声学参数理论
声学基础知识(整理)
噪声产生原因空气动力噪声由气体振动而产生。
气体的压力产生突变,会产生涡流扰动,从而引起噪声。
如空气压缩机、电风扇的噪声。
机械噪声由固体振动产生。
金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。
液体流动噪声液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。
电磁噪声各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。
燃烧噪声燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。
声波和声速声波质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。
可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。
点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。
声频( f )声速( c )和波长( λ )λ= c / f声速与媒质材料和环境有关:空气中,c =331.6+0.6t 或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度传播方向上单位长度的波长数,等于波长的倒数,即1/λ。
有时也规定2π/λ为波数,用符号K 表示。
质点速度质点因声音通过而引起的相对于整个媒质的振动速度。
声波传播不是把质点传走而是把它的振动能量传走。
声场有声波存在的区域称为声场。
声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。
自由场在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。
在自由场中任何一点,只有直达声,没有反射声。
消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。
扩散场声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。
声学参数理论
1.A 计权声压级声压有效值定义为一定时间间隔中,瞬时声压对时间的均方根值,用p e表示:将声压有效值p e与基准量p0之比的对数乘以20 便可以得到声压pe的声压级,用L p表示:A 计权声压级(简称 A 声级)用以模拟55dB以下低强度噪声特性,对 1000Hz 以下的低中频段衰减,其结果与人对声音的感知相近。
2.响度响度(Loudness)是基于人耳对声音频谱掩蔽特性的反映人耳对声音强弱感知程度的心理声学参数,单位为宋(sone),规定1000Hz纯音的声压级为40dB时的响度为1宋。
国际标准 ISO532 规定了 A、B 两种计算稳态噪声响度的计算方法:a)Stevens方法(ISO532A):详细内容参见标准 ISO532-A-1975 和。
其数学表达式为:b)Zwicker方法(ISO532B)(本文所采用方法):Zwicker 法适用于自由声场或混响声场的计算,在通常情况下一般采用Zwicker 法的响度计算模型。
Zwicker 法以1/3倍频程频谱为依据,引入了特征频带和特征响度的概念,首先计算每个特征频带特征响度,再由此来得到总响度值。
根据 Zwicker 的响度理论,通过激励E可以计算得到特征响度,其计算公式:式中:E TQ为绝对听阈下的激励(安静状况下),E0为基准声强下的激励,被计算声音的特征频带声压级作为激励级E。
对特征响度在0-24 Bark域上积分,即可得到总响度:注:掩蔽效应是指由于一个声音的存在而使另一个声音听阈提高的现象。
人类的听觉系统具有滤波特性,即频率选择性。
为了描述人耳的频率选择特性和掩蔽效应,Zwicker假设人的听觉系统将声音信号分量分成24个频带,当确定了一个声音的频率时,能够产生掩蔽效应的另外一个声音的频率范围称为“特征频带”,单位是Bark。
在 Zwicker 模型中,特征频带Bark 数z和频率 f(Hz)的对应关系可近似表达为:3.尖锐度尖锐度(Sharpness)是描述高频成分在声音频谱中所占比例的物理量,主要反映人们主观上对高频段声音刺耳程度的感受,单位为 acum。
声学如何计算声强和声压级
声学如何计算声强和声压级声学是研究声音产生、传播和感知的科学领域。
在声学中,计算声强和声压级是非常重要的内容,它们可以用来描述声音的强度和音量大小。
本文将介绍声学中如何计算声强和声压级。
一、声强的计算方法声强是指单位面积上通过的声音能量,通常用W/m²来表示。
声强的计算方法可以通过以下公式得到:声强(I) = 音源功率(P) / 面积(A)其中,音源功率是指声音源每秒钟发出的声能总量,常用单位是瓦特(W);面积是指声音作用的区域的面积,常用单位是平方米(m²)。
通过将音源功率除以面积,就能得到单位面积上通过的声音能量,即声强。
二、声压级的计算方法声压级是指声音的强度级别,通常用分贝(dB)来表示。
声压级的计算方法可以通过以下公式得到:声压级(L) = 10 * log₁₀(P / P₀)其中,P是声压,P₀是参考压强,其取值通常是2 × 10⁻⁵帕斯卡(Pa)。
通过计算声压与参考压强的比值的对数,并乘以10,可以得到声压级。
需要注意的是,声压是指声音在空气中的压强变化,通常用帕斯卡(Pa)来表示。
在实际测量中,声压可以通过音频设备或传感器来获取,然后应用上述公式计算声压级。
三、声强和声压级的关系声强和声压级是两个相关但不完全相同的概念。
声强是指每秒钟通过的声音能量,而声压级是指声音的强度级别。
声强和声压级之间的关系可以通过以下公式表示:L = 10 * log₁₀(I / I₀)其中,L表示声压级,I表示声强,I₀表示参考声强。
参考声强I₀的通常取值是10⁻¹²W/m²。
这个公式表明了声强和声压级之间的对数关系。
当声强与参考声强的比值增加一倍时,声压级增加约10分贝。
这意味着声压级的变化是非线性的,随着声强的增加,声压级的增加速度逐渐减缓。
四、实际应用举例声强和声压级的计算方法在实际应用中具有广泛的应用。
例如,在环境噪声控制中,可以通过测量声压来评估噪声的强度,并根据相关的法律法规制定相应的控制标准。
声学设计中的几个重要参数
声学设计中的几个重要参数1、吸声系数〆建筑声学设计中用吸声材和吸声结构来消除回声,颤动回声,声聚焦和减少混响时间等房间的声学缺陷。
吸声材料吸声结构通常用吸声系数〆来表示。
Eo-Er〆=0Eo式中:Eo-入射到吸声材料的声能:Er-被材料反射出来的声能。
〆=1意味着声能全被吸收;〆=0意味着声能全被反射。
2、临界距离DC前面已提到直达声的传播衰减与传输距离的平方比成反比,离声源的距离越远,声压级越低,混响声的传播衰减不遵守平方反比定律,在理想状态下,理论上它在整个房间的声压级是相等的。
临界距离DC是指在声源轴线方向上,直达声与混响声声能相等的距离,即D/R=(0dB),临界距离在计算声音清晰度时很有用,一般来说,在D/R>-6dB 区域内(即2倍临界距离),声音的清晰度是最好的。
Q-扬声器的指向性因数R-房间常数(即房间的吸声量)〆-房间的平均吸声系数S-房间的总吸声面积3、混响时间R60房间的混响R60与房间的容积V表面面积S和房间的平均吸声系数有关,V-房间容积M3S-房间的总吸声面积房间平均吸声系数应使用EYING公式计算;M为空气吸声系数,它与频率和湿度有关,1KHZ~8KHZ的M值为0.003~0.057。
不同混响时间R60的听觉感受:R60<0.5秒(500HZ);声音清晰,但太于(单薄),适宜于录音室。
R60=0.7~0.8秒(500HZ):声音清晰、干净、适宜于电影院和会议厅。
R60=1.2~1.4秒(500HZ):声音丰满、有气魄、空间感强,适用于音乐厅和剧场。
R60>2秒~3秒(500HZ):声音混浊、语言清晰度差,声音发嗡,有回声感。
吸声材料与吸声结构按吸声机理,常用的吸声材料与吸声结构可分为多孔吸声材料和共振吸声结构。
1、多孔吸声材料多孔吸声材料包括纤维材料和颗粒材料。
纤维材料有:玻璃棉、超细玻璃棉、矿棉等无机纤维及其毡、板制品,棉、毛、麻等有机纤维织物。
音乐厅的声学设计参数怎么写的
音乐厅的声学设计参数怎么写的引言音乐厅是一种为了音乐表演而设计的场所,好的音乐厅声学设计可以确保良好的音质和听感体验。
声学设计参数是在音乐厅建造过程中需要考虑的重要因素之一。
本文将讨论音乐厅声学设计参数的写法和其对于音效的影响。
音乐厅声学设计参数1. 音频清晰度音频清晰度是指听众能够清晰地听到音乐表演的细节和音质。
为了实现良好的音频清晰度,音乐厅的声学设计参数需要考虑以下因素: - 回声时间(RT60):指声音从源头发出到衰减到背景噪声水平所需的时间。
通常,在音乐厅中,较长的回声时间会增加音频清晰度。
- 音反射:减少从墙壁、天花板和地板等表面发出的音反射,可以提高音频清晰度。
2. 音频均衡音频均衡是指在音乐厅中实现各个频段的均匀分布,使得听众可以听到平衡的音质。
以下是音频均衡的声学设计参数: - 频率响应:音乐厅的频率响应应该尽可能平坦,以确保各个频段的音响均衡。
- 吸音材料:使用吸音材料,如吸音板、吸音罩等,来减少过多音频反射并实现音频均衡。
3. 声场分布声场分布是指在整个音乐厅内,音乐的声音能够均匀分布,使听众无论身处何处都能享受到良好的音效。
以下是声场分布的声学设计参数: - 声场扩散:通过合理的扬声器布置和声音反射的控制,实现声音的均匀分布。
- 立体声效果:在音乐厅的声学设计中,考虑到听众的听感体验,应该追求更真实的立体声效果。
4. 噪声控制噪声控制是音乐厅声学设计的重要方面,可以提供良好的音乐聆听环境。
以下是噪声控制的声学设计参数: - 音频隔离:通过隔音材料和结构设计,阻止外界噪音进入音乐厅。
- 内部噪声:减少音响设备和空调等设备产生的内部噪声。
影响声学设计参数的因素音乐厅声学设计参数的制定受到以下几个因素的影响:1.音乐类型:不同类型的音乐对于声学设计参数有不同的要求。
例如,交响乐需要较长的回声时间和更好的声场分布,而清唱剧需要较短的回声时间和更好的音频清晰度。
2.厅堂尺寸和形状:音乐厅的尺寸和形状会影响声学设计参数的选择。
噪音-建筑声学不可忽视的参数
噪音—建筑声学不可忽视的参数在公共建筑和高层建筑中,传统粘土砖墙因其自重过大、土地保护等问题基本已被轻质隔墙取代。
但轻墙隔声比粘土砖墙差,所以解决轻质隔墙的隔声问题是应用的关键问题。
理论和实践都证明,试图使用单一轻质材料,如加气混凝土板、膨胀珍珠岩、陶粒混凝土等构成单层墙,隔声性能不可能好.这是因为单层墙的隔声受质量定律的控制,即墙越厚重、单位面积质量越大,隔声越好。
所以单一轻质材料做成单层墙,不可能克服既要轻又要隔声好的矛盾。
本文就建筑声学中一些基本概念,结合纸面石膏板的隔声及应用进行一些讨论。
一、建筑声学的基本概念1)声音物体的振动产生“声”,振动的传播形成“音”.人们通过听觉器官感受声音,声音是物理现象,不同的声音人们有不同的感受,相同声音的感受也会因人而异.美妙的音乐令人陶醉,清晰激昂的演讲令人鼓舞,但有时侯,邻居传来的音乐声使人难以入睡,他人之间的甜言蜜语也许令人烦恼.建筑声学不同于其他物理声学,主要研究目的在于如何使人们在建筑中获得良好的声音环境,涉及的问题不局限于声音本身,还包括心理感受、建筑学、结构学、材料学甚至群体行为学等多方面问题。
人耳的听觉下限是0dB,低于15dB的环境是极为安静的环境,安静的会使人不知所措。
乡村的夜晚大多是25-30dB,除了细心才能够体会到的流水、风、小动物等自然声音以外,其他感觉一片宁静,这也是生活在喧嚣之中的城市人所追求的净土.城市的夜晚会因区域不同而有所不同。
较为安静区域的室内一般在30—35dB,如果你住在繁华的闹市区或是交通干线附近,将不得不忍受40—50dB(甚至更高)的噪声,如果碰巧邻居是一位不通情达理的人,夜深人静时蹦蹦跳跳、高声喧哗,也许更要饱受煎熬了。
人们正常讲话的声音大约是60—70dB,大声呼喊可达100dB。
在中式餐馆中,往往由于缺乏吸声处理,人声鼎沸,声音将达到70—80dB,有国外研究报道噪声中进餐会影响健康.人耳的听觉上限一般是120dB,超过120dB的声音会造成听觉器官的损伤,140dB的声音会使人失去听觉.高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120dB的声音.人耳听觉非常敏感,正常人能够察觉1dB的声音变化,3dB的差异将感到明显不同。
声学c50参数名词解释
声学C50参数名词解释引言声学C50参数是声学领域中常用的一个指标,用于评估声音的各种特性。
本文将对声学C50参数进行详细的解释和探讨。
声学C50参数的定义声学C50参数是指在一个封闭空间中,声音从一个点源发出后,经过一定时间后在另一点处的声压级与源声压级之比。
C50参数的计算公式如下:C50 = 10 * log10(∑(10^(Li/10)) / ∑(10^(L0i/10)))其中,Li表示在时刻i处的声压级,L0i表示在时刻i处的源声压级。
C50参数的意义C50参数反映了声音在空间中的衰减程度。
衰减程度越大,C50参数越小,表示声音在空间中的传播能力越差。
反之,衰减程度越小,C50参数越大,表示声音在空间中的传播能力越好。
C50参数的计算方法C50参数的计算需要获取声音在不同位置处的声压级数据。
通常,可以采用声学测量设备,如声级计或声音分析仪等,对不同位置处的声音进行测量。
然后,根据测量数据,应用上述的计算公式,即可得到C50参数的值。
C50参数的应用领域C50参数广泛应用于建筑声学、音频工程等领域。
在建筑声学中,C50参数可以用来评估房间的声学性能,如吸音效果、隔音效果等。
在音频工程中,C50参数可以用来评估音响设备的性能,如音箱的声场扩散能力等。
C50参数的影响因素C50参数受多种因素的影响,下面列举了一些主要的影响因素:1.房间的几何形状:房间的几何形状会对声音的传播产生影响,不同形状的房间会导致声音在空间中的衰减程度不同,进而影响C50参数的值。
2.房间的材料特性:房间的墙壁、地板、天花板等材料的吸声性能会影响声音在空间中的衰减程度,进而影响C50参数的值。
3.房间的家具摆放:房间内的家具摆放会对声音的传播产生反射和吸收作用,进而影响C50参数的值。
4.房间的空气湿度:房间内的空气湿度会影响声音在空间中的传播速度,进而影响C50参数的值。
5.声源的特性:声源的频率、声压级等特性也会影响声音在空间中的传播和衰减程度,进而影响C50参数的值。
声学设计中的几个重要参数
声学设计中的几个重要参数1、吸声系数〆建筑声学设计中用吸声材和吸声结构来消除回声,颤动回声,声聚焦和减少混响时间等房间的声学缺陷。
吸声材料吸声结构通常用吸声系数〆来表示。
Eo-Er〆=0Eo式中:Eo-入射到吸声材料的声能:Er-被材料反射出来的声能。
〆=1意味着声能全被吸收;〆=0意味着声能全被反射。
2、临界距离DC前面已提到直达声的传播衰减与传输距离的平方比成反比,离声源的距离越远,声压级越低,混响声的传播衰减不遵守平方反比定律,在理想状态下,理论上它在整个房间的声压级是相等的。
临界距离DC是指在声源轴线方向上,直达声与混响声声能相等的距离,即D/R=(0dB),临界距离在计算声音清晰度时很有用,一般来说,在D/R>-6dB 区域内(即2倍临界距离),声音的清晰度是最好的。
Q-扬声器的指向性因数R-房间常数(即房间的吸声量)〆-房间的平均吸声系数S-房间的总吸声面积3、混响时间R60房间的混响R60与房间的容积V表面面积S和房间的平均吸声系数有关,V-房间容积M3S-房间的总吸声面积房间平均吸声系数应使用EYING公式计算;M为空气吸声系数,它与频率和湿度有关,1KHZ~8KHZ的M值为0.003~0.057。
不同混响时间R60的听觉感受:R60<0.5秒(500HZ);声音清晰,但太于(单薄),适宜于录音室。
R60=0.7~0.8秒(500HZ):声音清晰、干净、适宜于电影院和会议厅。
R60=1.2~1.4秒(500HZ):声音丰满、有气魄、空间感强,适用于音乐厅和剧场。
R60>2秒~3秒(500HZ):声音混浊、语言清晰度差,声音发嗡,有回声感。
吸声材料与吸声结构按吸声机理,常用的吸声材料与吸声结构可分为多孔吸声材料和共振吸声结构。
1、多孔吸声材料多孔吸声材料包括纤维材料和颗粒材料。
声学计算公式大全
声学计算公式大全1.声压级公式:声压级(Lp) = 20 * log10(p/p0)其中,p为声压,p0为参考声压(通常取20微帕)。
2.声强级公式:声强级(Lw)= 10 * log10(I/10^-12)其中,I为声强。
3.声强公式:声强(I)=p*v其中,p为声压,v为声速。
4.声能级公式:声能级(Le)= Lu - 10 * log10(S/S0)其中,Lu为声能,S为参考面积,S0为参考面积(1平方米)。
5.声能公式:声能(Lu)=P*T其中,P为声功率,T为时间。
6.声功率级公式:声功率级(Lw)= 10 * log10(W/10^-12)其中,W为声功率。
7.声功率公式:声功率(W)=p*S*v其中,p为声压,S为振动面积,v为振动速度。
8.声深度公式:声深度(Ld)= 20 * log10(d/d0)其中,d为距离,d0为参考距离。
9.声暴公式:声暴(SN)= 20 * log10(sqrt(L1/L0) * (R0/R1)^2)其中,L1和L0为两个声级的差值,R0和R1为两个距离的比值。
10.波长公式:波长(λ)=v/f其中,v为声速,f为频率。
11.反射系数公式:反射系数(R)=(Z2-Z1)/(Z2+Z1)其中,Z1和Z2为两个介质的声阻抗。
12.驻波公式:驻波(λ/2)=L/n其中,L为管道长度,n为节点数。
13.声阻抗公式:声阻抗(Z)=p/v其中,p为声压,v为声速。
14.声频公式:声频(ν)=f/N其中,f为频率,N为周期。
这些公式只是声学领域中的一部分,用于基本的声学计算。
在实际应用中,还需要综合考虑各种因素,如温度、湿度、介质特性等,才能获得准确的结果。
同时,不同的声学计算问题可能需要采用不同的公式和方法,因此深入学习声学计算方法和理论是非常重要的。
几个重要的录音声学参数
几个重要的录音声学参数1、相位:声波在其周期运动中所达到的精确位置。
通常以圆圈的度数来计算。
也就是说所有波峰或者波谷都是同相位的,波峰、波谷之间则是互相反向,相位差正好是180°。
同相位相加,反相位相减。
2、声音的定义:⑴可定义为空气或者其它弹性媒质中的波动(有时候称激励)⑵也可定位为对声敏感器官的感觉。
3、人的听音范围:16Hz-18KHz,人耳最敏感的是1KHz-5KHz。
4、分辨率:分贝:可以分辨2dB的变化;时间:时差为2毫秒频率:基本上是在3Hz5、声音定位:低于1000Hz的声音,具有异向效应(相位差)的效应,1000HZ 以上则声强起主要作用(强度差)。
6、直达声:从声源经视在途经直接到达听者的声音信号。
7、直达声的作用:⑴是我们感受声源本身特征的基本依据,是受周围环境的声学环境影响最小的信号,受到距离的变化而变化。
⑵直达声持续时间与声源的辐射时间相同。
⑶直达声是判断声源宽度和深度的重要依据。
8、延迟声:⑴延迟声的特征:①在一般情况下,延迟声的相对强度是随着时间的加长而减弱的。
②反射声的方向通常也直达声不同,是由反射面的位置和形状所决定的。
③反射声的频率特性因界面的声学性质而异,一般地说,它的频率特性与声源的频率特性不同。
⑵在听音中的作用:①室内反射声的重要作用是给人以空间大小的感觉。
②提高直达声的响度、控制在30毫秒以内,30毫秒以外,则变为镶边效应。
9、混响声⑴混响声场:由声源直接辐射到室内空间,未经任何反射的声场称为直达声场,而经过室内界面一次或多次反射之后称为混响声场。
⑵混响半径:在室内声场中,可以找到一个临界距离,在这一距离上的各点,直达声场与混响声场的作用相等,我们把这一距离称为临界距离或混响半径。
在室内声场达到稳定的情况下,声源停止发声,由于声音的多次反射或散射而使声音延续的现象,称为混响。
混响是耳朵不可辨的多次反射,延迟是耳朵可辨的反射声。
10、混响的作用:⑴提高了听感的响度。
声学中的声音的特性和参数
声学中的声音的特性和参数声音是我们日常生活中不可或缺的一部分,它是通过空气、固体或液体传播的机械波。
声学研究声音的产生、传播和接收过程,并通过对声音的特性和参数进行分析来深入了解声音的本质。
本文将介绍声学中声音的特性和参数,以增进对声学科学的理解。
一、声音的特性声音具有以下几个重要的特性:1. 频率:频率表示声音的音调高低。
高频率的声音对应高音,低频率的声音对应低音。
频率的单位是赫兹(Hz),即每秒振动次数。
人的听力范围通常在20Hz到20kHz之间。
2. 响度:响度是声音的主观感受,表示声音的强度或音量大小。
响度的单位是贝尔(B)或分贝(dB)。
分贝是以对数形式表示的响度单位,常用于测量和比较不同声音的强度。
3. 声音色彩:声音色彩是声音特有的音质特征,可以用来区分不同的乐器或声源。
声音的色彩由其频谱成分决定,频谱分析可以显示声音在不同频率上的能量分布情况。
4. 时长:声音的时长表示声音持续的时间长短。
不同声音在时长上有所区别,如短促的爆炸声和持续的长音。
二、声音的参数声音的参数是用来具体描述声音特性的量化指标,以下是常用的声音参数:1. 音频振幅:音频振幅是声音振动的最大幅度,反映了声音的强弱。
振幅的单位是帕斯卡(Pa),即气压单位。
振幅较大的声音听起来会更响亮。
2. 音频功率:音频功率是指声音传递或发射中的总能量。
功率可以用来衡量声音的能量大小,单位通常是瓦特(W)。
3. 声压级:声压级是测量声音强度的指标,也是分贝单位的一种使用。
声压级与声音的振幅和频率有关,通常使用参考声压为2×10^(-5)帕。
4. 频谱分析:频谱分析用于显示声音信号在不同频率上的能量分布情况。
这种分析可以帮助我们更好地了解声音的频率特性和谐波结构。
5. 回声和混响:回声和混响是声音在空间中反射和散射产生的现象,它们在声学研究中有着重要的地位。
回声和混响对听觉体验和音频处理都具有影响。
三、应用声音的特性和参数在多个领域有着广泛的应用,包括:1. 音乐和艺术:声音的特性和参数是音乐创作和演奏的重要基础。
音乐厅的声学设计参数有哪些
音乐厅的声学设计参数有哪些音乐厅的声学设计是为了获得良好的音质和听觉体验而进行的一系列工程设计。
在音乐厅的声学设计中,需要考虑许多参数,以下是其中一些重要的声学设计参数:1. 听音区域音乐厅的声学设计首先要确定合适的听音区域,即最佳的听众席位安排。
听音区域的位置和布局决定了听众可以获得的声音品质和观赏音乐表演的体验。
2. 听音角度听音角度是指音源到听众的声音传播的方向和角度。
通过合理设置听音角度,可以使听众获得更好的声音定位和层次感。
听音角度不宜过大,也不宜过小,要根据音乐厅的具体情况进行调整。
3. 残响时间残响时间是音乐信号从消失到衰减到相对静默的时间。
合适的残响时间可以使音乐在空间中产生回音和共鸣,增强音乐的层次感和深度感。
不同类型的音乐厅,如交响乐厅和歌剧院,对残响时间的要求也有所不同。
4. 音质均衡音质均衡是指音乐信号中不同频率成分的传播和反射特性之间的平衡关系。
通过调整音质均衡,可以获得清晰、透明且有层次感的音质。
为了实现音质均衡,音乐厅的声学设计需要考虑墙壁、地板、天花板和其他吸音材料的选择和安装位置。
5. 声音扩散声音扩散是指音乐信号在空间中传播和反射能力的能力。
合适的声音扩散可以使音乐信号充分弥漫到整个音乐厅,使听众无论在哪个位置都能获得良好的音质和音乐享受。
6. 衍射效应衍射效应是指音乐信号在遇到障碍物时发生的弯曲和弯曲。
合适的衍射效应可以使音乐信号在音乐厅中均匀分布,减少因遮挡而导致的声音影响。
7. 声学反射和吸声声学反射和吸声是指音乐信号在音乐厅内部发生反射或被吸收的能力。
合适的声学反射和吸声可以改善音质和减少杂音。
以上仅是音乐厅声学设计中的一部分主要参数。
在实际的声学设计中,还需考虑音源位置、补偿措施、吸振装置等。
同时,在不同类型的音乐厅中,这些参数的需求也会有所不同。
因此,为了获得最佳的音质和听觉体验,音乐厅的声学设计需要综合考虑以上参数,并结合实际情况进行调整和优化。
声学基础与常识
王传芳 / gaizi23@
声音三要素
声学三要素:音调或者叫音高(对应频率)、音色(对应频谱)、响度(对应振幅)。任何复杂的声音都可以用此三 个属性来描述 音调:人耳对于声音高低的感觉,称为音调。音调主要与声音 的频率有关,同时也与声压级和声音的持续时间有关。音调会 随着频率的增大而提高,但不是与频率成完全的线性关系。 音调的单位为“美”(Mel),定义40dB@1KHz纯音的音调为 1000美。需要注意的是,影响音调的因素还有声音的声压级, 以及声音的持续时间。低频的纯音,声压级高的时候,要比声 压级低的时候搞到音调变低;频率在1KHz~5KHz之间的纯音, 音调几乎与声压级无关;频率再高的纯音,声压级升高时,会 感到音调变高。 复音(是指由许多纯音组成的声音)的音调由复音中频率最低 的声音决定,即由基音决定。复音的声压级高低对于音调的影 响要比纯音小很多。 当声音持续时间在0.5s以下的时候,要比1s以上感到音调比较 低。持续时间再短,为10ms左右的时候,会使得听音人感觉 不出它的音调,只能听到“咔咔”的声音。 要想使人耳能够明确感觉出音调所必须的声音持续时间,随声 音的频率不同而不同。频率低的声音要比频率高的声音需要更 长的时间。
西洋乐器声源 小提琴 大提琴 低音提琴 小号 圆号 长号 高音萨克斯 低音萨克斯 钢琴 频率范围 (包括谐频) 196Hz~16KHz 65Hz~16KHz 41Hz~10KHz 180Hz~10KHz 90Hz~8KHz 80Hz~7KHz 200Hz~17KHz 58Hz~14KHz 27Hz~12KHz
声压级(SPL)
声波通过空气传播时,由于振动会导致压强的改变,压强改变量是随时间变化的,实测声压就是压强该变量的有效值, 单位是Pa或MPa。声压就是大气压受到扰动后产生的变化,相当于在大气压强上的叠加一个扰动引起的压强变化。由于 声压的测量比较容易实现,通过声压的测量也可以间接求得质点速度等其它物理量,所以声学中常用这个物理量来描述 声波。表示声压大小的指标称为声压级(SPL,sound pressure level),用某声音的声压(p)与基本声压值(p0)之比 的常用对数的20倍来表示,即20lgP/P0,单位为dB。
消声室声学性能参数
≤630
800 - 5000
≥6300
允许偏差(dB)
±2.5
±2.0ቤተ መጻሕፍቲ ባይዱ
±3.0
2.3声隔离性能
倍频程(Hz)
125
250
500
1000
2000
4000
传输损失(dB)
28
31
39
48
54
63
频率(Hz)
125
250
500
1000
2000
4000
8000
吸声系数
0.99
0.99
0.99
0.99
0.99
0.99
0.99
所提供用于安装的尖劈满足吸声系数在截止频率以上为0.99(以截止频率125HZ尖劈为例)
2.2消声性能
半消声室能提供频率范围从125Hz到8000Hz的近似自由场环境,其反平方律性能偏差满足以下列国际标准ISO 3745的要求:
消声室(半消声室)声学性能参数
1.半消声室的大小和主要技术指标
半消声室设计标准ISO 3745和GB 6882-86,截止频率125Hz(可根据要求扩展至50Hz),本底噪声16dB(A)(采取特殊设计可达到14 dB(A))
外部尺寸。
内部尺寸根据需要和标准进行设计可用空间。
2.声学性能参数
2.1吸声性能
声学参数理论
1.A 计权声压级声压有效值定义为一定时间间隔中,瞬时声压对时间的均方根值,用p e表示:将声压有效值p e与基准量p0之比的对数乘以20 便可以得到声压pe的声压级,用L p 表示:A 计权声压级(简称A 声级)用以模拟55dB以下低强度噪声特性,对1000Hz 以下的低中频段衰减,其结果与人对声音的感知相近。
2.响度响度(Loudness)是基于人耳对声音频谱掩蔽特性的反映人耳对声音强弱感知程度的心理声学参数,单位为宋(sone),规定1000Hz纯音的声压级为40dB时的响度为1宋。
国际标准ISO532 规定了A、B 两种计算稳态噪声响度的计算方法:a)Stevens方法(ISO532A):详细内容参见标准ISO532-A-1975 和ANSIS3.4-1980。
其数学表达式为:b)Zwicker方法(ISO532B)(本文所采用方法):Zwicker 法适用于自由声场或混响声场的计算,在通常情况下一般采用Zwicker 法的响度计算模型。
Zwicker 法以1/3倍频程频谱为依据,引入了特征频带和特征响度的概念,首先计算每个特征频带特征响度,再由此来得到总响度值。
根据Zwicker 的响度理论,通过激励E可以计算得到特征响度,其计算公式:式中:E TQ为绝对听阈下的激励(安静状况下),E0为基准声强下的激励,被计算声音的特征频带声压级作为激励级E。
对特征响度在0-24 Bark域上积分,即可得到总响度:注:掩蔽效应是指由于一个声音的存在而使另一个声音听阈提高的现象。
人类的听觉系统具有滤波特性,即频率选择性。
为了描述人耳的频率选择特性和掩蔽效应,Zwicker假设人的听觉系统将声音信号分量分成24个频带,当确定了一个声音的频率时,能够产生掩蔽效应的另外一个声音的频率范围称为“特征频带”,单位是Bark。
在Zwicker 模型中,特征频带Bark 数z和频率f(Hz)的对应关系可近似表达为:3.尖锐度尖锐度(Sharpness)是描述高频成分在声音频谱中所占比例的物理量,主要反映人们主观上对高频段声音刺耳程度的感受,单位为acum。
声学理论基础
声场中介质质点位移振幅是很小的。
水中1帕的声音,相应的振速约为
7 10
7
米 秒
相应于1000Hz声音的位移仅为108 厘米,
水中质点位移比空气中质点位移更小
如何认知声波特性?
设没有扰动时,介质的静态密度为0 x, y, z
在声波的作用下变为 x, y, z,t
定义: l x, y, z,t x, y, z,t 0x, y, z
媒质(medium ):机械振动赖以传播的介质。
声音可以在一切弹性介质中传播。
空气声、水声、固体(结构)声 纵波:声波的传播方向与质点振动方向一致。 横波:声波的传播方向与质点振动方向垂直。
空气中和水中的声波的传播方向与 质点振动方向是一致的,属于纵波。
固体中由于有切应力,除有纵波外, 还同时存在横波。
速度对t
一次微分
l
t
0
u
0 (1)
连续性方程
对t二次 微分
左点乘 哈密顿 算子
p
c2 0
l
0
u t
p
(2) (3)
状态方程 运动方程
对上三式消元,可以得到一个基本声学量的方程。
波动方程
小振幅声波的波动方程
(1) t
2l
t 2
0
t
u
0
(4)
2 (2) t 2
(3)
2 p t 2
在声波的作用下流速变为
U x,
y,
z,t
U0
x,
y,
z,
t
流速u的x改, 变y,量z,
t
U
x,
y,
z,
t
U0
x,
y,
声学c50参数名词解释
声学c50参数名词解释声学是一门研究声音产生、传播和接收的科学。
在声学领域,C50参数是衡量设备性能的重要指标。
本文将对C50参数进行详细解释,并探讨其在实际应用中的重要性。
一、声学基础知识1.声波传播原理:声波是由物体振动产生的,在介质中传播的机械波。
声波在不同介质中的传播速度不同,其频率和振幅也会受到传播距离和介质性质的影响。
2.声学参数概述:声学参数是描述声波特性的物理量,包括频率、振幅、速度、能量等。
在声学研究中,这些参数对于分析和优化声学系统至关重要。
二、C50参数解释1.频率响应:频率响应是指声学设备在一定频率范围内的性能表现。
C50参数可以反映设备在不同频率下的响应特性,为音响设备和通信系统的优化提供依据。
2.灵敏度:灵敏度是指声学设备在给定条件下,对声波输入的响应程度。
C50参数可以衡量设备的接收灵敏度,从而评估其在实际应用中的性能。
3.指向性:指向性是指声波在空间中的传播特性。
C50参数可以描述声源在不同角度下的声压级分布,有助于分析声波在特定场景下的传播效果。
4.衰减系数:衰减系数是指声波在传播过程中,受到衰减的程度。
C50参数可以反映声波在特定频率下的衰减特性,对噪声控制工程具有指导意义。
5.声源定位:声源定位是指通过分析声波到达时间差和相位差,确定声源的位置。
C50参数可以用于声源定位算法的研究和应用,提高通信系统和导航系统的准确性。
三、C50参数应用领域1.音响设备调试:C50参数可以用于评估音响设备的性能,如音箱、耳机等,优化音响系统的设计和调试。
2.声学环境评估:C50参数可用于评估噪声环境,为城市规划、噪声治理提供依据。
3.通信系统优化:C50参数可用于分析通信系统中声波的传播特性,优化系统参数,提高通信质量。
4.噪声控制工程:C50参数可用于分析和预测声波传播过程中的噪声特性,为噪声控制工程提供设计依据。
总之,C50参数在声学领域具有广泛的应用价值。
声学知识普及
1.5声强 单位时叫声 强,用符号I表示,单位是W/m2。 显然,谈论声强而不提所论方向,是毫无意义的。迄今还没有能够直接测量 声强的传感器。只能用两个声压传感器通过信号分析及处理来间接测量声强。 1.6声功率
3.5 声压级加、减法图解
1.声压级加法图解
已知Lp1和Lp2,求两者叠加后得到的Lp。 设Lp1>Lp2。公式 10
L p / 10
10
L p1 / 10
10
L p 2 / 10
L 两边同除以 10
p1
/ 10
,得
10
( L p L p1 ) / 10
1 10
( L p1 L p 2 ) / 10
3.2 声功率级
声功率级定义与声强的定义有类似的形式:
pre 2.0 10 ( Pa)
W Wre
LW 10lg
式中,W为所论声功率,Wre为参考声功率,Wre=10-12W
某些典型声源的声功率和声功率级
声源 轻声耳语 小钟滴答 谈话声 叫喊声 钢琴 唱机(大声) 织布机 卡车喇叭 气锤 管乐器(峰值) 大型鼓风机 大型喷气机 宇宙火箭 声功率(W) 10-9 2*10-8 10-5 10-3 2*10-3 10-2 10-1 10-1 1 10 102 104 4*107 声功率级(dB) 30 43 70 90 93 100 110 110 120 130 140 160 196
倍频程(或记作1/1倍频程)分析; 1/3倍频程分析;
2.1倍频程分析
声学声音的速度与频率
声学声音的速度与频率声音是一种由机械振动引起的能量传播的波动现象。
在声学中,声音的速度和频率是两个重要的参数。
本文将讨论声学中声音速度和频率的相关知识。
一、声音的速度声音的速度是指声波在介质中传播的速度,通常以米/秒(m/s)表示。
在空气中,声音的速度约为343米/秒,但在不同的介质中速度有所不同。
声音在固体中传播的速度通常比在液体中快,而在气体中较慢。
例如,在水中声音的速度约为1482米/秒,而在铁中约为5130米/秒。
声音的传播速度与介质的物理性质有关,主要取决于介质的密度和弹性模量。
密度越大,弹性模量越高,声音在介质中的传播速度就越快。
此外,温度也对声音的速度有一定的影响,一般来说,温度越高,分子的热运动越剧烈,声音的传播速度就越快。
二、声音的频率声音的频率是指声波的振动次数,表示了声音的音调高低。
在声学中,频率以赫兹(Hz)为单位,1赫兹等于每秒一个周期的振动。
人类可以听到的声音频率范围大约在20赫兹到20,000赫兹之间。
不同的声音源产生的声音频率不同,例如,人的嗓音大约在85赫兹到255赫兹之间,中央钢琴C键的频率为261.63赫兹。
声音的频率越高,音调就越高;频率越低,音调就越低。
人们通常将声音的频率分为低音、中音和高音。
三、声音速度和频率的关系声音的速度和频率之间存在一定的关系,即声音传播的速度和声波的频率成正比。
这是因为声音是由振动引起的,振动的频率越高,声波的传播速度也就越快。
在同一介质中,声音传播的速度等于声音的频率乘以它的波长。
波长是一个声波完整振动的距离,用λ表示,单位为米(m)。
声速(v)等于频率(f)乘以波长(λ),即v = f × λ。
根据这个公式,我们可以计算出声音的速度或频率,只要我们已知另外一个参数。
总结:声音的速度和频率是声学中的重要概念。
声音的速度是指声波在介质中传播的速度,与介质的密度、弹性模量和温度有关。
声音的频率是指声波的振动次数,表示声音的音调高低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.A 计权声压级
声压有效值定义为一定时间间隔中,瞬时声压对时间的均方根值,用p e表示:
将声压有效值p e与基准量p0之比的对数乘以20 便可以得到声压pe的声压级,用L p表示:
A 计权声压级(简称 A 声级)用以模拟55dB以下低强度噪声特性,对 1000Hz 以下的低中频段衰减,其结果与人对声音的感知相近。
2.响度
响度(Loudness)是基于人耳对声音频谱掩蔽特性的反映人耳对声音强弱感知程度的心理声学参数,单位为宋(sone),规定1000Hz纯音的声压级为40dB时的响度为1宋。
国际标准 ISO532 规定了 A、B 两种计算稳态噪声响度的计算方法:
a)Stevens方法(ISO532A):
详细内容参见标准 ISO532-A-1975 和。
其数学表达式为:
b)Zwicker方法(ISO532B)(本文所采用方法):
Zwicker 法适用于自由声场或混响声场的计算,在通常情况下一般采用Zwicker 法的响度计算模型。
Zwicker 法以1/3倍频程频谱为依据,引入了特征频带和特征响
度的概念,首先计算每个特征频带特征响度,再由此来得到总响度值。
根据 Zwicker 的响度理论,通过激励E可以计算得到特征响度,其计算公式:
式中:E TQ为绝对听阈下的激励(安静状况下),E0为基准声强下的激励,被计算声音的特征频带声压级作为激励级E。
对特征响度在0-24 Bark域上积分,即可得到总响度:
注:
掩蔽效应是指由于一个声音的存在而使另一个声音听阈提高的现象。
人类的听觉系统具有滤波特性,即频率选择性。
为了描述人耳的频率选择特性和掩蔽效应,Zwicker假设人的听觉系统将声音信号分量分成24个频带,当确定了一个声音的频率时,能够产生掩蔽效应的另外一个声音的频率范围称为“特征频带”,单位是Bark。
在 Zwicker 模型中,特征频带Bark 数z和频率 f(Hz)的对应关系可近似表达为:
3.尖锐度
尖锐度(Sharpness)是描述高频成分在声音频谱中所占比例的物理量,主要反映人们主观上对高频段声音刺耳程度的感受,单位为 acum。
规定中心频率为1000 Hz、带宽为160 Hz的60分贝窄带噪声的尖锐度为1 acum。
尖锐度的计算目前尚没有统一的标准,但国际上较为通用的计算模型有两种,分别是Zwicker模型和Aures模型。
两种计算模型都能较为准确地计算尖锐度,但由Aures模型对响度有很大依赖,所以在已包含响度的情况下,通常采用Zwicker计算模型。
a)Zwicker尖锐度模型(本文所采用方法)
式中,k为加权系数,取;N为总响度;N'(z)为临界频带z上的特征响度;g(z)为Zwicker依据不同临界频带设置的响度计权函数,
b)Aures尖锐度模型
式中各符号的含义和a)中相同。
4.粗糙度
粗糙度(Roughness)是用来描述人对高频声音信号瞬时变化的感觉,主要针对调制频率范围在 15Hz~300Hz 的声音,符号为R,单位为asper,并规定调制比为1、声压级为 60dB 的 1000Hz 幅值调制纯音在调制频率为 70Hz 时的粗糙度为1 asper。
声音信号的粗糙度主要受到调制频率和调制比的影响,调制比越大,粗糙度也越大;而中心频率和声压级对声音信号的影响相对来说较小。
目前粗糙度常见的计算方法有以下两种:
a)Aures方法
式中k i为特征频带包络时间函数系数,为粗糙度谱密度,
为计权包络的有效值,是为考虑载波频率的影响而引入的计权因子。
b)Fastl方法(本文所采用方法)
Zwicker和Fastl对Aures提出的模型做了改进和修正,其计算公式为:
f mod为噪声的调制频率,∆L E(z)为各特征频带内的激励级差(也即声音的掩蔽深
度),
N'max(z)和N'min(z)分别表示z特征频带域内特征响度的最大值和最小值。
5.抖动度
与粗糙度相似,抖动度(Fluctuation Strength)也是描述声音信号瞬时变化的物理量,针对的主要是调制频率在~20Hz 的低频声音信号,也是主要受到调制比和调制频率的影响,符号F,单位为 vacil,规定声压级为60dB调制比为1的1000Hz幅值调制纯音在调制频率为4Hz时的抖动度为1 vacil。
采用Fastl方法的抖晃度计算方法为:
式中,f mod为调制频率,∆L E(z)为特征频带包络的最大与最小声级差。
6.突出率
突出率(Prominence ratio)是一种用于检测和评价噪声中显著音调的心理声学指标。
ECMA-74国际标准对该指标进行了详细描述,起初用于对信息、通讯设备的噪声评价。
符号用∆L P表示,无单位比值。
1)引入临界频带的计算方法
以频率f0为中心的临界频带的宽度f的计算式如下:
式中, f1为临界频带下限,f2为临界频带上限,即
当f0≤500 Hz时:
当f0>500 Hz时:
2)计算中间临界频带的声压级L
中间临界频带即以目标音调噪声所对应频率f t为中心的临界频带,其宽度f、上限f、下限f 根据临界频带计算方法均由中心频率决定。
3)计算下临界频带的声压级L
下临界频带指频率小于且紧邻中间临界频带的临界频带,其上限f= f,下限f则由下式确定:
式中,常数C ,C ,C 取值依据下表:
Frequency range/
Hz
C /
Hz
C
C /
Hz
≤f t ≤
≤f t≤1600×10
f t >1600×106
4)计算上临界频带的声压级L
上临界频带的频率大于且紧邻中间临界频带,其下限f= f,上限f由下式确定:
式中,常数C ,C ,C 取值由下表确定:
Frequency range/
Hz
C /
Hz
C
C /
Hz
≤f t≤1600×10
f t >1600×105
5)计算突出率∆L
当f t> Hz时,
当f t≤ Hz时,。