d ] ∴[a,b]p62—4、已知a,b∈N,求证-(-[a,b])=[a,b]a,b])=-b[a,=]a[ b,证明:-[a,b]=[b,a]-(-[p62—5、已知[a,b],[c,d]∈Z,求证-([a,b]-[c,d])=-[a,b]+[c,d]证明:左边-([a,b]-[c,d])=-[a+d,b+c]=[b+c,a+d]右边-[a,b]+[c,d]=[b,a]+[c,d]=[b+c,a+d]所以左边等于右边∴-([a,b]-[c,d])=-[a,b]+[c,d]p62—7、已知a,b,c∈N,求证当且仅当a+d<b+c时[a,b]<[c,d]证明:“?” 已知a+d<b+c,[a,b]-[c,d]=[a+d,b+c]] 因为a+d<b+c ∴[a+d,b+c是负数,∴[a,b]<[c,d]“?” 已知[a,b]<[c,d]则[a,b]-[c,d]=[a+d,b+c]因为[a+d,b+c]是负数,∴a+d<b+cp62—9、已知α,β∈Z,求证:1)α+β≤α+证明:设α=[a,b],β=[c,d] β,2)αβ=β1)α+β=[a+c,b+d] ∴α+β=(a+c)-(b +)而α=a-b,β=c-d(a+c)-(b+)(a-b)+(cd≤b+c -d∴α+β≤α+β2)αβ=[ac+bd,ad+bc]∴αβ=ac+bd-(ad+bc)而α=a-b,β=c-dac+bd-(ad+bc)=a(c-d)+b(d-c)=(a-b)(c-d)=a-bc-d ∴αβ=αβp63—12、n名棋手每两个比赛一次,没有平局,若第k名胜负的次数各为ak,bk,2222k=1,2,........,n,求证:a12+a2 +...+an=b12+b2+...+bn证明:对于ak(k=1,2,...,n),必存在一个bj(j=1,2,...,n)使得ak=bj2222 ?ak=bj(k,j=1,2,...,n)∴a1+a2+...+an2=b1+b+...+bn 222p63—16、已知pa-b,pc-d,求证pad-bc证明:由已知:?s,t∈Z使10a-b=ps,10c-d=pt? b=10a-ps,d=10c-pt∴ad-bc=10ac-apt-(10ac-cps)=p(cs-at)∴pad-bc2p63—17、设2不整除a,求证8a+1证明:因为2不整除a,所以存在唯一一对q,r∈Z,使a=2q+r,其中0<r<2 2222 ?r=1,∴a=4q+4q+1?a-1=4q(q+1)∴8a-1。
初等几何研究习题答案
初等几何研究习题答案初等几何研究习题答案几何学是数学的一个重要分支,它研究的是形状、大小、相对位置以及它们之间的关系。
初等几何是几何学的基础,是我们学习数学的第一步。
在初等几何的学习过程中,习题是不可或缺的一部分。
通过解答习题,我们可以巩固所学的知识,提高解决问题的能力。
在这篇文章中,我将为大家提供一些初等几何习题的答案,并探讨一些解题思路。
1. 题目:已知直角三角形ABC,其中∠C=90°,AC=5cm,BC=12cm。
求AB的长度。
解答:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
设AB=x cm,则根据勾股定理得到方程:5^2 + x^2 = 12^2。
解这个方程可以得到x的值,进而求得AB的长度。
2. 题目:已知平行四边形ABCD,其中AB=5cm,BC=8cm,∠A=60°。
求对角线AC的长度。
解答:平行四边形的对角线相等,所以AC=BD。
根据余弦定理,可以得到方程:AC^2 = AB^2 + BC^2 - 2 * AB * BC * cos∠A。
将已知的数值代入方程,解得AC的长度。
3. 题目:已知等腰梯形ABCD,其中AB∥CD,AB=7cm,CD=12cm,AD=BC=5cm。
求高的长度。
解答:等腰梯形的高是两个底边之间的垂直距离。
根据勾股定理,可以得到方程:AD^2 = AB^2 - h^2。
将已知的数值代入方程,解得高的长度。
4. 题目:已知正方形ABCD,其中AB=8cm。
点E是BC边上的一个点,且BE=3cm。
连接AE,求∠AEB的度数。
解答:正方形的对角线相等,所以AC=BD。
根据正方形的性质,可以得知∠AEB = ∠AED + ∠DEB。
由于AE=AD,所以∠AED=∠ADE。
根据三角形的内角和定理,可以得到∠AED+∠ADE+∠DEB=180°。
将已知的数值代入方程,解得∠AEB的度数。
通过以上几道习题的解答,我们可以看到初等几何的解题思路大致有两种:一种是利用几何定理和公式进行计算,另一种是利用图形的性质和特点进行推理。
初等几何研究综合测试题(一)
《初等几何研究》综合测试题(一)适用专业:数学教育专业 考试时间:120分钟一、 选择题(本题共8小题,每小题3分,共24分)1.在 ABC 中,AB=AC ,高BF 、CE 交于高AD 上一点O ,图中全等三角形的对数是_____。
A.4;B.5;C.6;D.7.2.已知:如图, ABC 中,∠BAC=90°,AD ⊥BC 于D, 若AB=2,BC=3,则DC 的长度是________。
A.83; B.23; C.43; D.53。
3.下面4个图形中,不是轴对称图形的是_________。
A.有两个内角相等的三角形;B.有一个内角是45°的直角三角形;C.有一个内角是30°的直角三角形;D.有一个内角是30°,一个内角是120°的三角形。
4.下列条件中,不能判别四边形是平行四边形的是_________。
A.一组对边平行,另一组对边相等;B.两组对边分别平行;C.对角线互相平分;D.一组对边平行且相等。
5.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是_________。
A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。
6.下列语句正确的是________。
A.圆可以看作是到圆心的距离等于半径的点的集合。
B.圆的内部可以看作是到定点的距离小于定长的点的集合。
C.圆的一部分叫做弧。
D.能够互相重合的弧叫做等弧。
7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向。
二、 判断题:(本题共5小题,每小题2分,共10分)1.如图1,直线a ,b ,c 在同一平面内,a//b ,a 与c 相交于P ,则b 与c 也一定相交。