概率统计实验报告

合集下载

概率统计实验报告

概率统计实验报告

P( 2 X 2 )=P( P( 3 X 3 )=P( 输入: P1=2*normcdf(1)-1 P1=2*normcdf(2)-1 P1=2*normcdf(3)-1
2 X U 2
实 验 结 果
实 验 总 结
评分小项 1.实验报告格式排版
分值 2分 6分 6分 4分 2分
得分
总分:
实 验 成 绩 评 定
2.实验设计思路(科学性、可行性、创新性) 3.实验代码编写(规范性、正确性、复杂性) 4.实验结果分析(正确性、合理性) 5.实验心得总结
解:设 n 个人中至少有两个人生日相同的概率 P
n C365 n! P 1 365n
当 n=365,k=40 时,输入 p=1-nchoosek(365,40)*factorial(40)/365^40 当 nn=365,k=50 时,输入 p=1-nchoosek(365,50)*factorial(50)/365^50 当 nn=365,k=60 时,输入 p=1-nchoosek(365,60)*factorial(60)/365^60
一、古典概型 1、求 n 个人中至少有两个人生日相同的概率。(n=30、40、 50、60) 二、计算概率
实 验 内 容
1、某人进行射击,设每次射击的命中率为 0.02,独立射击 200 次,试求至少击中两次的概率。
2 , 3 2、 设随机变量 X ~ N (, 2 ) , 求它的取值在 ,
)= (2) (2) = (2) 1
3 X U 3 )= (3) (3) = (3) 1
实 验 操 作 步 骤
一、1、n=365,k=40 >>p=1-nchoosek(365,40)*factorial(40)/365^40 p= 0.8912 n=365,k=50 >> p=1-nchoosek(365,50)*factorial(50)/365^50 p= 0.9704 n=365,k=60 >> p=1-nchoosek(365,60)*factorial(60)/365^60 p= 0.9941 二、1、方法一: >> p=1-binocdf(0,200,0.02)-binocdf(1,200,0.02) p= 0.8930 方法二: >> p=1-poisscdf(1,4) p= 0.9084 2、>> P1=2*normcdf(1)-1 P1 = 0.6827 >> P2=2*normcdf(2)-1 P2 = 0.9545 >> P3=2*normcdf(3)-1 P3 = 0.9973

概率统计方程实验报告

概率统计方程实验报告

《概率统计》实验报告
专业 班级 姓名 学号 实验地点 实验时间
一、实验目的
1.学会用matlab 计算常见分布的概率。

2.熟悉matlab 中用于描述性统计的基本操作与命令
3.学会matlab 进行参数估计与假设检验的基本命令与操作
二、实验内容:(给出实验程序与运行结果)
实验一:
1、 设随机变量()23,2X N ,求()25P X <<;()2P X >
2、 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,求拒收的概率。

实验二:根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:
40.6 39.6 37.8 36.2 38.8 38.6 39.6 40.0 34.7 41.7
38.9 37.9 37.0 35.1 36.7 37.1 37.7 39.2 36.9 38.3
求其公司中层管理人员年薪的样本均值、样本方差、样本修正方差,画出经验分布函数图、直方图。

实验三:
1、 假设轮胎的寿命服从正态分布,现随机抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70 求平均寿命的最大似然估计值,以及置信度为0.95的置信区间。

2、 已知维尼纤度在正常条件下服从正态分布,方差为2
0.048,从某天产品中抽取5根纤维,测得纤度为1.32 1.55 1.36 1.40 1.44 问这一天纤度的总体方差是否正常? 三、 实验总结与体会
实验分析:。

大学本科概率论与数理统计实验报告

大学本科概率论与数理统计实验报告

xx大学xx学院数学类课程实习报告课程名称:概率论与数理统计实习题目:概率论与数理统计姓名:系:信息与计算科学系专业:信息与计算科学年级:2010学号:指导教师:职称:讲师年月日福建农林大学计算机与信息学院数学类课程实习报告结果评定目录1实习的目的和任务 (2)2实习要求 (2)3实习地点 (2)4主要仪器设备(实验用的软硬件环境) (2)5实习内容 (2)5.1 MATLAB基础与统计工具箱初步 (2)5.2 概率分布及应用实例 (4)5.3 统计描述及应用实例 (5)5.4 区间估计及应用实例 (8)5.5 假设检验及应用实例 (11)5.6 方差分析及应用实例 (13)5.7 回归分析及应用实例 (15)5.8 数理统计综合应用实例 (18)6 结束语 (26)7 参考文献 (27)概率论与数理统计(Probabilily theroy and Mathemathical Statistics)1.实习的目的和任务目的:通过课程实习,让学生巩固所学的理论知识并且能够应用MATLAB数学软件来解决实际问题。

任务:通过具体的案例描述,利用MATLAB软件计算问题的结果,作出图形图象分析问题的结论。

2.实习要求要求:学生能够从案例的自然语言描述中,抽象出其中的数学模型,能够熟练应用所学的概率论与数理统计知识,能够熟练使用MATLAB软件。

3.实习地点:校内数学实验室,宿舍4.主要仪器设备计算机Microsoft Windows XPMatlab 7.05.实习内容5.1 MATLAB基础与统计工具箱初步一、目的:初步了解和掌握MATLAB的操作和统计工具箱的简单应用.二、任务:熟悉MATLAB的基本命令的调用和基本函数及其基本操作.三、要求:掌握安装MATLAB的方法,并运用统计工具箱进行简单MATLAB编程.四、项目:(一)、实例:产生一组试验,假设随机变量X的分布函数为X~N(10,42)的随机数,并绘出该正态分布的图像。

概率统计学实验报告

概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。

2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。

实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。

概率统计上机实验报告(电子版)

概率统计上机实验报告(电子版)

2.(1)BINOMDIST(2,15,0.05,FALSE)=0.13475BINOMDIST(2,15,0.05,TRUE)=0.9638(2)EXPONDIST(1,0.1,FALSE)=0.09048EXPONDIST(4,0.1,TRUE)=0.32968(3)NORMDIST(2,0,1, TRUE)=0.97725NORMSDIST(2)-- NORMSDIST(--2)=0.9545=NORMINV(0.98,0,1)=2.05NORMSDIST(0.1)-- NORMSDIST(--1)=0.3812=NORMINV(0.05,5,100)=--159.49(4)POISSON(4,2,FALSE)=0.090POISSON(4,2,TRUE)=0.9473(5) BINOMDIST(2,15,0.05,FALSE)=0.13475营业税金与社会商品总额关系(1)打开EXCEL,建立数据文件如下图:税收Y 销售X3.93 142.085.96 177.307.85 204.689.82 242.6812.50 316.2415.55 341.9915.79 332.6916.39 389.2918.45 453.40调用线性回归分析程序:单击工具/数据分析/回归/确定,填写对话框,确定后输出结果,分析结果知回归方程为:Y=-2.258+0.0487X(2)对数据调用相关分析程序:依次单击工具/数据分析/相关系数/确定,填写对话框后,单击确定得到下面表格:所以,Y与X的皮尔逊相关系数为: 0.981069(3)建立假设H0:b=0 ,H1:b=/0,统计检验量F=(SSR/k)/(SSE/n-k-1)有数据分析结果知:F=179.6507P(F(1,7)>179.6507)=3.02E-06<<0.05所以认为回归方程是显著有效的。

(4)在(1)中表的B11中补充数据X=320在A11中输入公式=-2.258+0.0487X320运行课的到X=320的点预测值y=13.326。

大学概率统计实验报告

大学概率统计实验报告

大学概率统计实验报告引言在概率统计学中,实验是一种重要的数据收集方法。

通过实验,我们可以收集到一系列随机变量的观测值,然后利用统计方法对这些观测值进行分析和推断。

本实验旨在通过一个简单的骰子实验来介绍概率统计的基本理论和方法。

实验目标本实验的目标是通过投掷骰子的实验,验证骰子的随机性,并研究骰子的概率分布。

实验步骤1.准备一个六面骰子和一张记录表格。

2.将骰子投掷20次,并记录每次投掷的结果。

将结果按照出现的次数填入表格中。

3.统计记录表格中每个数字出现的频数,并计算频率。

4.绘制柱状图展示各个数字的频率分布情况。

实验结果与分析根据实验记录表格,我们统计得到了每个数字出现的频数如下:数字 1 2 3 4 5 6频数 4 3 6 2 4 1根据频数,我们可以计算出每个数字的频率。

频率是指某个数字出现的次数与总次数的比值。

通过计算,我们得到了每个数字的频率如下:数字 1 2 3 4 5 6频率0.2 0.15 0.3 0.1 0.2 0.05通过绘制柱状图,我们可以更直观地观察到各个数字的频率分布情况。

柱状图如下所示:0.3 | █| █| █| █0.25 | █| █| █| █0.2 | █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.15 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.1 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.05 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █----------------1 2 3 4 5 6根据实验结果,我们可以观察到以下现象和结论: - 各个数字的频率接近于理论概率,表明骰子的结果具有一定的随机性。

- 数字3的频率最高,约为0.3,而数字6的频率最低,约为0.05。

这说明骰子的结果并不完全均匀,存在一定的偏差。

结论与讨论通过本次实验,我们了解了概率统计的基本理论和方法,并通过投掷骰子的实验验证了骰子的随机性。

概率统计实验报告结论

概率统计实验报告结论

概率统计实验报告结论引言概率统计是数学中非常重要的一个分支,它利用统计方法对一定的随机现象进行描述、分析和预测。

本次实验中我们通过模拟实验的方式,利用概率统计的方法对一些实际问题进行了研究和分析。

实验一:骰子实验我们进行了一系列的骰子实验,通过投掷骰子并记录点数的方式来研究骰子的概率分布。

实验结果表明,投掷骰子时,每个面出现的概率是均等的,即每个面的概率是1/6。

这符合理论预期,也验证了概率统计中的等概率原理。

实验二:扑克牌实验通过抽取一副扑克牌中的若干张牌,并记录其点数和花色,我们研究了扑克牌中各个点数和花色的概率分布情况。

实验结果表明,52张扑克牌中各个点数和花色的概率分布近似均等,并且点数和花色之间是相互独立的。

这进一步验证了概率统计中的等概率原理和独立事件的性质。

实验三:掷硬币实验通过进行大量的抛硬币实验,我们研究了硬币正反面出现的概率分布情况。

实验结果表明,掷硬币时正面和反面出现的概率非常接近,都是1/2。

这也符合理论预期,并且进一步验证了概率统计中的等概率原理。

实验四:随机数生成器实验通过计算机程序生成随机数,并对其进行统计分析,我们研究了随机数生成器的质量问题。

实验结果表明,一个好的随机数生成器应该具备均匀分布、独立性和不可预测性等特征。

我们的实验结果显示,所使用的随机数生成器满足这些条件,从而可以被广泛应用于概率统计领域。

实验五:二项分布实验通过进行大量的二项分布实验,我们研究了二项分布的特性。

实验结果表明,二项分布在一定条件下可以近似成正态分布,这是概率统计中的重要定理之一。

实验结果还显示,二项分布的均值和方差与试验的次数和成功的概率有关,进一步验证了概率统计中与二项分布相关的理论。

总结通过本次概率统计实验,我们对骰子、扑克牌、硬币、随机数和二项分布等与概率统计相关的问题进行了研究和分析。

实验结果与理论预期基本一致,验证了概率统计中的一些重要原理和定理。

这些实验结果对我们的概率统计学习和应用有着重要的意义,同时也为我们在探索更深层次的概率统计问题提供了一定的启示和思路。

概率统计实验报告

概率统计实验报告

概率统计实验报告班级学号姓名2016年 01月 06日问题概述和分析(1)实验内容说明:在常见随机变量中选择3种计算它们的期望和方差。

(2)本门课程与实验的相关内容:通过用matlab 软件对常见随机变量进行期望与方差计算,熟悉变量,深化理解。

实验目的:练习使用matlab软件进行概率论问题分析,熟练使用密度函数,分布函数等命令。

实验设计总体思路(1)引论利用matlab工具实现对基本随机变量的期望与方差计算。

(2)实验主题部分设计思路:设计三个随机变量,计算方差及期望。

2、实验设计总体思路2.1、引论2.2、实验主题部分2.2.1、实验设计思路1、理论分析2、实现方法用概率分布函数(cdf)求各种分布中的不同事件的概率;用逆概率分布函数(Inv )求各种分布的 分位点。

2.2.2、实验结果及分析实验结果见下,可见用matlab可有效地解决一些与常见分布的密度函数分布函数有关的问题。

2.2.3、程序及其说明a.均匀分布的期望和方差>>a = 1:6; b = 2.*a;>>[M,V] = unifstat(a,b)M =1.5000 3.0000 4.5000 6.0000 7.5000 9.0000V =0.0833 0.3333 0.7500 1.33332.08333.0000b.正态分布的期望和方差>> [M,V]=normstat(a,b)M =1 2 3 4 5 6V =4 16 36 64 100 144c.二项分布的均值和方差>>n = logspace(1,5,5)10 100 1000 10000 100000>>[M,V] = binostat(n,1./n)M =1 1 1 1 1V =0.9000 0.9900 0.9990 0.99991.0000>>[m,v] = binostat(n,1/2)m =5 50 500 5000 500002.3、对教材正文的深入理解和创新性说明2.3.1、对教材正文的深入理解通过使用matlab,我发现教材中的许多问题也可以用matlab来更方便更快的解决2.3.2、对论文中探索性内容或创新点说明2.4、体会运用matlab不仅能比较快速准确地计算各种概率,而且也可用于作图,并运用于统计等方面,总之掌握它对我们以后一些方面的研究有帮助。

概率统计实验报告

概率统计实验报告

概率统计实验报告班级1403012学号14030120005 姓名巨玉2015年12 月27 日一、问题概述和分析(1)实验内容说明:使用Matlab软件绘制正态分布、指数分布、均匀分布密度函数图象。

(2)本门课程与实验的相关内容正态分布密度函数指数分布密度函数均匀分布密度函数(3)实验目的熟练掌握MA TLAB软件,并观察密度函数图象特点二、实验结果及分析1:绘制正态分布密度函数图象2、绘制指数分布密度函数图象3、绘制均匀分布密度函数图象三、程序及其说明1、绘制正态分布函数图像代码:mu=2;sigma=5;x=mu+sigma*(-4:0.1:4);x1=mu+[-1,1]*sigma;y=normpdf(x,mu,sigma);y1=normpdf(x1,mu,sigma);plot(x,y,x1,y1,'*')%plot(x1,y1)2、绘制指数分布密度函数图象代码:ezplot(@(x)exppdf(x,1),[-3,3])3、绘制均匀分布密度函数图象代码:ezplot(@(x)unifpdf(x,-1,1),[-3,3])四、体会对于概率论与数理统计这门课程,高中曾经接触了一点。

到了大学,对于这门课程又进行了更深入层次的学习,本人最大的体会,这是联系日常生活最深,表现最直接的一门课程。

首先,学习这门课程需要具有较强的数学运算以及心算能力。

这门课程中夹杂了许多数学基本知识,以及在对这门课程的许多问题求解过程中,也会用到一些基本数学知识,但这门课程和高等代数不同的是,它并不需要认为大量的计算,很多复杂的运算都已经被算出来了,我们只需要用到其中的答案验证其猜测即可。

再有,这门课程能给人在生活中带来很多启示。

其中蕴含的数学道理直接关系到我们的生活,而其中解决的数学问题,则是对生活有很大的促进。

五、建议这门课程是联系日常生活的一门课程,如果按照高等代数等课程教学方法来进行教学,势必会降低这门课程的趣味性。

概率论实验报告

概率论实验报告

概率论与数理统计实验报告实验名称: 区间估计姓名 学号 班级 实验日期一、实验名称:区间估计二、实验目的:1. 会用MATLAB 对一个正态总体的参数进行区间估计;2. 会对两个正态总体的均值差和方差比进行区间估计。

三、实验要求:1. 用MATLAB 查正态分布表、χ2分布表、t 分布表和F 分布表。

2. 利用MATLAB 进行区间估计。

四、实验内容:1. 计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。

2. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时,χ2(n )的上侧α分位数(注:α与n相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。

3. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时, t (n )的上侧α分位数。

4. 计算α=0.1, 0.05, 0.025时, F (8,15)的上侧α分位数; 验证:0.050.95(8,15)1(15,8)F F =;计算概率{}312P X ≤≤。

5. 验证例题6.28、例题6.29、例题6.30、习题6.27、习题6.30。

五、实验任务及结果:任务一:计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。

源程序:%1-1x = norminv([0.05 0.95],0,1)%1-2y = norminv([0.025 0.975],0,1)%1-3z = norminv([0.0125 0.9875],0,1)结果:x =-1.6449 1.6449y =-1.9600 1.9600z =-2.2414 2.2414结论:α=0.1时的置信区间为[-1.6449,1.6449],上侧α分位数为1.6449.α=0.05时的置信区间为[-1.9600,1.9600],上侧α分位数为1.9600.α=0.025时的置信区间为[-2.2414,2.2414],上侧α分位数为2.2414.任务二:计算α=0.1, 0.05, 0.025,n=5, 10, 15时,χ2(n)的上侧α分位数(注:α与n 相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。

概率论与数理统计实验报告

概率论与数理统计实验报告

概率论与数理统计实验报告概率论与数理统计实验报告引言:概率论与数理统计是数学的两个重要分支,它们在现代科学研究和实际应用中起着重要的作用。

本次实验旨在通过实际操作,加深对概率论与数理统计的理解,并探索其在实际问题中的应用。

实验一:掷硬币实验实验目的:通过掷硬币实验,验证硬币正反面出现的概率是否为1/2。

实验步骤:1. 准备一枚硬币,标记正反面。

2. 进行100次连续掷硬币实验。

3. 记录每次实验中正面朝上的次数。

实验结果与分析:经过100次掷硬币实验,记录到正面朝上的次数为47次。

根据概率论的知识,理论上硬币正反面出现的概率应为1/2。

然而,实验结果显示正面朝上的次数并未达到理论值。

这表明在实际操作中,概率与理论可能存在一定的差异。

实验二:骰子实验实验目的:通过骰子实验,验证骰子的点数分布是否符合均匀分布。

实验步骤:1. 准备一个六面骰子。

2. 进行100次连续投掷骰子实验。

3. 记录每次实验中骰子的点数。

实验结果与分析:经过100次投掷骰子实验,记录到骰子点数的分布如下:1出现了17次;2出现了14次;3出现了20次;4出现了19次;5出现了16次;6出现了14次。

根据概率论的知识,理论上骰子的点数分布应符合均匀分布,即每个点数出现的概率相等。

然而,实验结果显示骰子点数的分布并未完全符合均匀分布。

这可能是由于实际操作的不确定性导致的结果差异。

实验三:正态分布实验实验目的:通过测量人体身高数据,验证人体身高是否符合正态分布。

实验步骤:1. 随机选择一定数量的被试者。

2. 测量每个被试者的身高。

3. 统计并绘制身高数据的频率分布直方图。

实验结果与分析:通过测量100名被试者的身高数据,统计得到的频率分布直方图呈现出典型的钟形曲线,符合正态分布的特征。

这与概率论中对正态分布的描述相吻合。

结论:通过以上实验,我们对概率论与数理统计的一些基本概念和方法有了更深入的了解。

实验结果也向我们展示了概率与理论之间的差异以及实际操作的不确定性。

数学实验报告概率统计

数学实验报告概率统计

一、实验目的1. 理解概率统计的基本概念和原理;2. 掌握运用概率统计方法解决实际问题的能力;3. 提高数据分析和处理能力。

二、实验内容1. 随机数生成实验2. 抽样实验3. 假设检验实验4. 估计与预测实验三、实验方法1. 随机数生成实验:使用计算机生成随机数,并分析其分布情况;2. 抽样实验:通过随机抽样,分析样本数据与总体数据的关系;3. 假设检验实验:根据样本数据,对总体参数进行假设检验;4. 估计与预测实验:根据历史数据,建立预测模型,对未来的数据进行预测。

四、实验步骤1. 随机数生成实验(1)设置随机数生成器的参数,如范围、种子等;(2)生成一定数量的随机数;(3)分析随机数的分布情况,如频率分布、直方图等。

2. 抽样实验(1)确定抽样方法,如简单随机抽样、分层抽样等;(2)抽取一定数量的样本数据;(3)分析样本数据与总体数据的关系,如样本均值、标准差等。

3. 假设检验实验(1)根据实际需求,设定原假设和备择假设;(2)计算检验统计量,如t统计量、卡方统计量等;(3)根据临界值表,判断是否拒绝原假设。

4. 估计与预测实验(1)收集历史数据,进行数据预处理;(2)选择合适的预测模型,如线性回归、时间序列分析等;(3)利用历史数据训练模型,并对未来数据进行预测。

五、实验结果与分析1. 随机数生成实验(1)随机数分布呈现均匀分布,符合概率统计的基本原理;(2)随机数的频率分布与理论分布相符。

2. 抽样实验(1)样本均值与总体均值接近,说明抽样效果较好;(2)样本标准差略大于总体标准差,可能受到抽样误差的影响。

3. 假设检验实验(1)根据检验统计量,拒绝原假设,说明总体参数存在显著差异;(2)根据临界值表,确定显著性水平,进一步分析差异的显著性。

4. 估计与预测实验(1)预测模型具有较高的准确率,说明模型能够较好地拟合历史数据;(2)对未来数据进行预测,结果符合实际情况。

六、实验结论1. 概率统计方法在解决实际问题中具有重要作用,能够提高数据分析和处理能力;2. 随机数生成实验、抽样实验、假设检验实验和估计与预测实验均取得了较好的效果;3. 通过本次实验,加深了对概率统计基本概念和原理的理解,提高了运用概率统计方法解决实际问题的能力。

概率与数理统计实验报告

概率与数理统计实验报告

实验Excel在概率统计中的应用一、常用的概率分布计算。

1、某射手每次射击时击中目标的概率为0.7,现在连续射击20次,试求:(1)击中目标8次的概率;(2)求至少命中12次的概率。

解:Step1:打开excel工作表,将鼠标停在任一空白单元格内,插入函数“BINOMDIST”Step2:(1)即击中目标8次的概率为:0.003859(2)计算公式为“1—BINOMDIST(11,20,0.7,true)”,结果如下:即至少命中12次的概率为:1—0.113331=0.886692、设随机变量X~N(3,64),求(1)P{X<6.5}; (2)P{0<X<6}.解:(1)、计算公式为:“NORMDIST(6.5,3,8,TRUE),结果为:0.669126即P{X<6.5}=0.669126(2)计算公式为:“NORMDIST(6,3,8,true)—NORMDIST(0,3,8,TURE)”,结果为:0.646169767—0.353830233=0.29233953即P{0<X<6}=0.29233953二、参数估计的计算1.已知幼儿身高服从正态分布,标准差&=7.现从5—6岁的幼儿中随机地抽查了9人,其身高(单位:cm)分别为:115 120 131 115 109 115 115 105 110试求身高均值u的置信度为95%的置信区间。

解:(1).计算“样本均值”,在C2中输入公式“=A VERAGE(A2:A10)”(2)计算“估计误差”,在C5输入公式“=CONFIDENCE(1-C4,C3,C1)”(3)计算“置信上限”,在C6中输入“=C2+C5””(4)计算“置信下限”,在C7中输入“=C2-C5”如图所示:所以其置信区间为:【110.427, 119.573】2.设某机床加工的零件长度X~N(u,&^),今抽查16个零件,测得长度(单位:mm)如下:12.15 12.12 12.01 12.08 12.09 12.16 12.03 12.0112.06 12.13 12.07 12.11 12.08 12.01 12.03 12.06试求总体方差&^的置信度为95%的置信区间。

概率统计抛硬币实验报告

概率统计抛硬币实验报告

本次实验旨在通过抛硬币实验,了解概率统计的基本原理,验证概率论中的一些基本概念,并通过对实验数据的分析,加深对概率分布、期望值、方差等统计量的理解。

二、实验原理抛硬币实验是一个典型的概率模型,每次抛硬币都有两种可能的结果:正面或反面。

在理想情况下,假设硬币是公平的,那么正面和反面出现的概率都是1/2。

通过多次抛硬币,我们可以观察到正面和反面出现的频率,并据此估计概率。

三、实验材料1. 公平硬币一枚2. 记录表3. 计算器四、实验步骤1. 准备工作:准备一枚公平的硬币,并准备好记录表和计算器。

2. 实验设计:确定实验的次数,例如抛硬币100次。

3. 实验操作:- 将硬币抛起,记录正面或反面。

- 每次抛硬币后,将结果记录在记录表中。

- 重复上述步骤,直到达到预定的抛硬币次数。

4. 数据整理:将记录表中的数据整理成表格,包括抛硬币次数、正面次数、反面次数等。

5. 数据分析:- 计算正面和反面出现的频率。

- 计算正面和反面出现的概率估计值。

- 计算期望值和方差。

| 抛硬币次数 | 正面次数 | 反面次数 | 正面频率 | 反面频率 || :---------: | :------: | :------: | :------: | :------: || 100 | 52 | 48 | 0.52 | 0.48 |根据实验数据,我们可以得到以下结果:1. 正面出现的频率为0.52,反面出现的频率为0.48。

2. 正面出现的概率估计值为0.52,反面出现的概率估计值为0.48。

3. 期望值(E)= 正面概率× 正面次数 + 反面概率× 反面次数= 0.52 × 52 + 0.48 × 48 = 52。

4. 方差(Var)= (正面次数 - 期望值)² × 正面概率 + (反面次数 - 期望值)² × 反面概率 = (52 - 52)² × 0.52 + (48 - 52)² × 0.48 = 2.56。

(完整word版)概率统计实验报告

(完整word版)概率统计实验报告

概率统计实验报告(1)实验内容说明:(验证性实验)使用Matlab软件绘制正态分布、指数分布、均匀分布密度函数图象。

(2)本门课程与实验的相关内容:本实验与教材中第二章“随机变量及其分布”相关,通过matlab中的函数来绘制第二章中学过的几种重要的连续型随机变量概率密度函数图像。

(3 )实验目的:通过本实验学习一些经常使用的统计数据的作图命令,提高进行实验数据处理和作图分析的能力。

2、实验设计总体思路2.1、引论利用教材中的相关知识,通过Matlab来绘制正态分布、指数分布、均匀分布密度函数图象, 从而加深对概率统计知识的理解,并提高进行实验数据处理和作图分析的能力。

2.2、实验主题部分2.2.1、实验设计思路1、理论分析1.参数为卩和b2的正态分布的概率密度函数是:]fh-}= .——e曲 * — DC < T <岳住可以用函数norm pdf计算正态分布的概率密度函数值,调用格式:y=normp df(x, mu, sigma)%输入参数可以是标量、向量、矩阵。

2.参数为卩的指数分布的概率密度函数是可以用函数exppdf计算指数分布的概率密度函数值,调用格式: y=ex ppdf(x, mu)%输入参数可以是标量、向量或矩阵。

3.参数为a, b的均匀分布的概率密度函数是:(I <;1: < h可以用函数exppdf计算均匀分布的概率密度函数值,调用格式: y=u nifpdf(x, a, b)%输入参数可以是标量、向量、矩阵。

最后调用plot函数绘制图像。

1实现方法、1. x=a:0.1:b % 将区间[a,b] 以0.1 为步长等分,赋给变量x2. 通过调用函数norm pdf 、exppdf 、un ifpdf 分别计算出对应的概率密度函数。

3. 调用函数plot 绘制图像。

H Figure 1 222、实验结果及分析 绘制分别服从均值是0,标准差分别是0.5 , 1, 1.5的正态分布概率密度函数图像: 回 SS绘制分别服从参数□为0.5 , 1 , 2的指数分布概率密度函数图像:绘制分别服从参数a,b 分别为1、2; 0.5、2.5; 0.2、2.8;的均匀分布概率密度函数图像 亦乔h 回fT File Edit View Insert Tools Desktop Window Help223、程序及其说明%%正态分布x=-4:0.1:4;y1= norm pdf(x, 0, 1);y2=normp df(x, 0, 0.5);y3=normp df(x, 0,1.5);plot(x, y1,x,y2,x,y3) %y 是服从期望为0,方差为1的正态分布的密度函数 title('正态分布概率密度图像') %%指数分布x=0:0.1:4;y1=ex pp df(x,0.5); y2=ex pp df(x,1);y3=ex pp df(x,2); plot(x, y1,x,y2,x,y3)title(' 指数分布概率密度图像 ') %%均匀分布x=0:0.0001:4;y1=unifpdf(x, 1, 2);y2=unifpdf(x, 0.5, 2.5);礼鹫® « J a □ E%y 是服从参数为0.5的指数分布的密度函数 9 Q均匀分布《率密度圉像y3=unifpdf(x, 0.2, 2.8);plot(x, y1,x,y2,x,y3) %y 是区间为[0,4] 的均匀分布的密度函数title(' 均匀分布概率密度图像') 2.3、对教材正文的深入理解和创新性说明2.3.1、对教材正文的深入理解通过本次试验加深对概率密度函数的理解,特别是概率密度的相关性质的理解,比如:f (x)> 0等,可以从图像中直观的反映出来。

概率统计基础实验报告

概率统计基础实验报告

概率统计基础实验报告实验报告:概率统计基础实验1. 引言概率统计是一门研究随机现象的学科,广泛应用于各个领域,如金融、医疗、工程等。

本实验旨在通过设计一个简单实验,来理解概率统计的基本概念和方法。

2. 实验目的通过投掷一个均匀骰子,进行概率统计的实验,探索概率、事件、样本空间、频数、频率等基本概念及其计算方法。

3. 实验步骤1) 准备一个均匀骰子。

2) 进行一定次数的投掷,并记录每次投掷的结果。

3) 统计各种投掷结果的频数和频率。

4) 分析并总结实验结果。

4. 实验结果本实验进行了100次骰子投掷,记录了每次投掷的结果。

投掷结果为1的次数:15次投掷结果为2的次数:14次投掷结果为3的次数:17次投掷结果为4的次数:20次投掷结果为5的次数:18次投掷结果为6的次数:16次5. 计算与分析(1) 频数的计算投掷结果为1的频数= 15投掷结果为2的频数= 14投掷结果为3的频数= 17投掷结果为4的频数= 20投掷结果为5的频数= 18投掷结果为6的频数= 16(2) 频率的计算投掷结果为1的频率= 频数/ 投掷次数= 15 / 100 = 0.15 投掷结果为2的频率= 频数/ 投掷次数= 14 / 100 = 0.14投掷结果为3的频率= 频数/ 投掷次数= 17 / 100 = 0.17投掷结果为4的频率= 频数/ 投掷次数= 20 / 100 = 0.20投掷结果为5的频率= 频数/ 投掷次数= 18 / 100 = 0.18投掷结果为6的频率= 频数/ 投掷次数= 16 / 100 = 0.166. 结论与讨论通过实验结果的统计与计算,我们可以得到以下结论:(1) 在这100次的投掷中,每个骰子数字出现的频数并不完全一样,即每个数字的出现机会并不相同。

(2) 在这100次的投掷中,投掷结果为4的次数最多,也就是数字“4”的概率最大。

(3) 这个结果符合理论上均匀骰子的预期,即每个数字出现的概率应该相等,为1/6或约0.1667。

概率论与数理统计实验报告

概率论与数理统计实验报告
北京理工大学珠海学院实验报告
一、实验概述
【实验名称】概率论与数理统计实验
【实验目的】
1.熟练掌握利用Mathematica软件来求概率统计相关问题;
2.通过软件辅助理解概率密度,连续型随机变量概率的含义
3.掌握数据平均值,中位数,众数的计算。
【实验原理】
1.求数据平均值为Mean[data]
2.求数据中位数为Median[data]
3.求数据众数为Mode[data]
4.求随机事件的概率Probability[pred ,x≈dist]
二、实验内容
【实验过程与结论】
1、
2
【实验小结】实验中学到了如何运用简单的编程求样本的均值和概率密度图,这使我对概率密度以及连续型随机变量的含义有了更深厚的理解和认识。虽然一开始会对软件有些不熟悉,但随着逐渐的摸索都会变得游刃有余起来。

《概率论与数理统计》实验报告

《概率论与数理统计》实验报告
综合性
实验目的及要求
1.掌握【正态总体均值的Z检验活动表】的使用方法;
2.掌握【正态总体均值的t检验活动表】的使用方法;
3.掌握【正态总体方差的卡方检验活动表】的使用方法;
4.掌握正态总体参数的检验方法,并能对统计结果进行正确的分析.
实验原理
实验内容
实验过程(实验操作步骤)
实验结果
1.已知某炼铁厂铁水含碳量 ,现测定9炉铁水,其平均含碳量为 ,如果铁水含碳量的方差没有变化,在显著性水平 下,可否认为现在生产的铁水平均含碳量仍为4.55.
5.掌握单个正态总体参数的区间估计方法.
实验原理
实验内容
实验过程(实验操作步骤)
实验结果
1.某厂生产的化纤强度 ,现抽取一个容量为 的样本,测定其强度,得样本均值 ,试求这批化纤平均强度的置信水平为0.95的置信区间.
2.已知某种材料的抗压强度 ,现随机抽取10个试件进行抗压试验,测得数据如下:
482,493,457,471,510,446,435,418,394,469
实验结果
1.已知玉米亩产量服从正态分布,现对甲、乙两种玉米进行品比试验,得到如下数据(单位:kg/亩):

951
966
1008
1082
983

730
864
742
774
990
已知两个品种的玉米产量方差相同,在显著性水平 下,检验两个品种的玉米产量是否有明显差异.
2.设机床加工的轴直径服从正态分布,现从甲、乙两台机床加工的轴中分别抽取若干个测其直径,结果如下:

20.5
19.8
19.7
20.4
20.1
20.0
19.0

概率大学实验报告

概率大学实验报告

一、实验目的1. 理解概率论的基本概念,掌握概率的基本性质。

2. 熟悉概率论中的一些常用公式和定理。

3. 通过实验,加深对概率论理论知识的理解,提高实际应用能力。

二、实验原理概率论是研究随机现象规律性的数学分支。

在实验中,我们通过模拟随机事件,观察其发生的频率,进而估计事件发生的概率。

三、实验内容1. 抛硬币实验2. 抛骰子实验3. 抽签实验四、实验步骤1. 抛硬币实验(1)将一枚均匀硬币抛掷若干次,记录正面朝上的次数。

(2)计算正面朝上的频率。

(3)根据频率估计正面朝上的概率。

2. 抛骰子实验(1)将一枚均匀骰子抛掷若干次,记录每个点数出现的次数。

(2)计算每个点数出现的频率。

(3)根据频率估计每个点数出现的概率。

3. 抽签实验(1)准备若干张卡片,分别写上不同的数字或字母。

(2)将卡片放入一个袋子中,搅拌均匀。

(3)从袋子中抽取一张卡片,记录其上的数字或字母。

(4)计算抽到某个数字或字母的频率。

(5)根据频率估计抽到某个数字或字母的概率。

五、实验结果与分析1. 抛硬币实验(1)实验次数:100次(2)正面朝上次数:53次(3)正面朝上频率:53%(4)根据频率估计正面朝上的概率为0.53。

2. 抛骰子实验(1)实验次数:100次(2)每个点数出现的次数:1,2,3,4,5,6(3)每个点数出现的频率:1%,2%,3%,4%,5%,6%(4)根据频率估计每个点数出现的概率为1/6。

3. 抽签实验(1)实验次数:100次(2)抽到某个数字或字母的次数:10次(3)抽到某个数字或字母的频率:10%(4)根据频率估计抽到某个数字或字母的概率为0.1。

通过实验,我们可以看到,在实际操作中,频率与概率具有一定的关联性。

随着实验次数的增加,频率逐渐趋于稳定,接近于理论概率。

六、实验结论1. 在抛硬币实验中,正面朝上的频率为53%,与理论概率0.5接近。

2. 在抛骰子实验中,每个点数出现的频率为1/6,与理论概率一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计实验报告
班级16030
学号16030
姓名
2018 年1 月3 日
1、 问题概述和分析 (1) 实验内容说明:
题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。

(2) 本门课程与实验的相关内容
大数定理及中心极限定理; 二项分布。

(3) 实验目的
分析验证中心极限定理的基本结论。

2、实验设计总体思路 2.1、引论
在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机
因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。

2.2、 实验主题部分 2.2.1、实验设计思路
1、 理论分析
设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数
满足
该定理说明,当n 很大时,随机变量
近似地服从标准正
态分布N(0,1)。

因此,当n 很大时, 近似地服从正
态分布N(n μ,n σ2).
2、实现方法(写清具体实施步骤及其依据)
(1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随
机数之和y 以及
)
1(1010p np np y --;
依据:n 足够大,且该二项分布具有有限的数学期望和方差。

(2) 将(1)重复1000=m 组, 并用这m 组
)
1(1010p np np y --的数据作频率直方图进
行观察.
依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

2.2.2、实验结果及分析 注:实验所涉及的程序单列,本段只给出你认为有用的实验结果和对结果的分析或所得的结论,可以出现必要的图形、文字和数学公式,不出现Matlab 程序代码,所有的程序请单列一节。

结论:大量独立同分布随机变量序列, X i n i 近似的服从正态分布N(n μ,
n σ2
)。

2.2.3、程序及其说明
要求:此处使用数学符号给出相关算法
需结合算法对程序相关变量进行说明 关键程序段应给出相关的注释性说明。

Y1=zeros(1000,1); % m=1000的0矩阵 Y2=zeros(1000,1); for i=1:1000
x=binornd(10,0.2,50,1); %产生题目要求的二项分布的50个随机数
Y1(i)= sum(x); %计算n 个随机数之和 Y2(i)=(Y1(i)-10*50*0.2)/sqrt(10*50*0.2*(1-0.2));
end
x=-2.9 : 0.2 : 2.9; hist(Y2,x)
2.3、对教材正文的深入理解和创新性说明 2.
3.1、 对教材正文的深入理解
(报告实验的技术性体会,即实验对加深教材正文内容理解助益性体会)
在实际生活当中,我们不能知道我们想要研究的对象的平均值,标准差之类的统计参数。

中心极限定理在理论上保证了我们可以用只抽样一部分的方法,达到推测研究对象统计参数的目的。

只要样本量足够大,都可以通过求均值或和的方式将未知分布的数据转换成正态分布的数据,这就为我们分析数据带来了很多的方便。

2.3.2、对论文中探索性内容或创新点说明
(对论文的探索性内容或创新点进行说明,论证该实验为探索性实验。


本论文为验证型论文,没有创新点。

2.4、体会
体会:(对《概率论与数理统计》课程及实验的体会)
概率论与数理统计是一门实用性很强的课程,相关问题接近生活实际,且需要相
当的数学计算基础,如积分……本门课程的相关内容给我的生活带来了很多启
迪,激发了我的兴趣,我会计划学习了解更深入的统计知识。

本次实验体会到了一些概念的实践。

建议:(对《概率论与数理统计》课程及尤其是开展相关实验的建议)
期望开展一些带有概率论与数理统计思想的工程型的实验,或解决一些工程型的
问题,并给予指导。

相关课程内容期望能够以生活相关示例进行分析,或指明其在生活中的作用,引
发思考。

相关文档
最新文档