西安交大数学建模实验报告

合集下载

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。

2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。

所以选择采用计算机模拟的方法, 求得近似结果。

(2)通过增加试验次数, 使近似解越来越接近真实情况。

3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。

例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。

数学建模认知实习报告

数学建模认知实习报告

一、实习背景数学建模是运用数学语言和方法对现实世界中的问题进行抽象、简化和描述,以揭示问题的本质和规律,为解决实际问题提供科学依据。

为了提高自己的实践能力和创新意识,我参加了数学建模认知实习,通过参与实际项目的建模过程,深入了解数学建模的方法和技巧。

二、实习目的1. 了解数学建模的基本概念、方法和应用领域;2. 培养自己的数学思维和创新能力;3. 提高解决实际问题的能力;4. 掌握数学建模软件的使用技巧。

三、实习内容1. 项目选择在实习过程中,我们选择了“城市交通拥堵问题”作为建模对象。

该项目旨在通过建立数学模型,分析城市交通拥堵的原因,并提出缓解拥堵的方案。

2. 模型建立(1)问题分析:通过对城市交通拥堵现象的观察和分析,我们发现交通拥堵主要受道路容量、交通流量、交通信号等因素影响。

(2)模型假设:为了简化问题,我们做如下假设:① 交通流量均匀分布;② 道路容量固定;③ 交通信号按照固定周期变换。

(3)模型构建:根据上述假设,我们建立了如下数学模型:设道路长度为L,道路容量为C,交通流量为Q,交通信号周期为T,则有:Q = C v(v为车辆速度)其中,v = L / T。

(4)模型求解:利用数学软件对模型进行求解,得到交通流量Q与道路长度L、交通信号周期T的关系。

3. 结果分析通过对模型求解结果的分析,我们发现:(1)当道路长度L一定时,交通流量Q随着交通信号周期T的增大而增大,即交通信号周期越长,交通拥堵越严重。

(2)当交通信号周期T一定时,交通流量Q随着道路长度L的增大而增大,即道路越长,交通拥堵越严重。

4. 政策建议根据模型分析结果,我们提出以下政策建议:(1)优化交通信号周期,缩短交通信号周期,提高道路通行效率。

(2)合理规划道路长度,避免道路过长导致的交通拥堵。

(3)加强交通管理,加大对违法行为的处罚力度。

四、实习体会1. 数学建模是一门实践性很强的学科,通过实习,我深刻体会到数学建模在解决实际问题中的重要作用。

西安交大数学建模实验报告

西安交大数学建模实验报告

数学建模实验报告1,存货问题(一)问题描述某企业对于某种材料的月需求量为随机变量,具有如下表概率分布:每次订货费为500元,每月每吨保管费为50元,每月每吨货物缺货费为1500元,每吨材料的购价为1000元。

该企业欲采用周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。

(注:),(S s 策略指的是若发现存货量少于s 时立即订货,将存货补充到S ,使得经济效益最佳。

)(二)问题分析随机产生每个月需求量的概率,取遍每一个S 和s 的值,将每种S ,s 的组合对应的每月平均花费保存在数组money 里,筛选数组,选出其中费用最小值,并求出对应的S 和s 。

模拟400个月的生产情况。

(三)程序代码clear;clc;need=0; remain=0; cost=0; mincostavg=inf; forsl=30:10:70 forsh=80:10:140 fornum=1:100000m=rand; if m<=0.1 need=50;elseif m<=0.3 need=60;elseif m<=0.45 need=70;elseif m<=0.7 need=80;elseif m<=0.75 need=90;elseif m<=0.85 need=100;elseif m<=0.95need=110;elseneed=120;endif remain<slcost=cost+(sh-remain)*1000+500;ifsh<needcost=cost+(need-sh)*1500;remain=0;elsecost=cost+(sh-need)*50;remain=sh-need;endelseif remain<needcost=cost+(need-remain)*1500;remain=0;elsecost=cost+(remain-need)*50;remain=remain-need;endendendcostavg=cost/100000;ifcostavg<mincostavgmincostavg=costavg;propersl=sl;propersh=sh;endfprintf('s=%d, S=%d\nMonthly average cost=%.1f\n',sl,sh,costavg);cost=0;endendfprintf('\nWhen s=%d, S=%d\nThe least monthly average cost=%.1f\n',propersl,propersh,mincostavg);(四)运行结果s=30, S=80Monthly average cost=85466.9s=30, S=90Monthly average cost=87007.6Monthly average cost=87114.2 s=30, S=110Monthly average cost=87951.0 s=30, S=120Monthly average cost=86778.9 s=30, S=130Monthly average cost=86411.8 s=30, S=140Monthly average cost=86374.8 s=40, S=80Monthly average cost=83707.2 s=40, S=90Monthly average cost=84026.6 s=40, S=100Monthly average cost=85089.1 s=40, S=110Monthly average cost=85386.0 s=40, S=120Monthly average cost=86294.0 s=40, S=130Monthly average cost=85148.0 s=40, S=140Monthly average cost=84992.9 s=50, S=80Monthly average cost=83693.0 s=50, S=90Monthly average cost=82548.0 s=50, S=100Monthly average cost=82730.9 s=50, S=110Monthly average cost=83873.1 s=50, S=120Monthly average cost=84029.5 s=50, S=130Monthly average cost=84908.4 s=50, S=140Monthly average cost=84134.1 s=60, S=80Monthly average cost=83615.9 s=60, S=90Monthly average cost=82503.9 s=60, S=100Monthly average cost=81677.0Monthly average cost=81905.5s=60, S=120Monthly average cost=82946.0s=60, S=130Monthly average cost=83449.2s=60, S=140Monthly average cost=83871.3s=70, S=80Monthly average cost=83522.6s=70, S=90Monthly average cost=82525.8s=70, S=100Monthly average cost=81627.9s=70, S=110Monthly average cost=81323.3s=70, S=120Monthly average cost=82005.5s=70, S=130Monthly average cost=82601.6s=70, S=140Monthly average cost=82858.3When s=70, S=110The least monthly average cost=81323.3(五)结果分析用计算机模拟的结果和用数学分析的结果有一定的差异,由于计算机模拟时一般情况都是要简化模型的,所以在一定程度上会有所差异,我们可以考虑能不能通过改进算法来消除该差异,但对于一般的生产要求亦可以满足。

数学建模实习报告

数学建模实习报告

一、实习背景随着科学技术的不断发展,数学建模作为一种有效的解决实际问题的方法,在各个领域得到了广泛应用。

为了提高自身的实践能力和综合素质,我参加了数学建模实习。

本次实习旨在通过实际案例的建模与分析,提升对数学建模方法的掌握,以及在实际问题中的应用能力。

二、实习目的1. 掌握数学建模的基本原理和方法;2. 学会运用数学工具解决实际问题;3. 提高团队合作能力和沟通能力;4. 增强对数学在实际应用中的认识。

三、实习内容本次实习主要围绕以下几个方面展开:1. 案例分析:通过对实际案例的分析,了解数学建模的应用领域和实际意义;2. 模型建立:根据实际问题,运用数学方法建立相应的数学模型;3. 模型求解:运用计算机软件对数学模型进行求解;4. 模型验证:对求解结果进行验证,确保模型的准确性;5. 模型优化:根据实际需求,对模型进行优化,提高模型的适用性。

四、实习过程1. 案例分析实习初期,我们通过查阅相关文献,了解了数学建模在各个领域的应用,如经济学、生物学、环境科学等。

在此基础上,我们选取了以下几个具有代表性的案例进行分析:(1)鱼在水中游动的能量消耗问题;(2)城市交通流量优化问题;(3)传染病传播模型。

2. 模型建立针对上述案例,我们分别建立了以下数学模型:(1)鱼在水中游动的能量消耗模型:根据鱼在水中游动的受力分析,建立了鱼在水中游动的受力模型,并考虑了鱼在游动过程中的能量消耗与运动路线的关系;(2)城市交通流量优化模型:以城市道路网络为研究对象,建立了交通流量优化模型,并利用线性规划方法求解;(3)传染病传播模型:以传染病传播过程为研究对象,建立了传染病传播模型,并利用差分方法求解。

3. 模型求解针对上述模型,我们利用计算机软件(如MATLAB、Python等)进行求解。

具体操作如下:(1)鱼在水中游动的能量消耗模型:利用MATLAB软件,对受力模型进行数值求解,得到鱼在水中游动过程中的能量消耗;(2)城市交通流量优化模型:利用MATLAB软件,对交通流量优化模型进行求解,得到最优交通流量分配方案;(3)传染病传播模型:利用Python软件,对传染病传播模型进行求解,得到传染病传播的动态过程。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实习报告4篇

数学建模实习报告4篇

数学建模实习报告4篇数学建模实习报告篇1大一第二学期的第九周,我们建筑工程学院的学生在陈金陵院长,彭莉英和梁桥等老师的带领下进行了为期一周的认知实习。

众说周知。

建筑工程行业是相当注重实际经验的。

身为一名应用型本科土木专业的学生,经验对我们来说就更加重要了。

这次我们终于有机会去众多的建筑工地实地考察了。

一周以来,前两天天气炎热,后两天大于瓢泼,天气一直不好,我们先后去了长沙和湘潭等地考察,时间紧,路途远,是比较累的。

但一周以来,我却始终怀着兴奋的心情,认真听着老师和施工员,监理人员的实地讲解,这使我收获很大。

这不但使我对本专业的认识进一步加强,也是我对今后工作的选择有了初步的认识。

下面就是我本次实习的具体行程和我的体会。

一、实习地点及日程安排:2023年4月13日实习动员参观主校区2023年4月15日上午参观莲城大桥金屏村铁路桥晚上“招标与投标”专业知识讲座2023年4月16日上无参观并解工业厂房与民用住宅的异同观看湘潭市体育公园施工过程二、实习目的:认识实习是整个实习教学计划中的一个有机组成部分,是土木工程专业的一个重要的实践性环节。

通过组织参观和听取一些专题技术报告,收集一些与实习课题有关的资料和素材,为顺利完成实习打下坚实基础。

通过实习应达到以下目的:1.了解普通住宅结构2.初步了解体育馆结构设计及施工过程3.了解桥梁道路铁路桥梁等设计及结构4.了解工用与民用建筑的区别联系5.了解建筑结构领域的最新动态和发展方向6.提高艺术修养,加深对建筑与艺术的了解7.培养专业兴趣,明确学习目的三、实习过程及内容:2023年4月13号星期一晴上午,在图书馆第二报告厅内,我们认真聆听了陈院长和湘潭市建筑设计院的专家讲说。

陈院长概括了我们这次实习的行程安排,接着设计院的专家细致的为我们介绍了现在设计院内的工作要求,也就是告诉我们要达到怎们样的水平才有机会计入设计院工作。

这对我们既是鞭策是鼓励。

下午天气温和,我们怀着兴奋的心情,在陈院长的带领下参观我们学校的新校区。

西安交通大学数学建模上机实验报告

西安交通大学数学建模上机实验报告

问题一某大型制药厂销售部门为了找出某种注射药品销量与价钱之间的关系,通过市场调查搜集了过去30个销售周期的销量及销售价钱的数据,如表.按照这些数据至少成立两个数学模型, 作出图形,比较误差。

问题分析:该问题是通过已知的过去30个销售周期的销量及销售价钱的 数据,来寻觅一个最能反映该药销量与价钱之间的函数曲 线。

在数学上归结为最佳曲线拟合问题。

大体思想:曲线拟合问题的提法:已知一组二维数据,即平面上的n 个点),x i i y ( i=1,2,3.....n ,i x 互不相同,寻求一个函数)(f y x =,使)(x f 在某中准则下与所有数据点最为接近,即曲线拟合得最好。

最小二乘法是解决曲线拟合最常常利用的方式.大体思路:1122 ()()()()m m f x a r x a r x a r x =+++令其中rk(x) 是事前选定的一组函数,ak 是待定系数(k=1,2,…,m,m <n), 拟合准则是使n 个点(xi,yi) (i=1,2…,n),与y=f(xi)的距离 的平方和最小,称最小二乘法准则。

一、系数的肯定22111 (,,)[()]n nm ii i i i J a a f x y δ====-∑∑记求m a a ,,1 使得使J 达到最小.0 (1,,)kJ k m a ∂==∂ 取得关于 m a a ,,1 的线性方程组:11111()[()]0 ()[()]0nmi k k i i i k n mm i k k i i i k r x a r x y r x a r x y ====⎧-=⎪⎪⎪⎨⎪⎪-=⎪⎩∑∑∑∑ 1 ,,().m a a f x 解出,即得散点图: 程序: x=[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]; y=[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]; plot(x,y,'r.')通过观察,结合实际情形。

西安交通大学数学实验报告(用MATLAB绘制二维、三维图形)

西安交通大学数学实验报告(用MATLAB绘制二维、三维图形)

实验报告(二)完成人:L.W.Yohann注:本次实验主要学习了用MATLAB绘制二维、三维图形的基本命令、图形的标识与修饰以及用符号函数绘图,在学习完成后小组对52页的上机练习题进行了程序编辑和运行。

1.绘制数列变化趋势图.解:在编辑窗口输入:n=1:100;an=(1+1./n).^n;plot(n,an,'r*')grid并保存,命名为lab1;在命令窗口中输入lab1,得:2.绘制数列变化趋势图.解:在编辑窗口输入:n=1:0.1:50;an=n.^(1./n);plot(n,an,'r*')grid并保存,命名为lab2;在命令窗口中输入lab2,得:3.绘制函数在无定义点处的变化趋势.解:在编辑窗口输入:x=-10:0.05:10;y=sin(x)./x;plot(x,y,'r*')grid并保存,命名为lab3;在命令窗口中输入lab3,得:4.在同一坐标系中画出函数及其Taylor多项式的图像解:y=sinx在编辑窗口输入:syms xf=sin(x);T6=taylor(f,x);T8=taylor(f,x,'Order',8);T10=taylor(f,x,'Order',10);T12=taylor(f,x,'Order',12);fplot([T6 T8 T10 T12 f])xlim([-8 8])grid onlegend('approximation of sin(x) up to O(x^6)',...'approximation of sin(x) up to O(x^8)',...'approximation of sin(x) up to O(x^{10})',...'approximation of sin(x) up to O(x^{12})',...'sin(x)','Location','Best')title('Taylor Series Expansion')并保存,命名为lab4sin;在命令窗口中输入lab4sin,得:y=exp(x)在编辑窗口输入:syms xf=exp(x);T6=taylor(f,x);T8=taylor(f,x,'Order',8);T10=taylor(f,x,'Order',10);T12=taylor(f,x,'Order',12);fplot([T6 T8 T10 T12 f])xlim([-8 8])grid onlegend('approximation of exp(x) up to o(x^6)',...'approximation of exp(x) up to o(x^8)',...'approximation of exp(x) up to o(x^{10})',...'approximation of exp(x) up to o(x^{12})',...'exp(x)','Location','Best')title('Taylor Series Expansion')并保存,命名为lab4exp;在命令窗口中输入lab4exp,得:5.符号函数绘图.注:在matlab r2010b 和matlab r2019b中对绘制函数图像的输入方法有不同的要求,故此类题分两个版本来求解。

数学建模实习报告

数学建模实习报告

数学建模实习报告一、引言数学建模是运用数学方法和技巧来解决实际问题的一门学科。

在大学数学课程中,培养学生的数学建模能力已经成为教学的重点之一。

本次实习报告旨在总结我在数学建模实习中的学习经验和收获,并将所学知识应用在实际问题中。

二、实习内容1. 实习项目介绍我所参与的数学建模实习项目是关于城市交通流量预测的研究。

通过对城市交通数据进行收集和分析,利用数学模型和算法来预测未来的交通流量,以便城市规划者和交通管理部门能够更好地优化交通流动。

2. 数据收集与预处理为了进行交通流量预测,我们首先需要收集一定时期内的交通数据,包括车辆数量、速度、道路状况等信息。

根据实际情况,我们选择了某城市的主干道作为研究对象,并在道路上安装了传感器来收集数据。

然后,我们对收集到的原始数据进行清洗和预处理,消除异常值和缺失值的影响,以保证数据的准确性和完整性。

3. 模型选择与建立在交通流量预测中,我们需要选择合适的数学模型来描述交通流动的规律。

经过研究和实践,我们选择了时间序列模型和神经网络模型作为预测模型的候选。

时间序列模型考虑了时间的连续性和相关性,适用于交通流量数据的预测;而神经网络模型则可以通过对历史数据的学习和训练来预测未来的交通流量。

4. 数据分析与模型评估在建立完预测模型后,我们对历史数据进行了分析和验证,评估了模型的准确性和可靠性。

通过比较模型预测结果和实际观测值,计算相关的误差指标和准确率,以评估模型的优劣,并进行进一步的改进和调整。

5. 结果与讨论经过一段时间的实验和分析,我们得到了相对准确的交通流量预测结果,并与城市交通管理部门进行了交流和反馈。

根据预测结果,他们可以提前做好交通管理和调度工作,以缓解拥堵和提高交通效率。

同时,我们也对模型的不足之处进行了讨论,并提出了一些改进和优化的建议。

三、实习收获通过参与数学建模实习,我获得了如下的收获和体会:1. 熟悉了数学建模的基本流程和方法,了解了数学建模在实际问题中的应用和意义。

西安交通大学数学实验报告(MATLAB求解开普勒方程和方程求根)

西安交通大学数学实验报告(MATLAB求解开普勒方程和方程求根)

实验报告(五)完成人:L.W.Yohann注:本次实验主要学习了用MATLAB求解开普勒方程和方程求根的问题,了解学习了用fzero命令、二分法、Newton迭代法、一般迭代法求解方程,以及学习了非线性方程组的求解问题,完成后,小组对第90页的上级练习题进行了程序编辑和运行。

1.绘图并观察函数零点的分布.解:在编辑窗口输入:f=inline('x-0.5*sin(x)-1');fplot(f,[0,1])grid存盘后运行得2. 利用fzero 命令求解方程.解:在编辑窗口输入:f=inline('x-0.5*sin(x)-1');c=fzero(f,[1,2])存盘后运行得c =1.49873. 用二分法求解方程.求解(1)方程x^2-2=0在(0,2)内的近似根;(2)圆x^2+y^2=2与曲线y=e^-x 的两个交点;(3)方程∫t 21+t 2x 0dt =12的近似根. (1)解:在编辑窗口输入:00.10.20.30.40.50.60.70.80.91-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3f=inline('x^2-2');x1=0;x2=2;while abs(x1-x2)>10^(-5)x3=(x1+x2)/2;if f(x3)==0break;elseif f(x1)*f(x3)>0x1=x3;else f(x2)*f(x3)>0;x2=x3;endendx0=x3存盘后运行得x0 =1.4142(2)解:在编辑窗口输入:f=inline('(x^2)*exp(2*x)+1-2*exp(2*x)');x1=0;x2=2;x5=-2;x6=0;while abs(x1-x2)>10^(-5)x3=(x1+x2)/2;if f(x3)==0break;elseif f(x1)*f(x3)>0x1=x3;else f(x2)*f(x3)>0;x2=x3;endendwhile abs(x5-x6)>10^(-5)x7=(x5+x6)/2;if f(x7)==0break;elseif f(x5)*f(x7)>0x5=x7;else f(x6)*f(x7)>0;x6=x7;endendx0=x3x4=x7存盘后运行得x0 =1.3922x4 =-0.3203(3)解:在编辑窗口输入:clear;clc;syms t xf1=(t^2)/(1+t^2);f2=int(f1,t,0,x);%¼ÆËã²»¶¨»ý·Öf=inline('x - atan(x)-0.5');x1=-5;x2=5;while abs(x1-x2)>10^(-5)x3=(x1+x2)/2;if f(x3)==0break;elseif f(x1)*f(x3)>0x1=x3;else f(x2)*f(x3)>0;x2=x3;endendx0=x3存盘后运行得x0 =1.47504.用Newton迭代法求解方程求解:x=0.5sinx+1的近似根;解:在编辑窗口输入:f=inline('x-0.5*sin(x)-1');df=inline('1-0.5*cos(x)');d2f=inline('0.5*sin(x)');a=1;b=2;dlt=1.0e-5;if f(a)*d2f(a)>0x0=a;elsex0=b;endm=min(abs(df(a)),abs(df(b)));k=0;while abs(f(x0))>m*dltk=k+1;x1=x0-f(x0)/df(x0);x0=x1;fprintf('k=%d x=%.5f\n',k,x0); end存盘后运行得k=1 x=1.54858k=2 x=1.49933k=3 x=1.498705.求解非线性方程组.试求非线性方程组{2x12−x1x2−5x1+1=0x1+3lgx1−x22=0的解,初值如下:(1)x0=[1.4,−1.5](2)x0=[3.7,2.7]解:在编辑窗口输入:function f=group5(x)f=[2*x(1)^2-x(1)*x(2)-5*x(1)+1;x(1)+3*log10(x(1))-x(2)^2];(1):输入:[f,fval]=fsolve('group2',[1.4,-1.5]) 运行得f =1.4589 -1.3968fval =1.0e-011 *0.0759-0.6178(2):输入:[f,fval]=fsolve('group2',[3.7,2.7])运行得f =3.4874 2.2616fval =1.0e-006 *0.0059-0.20126.解决实际问题.为了在海岛I与某城市C之间铺设一条地下光缆,每千米光缆铺设成本在水下部分使C1万元,在地下部分使C2万元,为使得该光缆的总成本最低,光缆的转折点P(海岸线上)应该取在何处?如果实际测得海岛I与城市C之间的水平距离l=30km,海岛距海岸线垂直距离h1=15km,城市距海岸线垂直距离h=10km,C1=3000万元/km,C2=1500万元/km,求P点的坐标(误差<10−3km).解:在编辑窗口输入:f=inline('(3000*x)/(x^2 + 225)^(1/2) + (750*(2*x - 60))/((x - 30)^2 + 100)^(1/2)'); x1=5;x2=10;while abs(x1-x2)>10^(-3)x3=(x1+x2)/2;if f(x3)==0break;elseif f(x1)*f(x3)>0x1=x3;else f(x2)*f(x3)>0;x2=x3;endendfprintf('x=%.5f',x3) 存盘后运行得x=7.69104>>。

数学建模全部实验报告

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

数学建模课实验报告心得(3篇)

数学建模课实验报告心得(3篇)

第1篇一、前言数学建模是一门将数学理论与实际问题相结合的课程,旨在培养学生运用数学知识解决实际问题的能力。

通过参加数学建模课的实验,我对数学建模有了更深刻的认识,以下是我对实验的心得体会。

二、实验过程1. 理解实验目的在实验开始前,我明确了实验的目的:通过具体实例,掌握数学建模的基本思想和方法,提高自己的实际应用能力。

这使我更加有针对性地进行实验。

2. 实验步骤(1)选题:选择一个实际问题,明确问题的背景、目标和所需解决的问题。

(2)建立模型:运用数学知识,将实际问题转化为数学模型。

(3)求解模型:利用数学软件,对模型进行求解,得到最优解或近似解。

(4)分析结果:对求解结果进行分析,评估其合理性和可行性。

(5)撰写实验报告:总结实验过程、结果和分析,撰写实验报告。

3. 实验成果通过实验,我成功地将一个实际问题转化为数学模型,并利用数学软件求解得到最优解。

同时,我学会了如何分析结果,评估其合理性和可行性。

三、心得体会1. 数学建模的重要性数学建模是解决实际问题的有效途径。

通过数学建模,我们可以将复杂的问题简化为数学模型,从而提高解决问题的效率。

在实验过程中,我深刻体会到了数学建模在解决实际问题中的重要性。

2. 数学知识的运用数学建模实验使我更加深入地理解了所学数学知识,并将其应用于实际问题。

在实验过程中,我运用了线性规划、概率论、统计学等多种数学知识,提高了自己的综合运用能力。

3. 团队合作精神数学建模实验需要团队合作,共同完成实验任务。

在实验过程中,我与团队成员相互学习、相互帮助,共同攻克难题。

这使我认识到团队合作的重要性,培养了团队协作精神。

4. 实验技能的提升通过实验,我熟练掌握了数学建模的基本步骤,提高了自己的实验技能。

同时,我学会了使用数学软件进行求解和分析,为今后从事相关领域的工作打下了基础。

5. 分析问题的能力在实验过程中,我学会了如何分析问题,寻找问题的本质。

这使我具备了解决实际问题的能力,为今后的学习和工作奠定了基础。

数学建模实习报告

数学建模实习报告

数学建模实习报告实习时间:2023年7月1日至2023年7月31日实习单位:XX大学数学建模实验室实习内容:在数学建模实验室的实习期间,我主要参与了以下几个方面的活动:1. 学习数学建模的基本概念和方法:在实习初期,我通过阅读相关书籍和文献,了解了数学建模的基本概念和方法。

同时,我还参加了实验室组织的讲座和讨论,学习了数学建模在实际应用中的案例分析。

2. 参与数学建模竞赛:在实习期间,我参加了一个数学建模竞赛。

我们团队选择了A题,题目是关于鱼在游动时的能量消耗问题。

为了解决这个问题,我们首先建立了鱼在水中游动的路线模型,然后通过受力分析建立了鱼的受力模型。

通过计算和分析,我们得出了一些关于鱼在游动时能量消耗的结论。

3. 参与数学建模研究项目:在实习期间,我还参与了一个关于城市交通规划的数学建模研究项目。

我们团队通过收集和整理交通数据,建立了交通流量的预测模型。

通过模型计算和实际数据的对比,我们提出了一些优化城市交通规划的建议。

实习收获:通过这次数学建模实习,我收获了很多知识和技能。

首先,我学会了如何运用数学建模的方法解决实际问题。

在解决鱼能量消耗问题的过程中,我学会了如何建立数学模型和分析数据。

其次,我提高了自己的团队合作能力和沟通能力。

在团队中,我们需要分工合作,共同解决问题。

通过与团队成员的交流和讨论,我学会了如何有效地沟通和合作。

最后,我增强了自己的研究能力和创新意识。

在实习期间,我们需要独立思考和解决问题,这让我更加了解自己的潜力和能力。

实习总结:通过这次数学建模实习,我对数学建模有了更深入的了解和认识。

我学会了如何运用数学建模的方法解决实际问题,提高了自己的团队合作能力和沟通能力。

同时,我也发现自己在某些方面还需要进一步提升,比如数据分析和编程技能。

在今后的学习和工作中,我将继续努力学习和提高自己的能力,将数学建模的方法应用到更广泛的领域中。

西安交大数学实验报告

西安交大数学实验报告

数学实验报告题目:四种特殊自然数编程作者:学号:班级:1.题目:四种特殊自然数编程,计算出所有的水仙花数,完美数,亲和数,回文数。

2.环境:Windows系统PC MATLAB软件3.问题分析1)水仙花数:若一个自然数的各位数字的立方和等于该数本身,则称该自然数为水仙花数。

由水仙花数的定义可知,首先要将一个三位数的百位,十位,个位三个数字分离出来,同时用for-end循环语句对自然数赋值,然后将三个数字分别赋值给三个变量(如a,b,c),用if条件语句选出符合水仙花数定义的自然数即可。

2)完美数:对于一个自然数而言,若它的真因子之和小于数本身,则称该数为盈数,若它的真因子之和大于数本身,则称该数为亏数,若它的真因子之和等于数本身,则称该数为完美数(完全数)。

(它的两个特点:它可以写成若干连续自然数之和;它的全部因数的倒数和都是2)首先考虑到要输出一系列满足条件的自然数,可以使用for-end循环语句,在一定范围内(在此我们考虑2~10000内的自然数)对每一个自然数进行完美数的验证,可以赋值i=2:1:10000,然后就要找出每一个自然数的所有真因子,在此又需要用for-end语句找出一个自然数的所有真因子,分离出真因子并赋值给一个变量如b,最后将所有真因子的和与该自然数比较,此时需要if条件语句,筛选出符合条件的自然数后输出即可。

3)亲和数:亲和数又叫友好数,是指两个自然数,其中每个自然数的真因子数之和等于另一个数。

例如:220与284就是一对亲和数。

类比完美数,亲和数同样需要求出一个自然数的所有真因子,在此需求出两个自然数的所有真因子对应的和,然后比较。

首先需要使用for-end循环语句,while-end循环语句以及if-end条件语句求出一定范围内(在此以2~10000为例)每一个自然数的所有真因子,然后用赋值语句赋值多个变量,利用这些变量以及if-end 条件语句选择符合条件的自然数组即可。

数学建模实习报告

数学建模实习报告

数学建模实习报告一、引言本实习报告旨在总结我在数学建模实习过程中的经验和收获。

在实习期间,我所学习到的数学知识得到了实际应用和锻炼,提升了自己的数学建模能力。

二、实习背景数学建模实习是我们专业培养学员解决现实问题的一种有效方式。

实习期间,我们小组所选项目是分析某一城市的交通拥堵问题,并提出优化策略。

本次实习旨在通过数学建模的理论和方法,为解决城市交通拥堵问题提供科学依据。

三、实习过程1. 数据收集和整理我们首先进行了大量的数据收集工作,收集了各个时间段的交通流量、道路拥堵指数以及道路通行速度等相关数据。

然后对这些数据进行整理和分析,以便进一步建立数学模型。

2. 建立数学模型基于收集到的数据,我们运用概率论、统计学和优化方法等数学理论,建立了适用于城市交通拥堵问题的数学模型。

我们首先设计了一个基础模型,然后根据实际情况进行修正和改进,使得模型更加符合真实情况。

3. 模型求解我们运用计算机编程和数值计算的方法,对建立的数学模型进行求解。

通过模拟实验和数据验证,我们不断调整模型参数,以达到模型的准确性和可行性,并找到最优解。

四、实习成果1. 实际问题解决通过对城市交通拥堵问题的研究和分析,我们提出了一系列优化策略。

其中包括交通信号灯的优化配时,道路建设与规划的调整以及交通流量管控等方面。

这些优化策略在实际应用中能够有效降低交通拥堵现象,提高城市交通的效率和舒适度。

2. 数学建模能力提升通过实习,我深刻理解了数学建模的重要性和应用广泛性。

我不仅学会了应用数学理论解决实际问题的方法,还提高了数据分析、模型建立和模型求解的技巧。

3. 团队合作能力提升在实习过程中,我积极与小组成员合作,共同分工、讨论和解决问题。

通过团队合作,我们能够更好地发挥每个人的优势,达到事半功倍的效果。

五、经验总结1. 数据的重要性在数学建模过程中,数据的质量和准确性对模型的建立和求解起到关键作用。

因此,我们要善于收集和整理数据,并对数据进行合理分析和利用。

数学建模实训报告

数学建模实训报告

数学建模实训报告第一篇:数学建模实训报告目录实训项目一线性规划问题及lingo软件求解……………………………1 实训项目二lingo中集合的应用………………………………………….7 实训项目三lingo中派生集合的应用……………………………………9 实训项目四微分方程的数值解法一………………………………………13 实训项目五微分方程的数值解法二……………………………………..15 实训项目六数据点的插值与拟合………………………………………….17 综合实训作品…………………………………………………………….18 每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。

实验时必须遵守实验规则。

用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。

这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果。

请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新。

它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO 解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-02:00 20 6 02:00-06:00 30 每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。

内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1>=60;x1+x2>=70;x2+x3>=60; x3+x4>=50;x4+x5>=20;x5+x6>=30;编程结果:Global optimal solution found.Objective value:150.0000Infeasibilities:0.000000Total solver iterations:VariableValueReduced CostX160.000000.000000X210.000000.000000X350.000000.000000X40.0000001.000000X530.000000.000000X60.0000000.000000RowSlack or SurplusDual Price150.0000-1.0000000.000000-1.0000000.0000000.0000000.000000-1.0000000.0000000.00000010.000000.0000000.000000-1.000000 内容二:(1)max=6*x1+4*x2;2*x1+3*x2<100;4*x1+2*x2<120;x1,x2分别表示两种型号生产数量。

西安交大数学实验报告

西安交大数学实验报告

数学实验报告作者:学号:班级:题目(一):求函数 2x 11+的积分程序:clc;clear;n=100;x=0:1/n:1;sum=0;for i=1:n;sum=sum+(1/n).*((1./(1+x(i).^2))+1./(1+x(i+1).^2))*0.5; endsum结果:结果如图所示,为0.7854程序分析:本程序运用了梯形法求函数在区间[]10 的积分,将定义域分为100分,并取其微元的值。

我们知道,函数的实际积分为为π/4,即0.7853,与所运行的结果较类似。

题目(二):用lagrange差值法求sin(49º)的近似值程序:在进行这个问题前,我们先编写一个lagrange函数文件function p=lagrange(x,y)L=length(x);A=ones(L);for j=2:LA(:,j)=A(:,j-1).*x';endX=inv(A)*y';for i=1:Lp(i)=X(L-i+1);end然后将数据导入clc;clear;x=[40 45 50 55 60];y=[0.64278 0.70710 0.76604 0.81915 0.86602];p=lagrange(x,y);t=49;u=polyval(p,t);u程序分析:由计算器可以算得sin(49º)的值为0.7547,与计算结果相同。

本题通过利用lagrange插值法,对原有数据利用多项式进行拟合,同时利用所求得的曲线对数值进行预测实验反思与结论:第一次做数学实验,第一次接触MATLAB软件,第一次进行简单编程,有许多错误和茫然指出,我在不断的尝试努力中进步着。

通过这次数学实验,我基本掌握了积分算法和插值法的运算同时还有各种赋值语句。

当然还有MATLAB软件中的一些特殊符号,对实验理论课上学的一些基本操作更加熟练。

最重要的是,很好的提高了我的数学逻辑思维,以及上机动手实验操作的能力,这对我以后的学习工作有很大帮助。

暑假数学建模社会实践报告

暑假数学建模社会实践报告

暑假数学建模社会实践报告一、实践背景暑假期间,我参加了学校组织的数学建模社会实践活动。

该活动是为了使学生通过实践,真正将数学知识应用于实际生活中,培养学生的实践能力和社会责任感。

我通过实际行动,深入了解了数学建模在社会中的应用,并结合实际情况进行数学建模实践,提高了自己的综合能力。

二、实践过程在实践过程中,我的团队选择了城市交通拥堵问题进行研究和分析。

我们首先搜集了大量的相关资料,了解了交通拥堵的原因和解决方法。

然后,我们运用了数学建模的方法,建立了数学模型,对城市交通拥堵问题进行了研究。

我们首先对城市道路交通流量进行了统计和分析,确定了交通流量的分布规律。

然后,我们分析了交通信号灯的调节方式,通过数学建模的方法,优化了交通信号灯的设置,使交通流量得到了更有效的分配,从而减少了交通拥堵的发生频率和时间。

最后,我们对新的交通信号灯设置方案进行了实际测试,并分析了测试结果。

测试结果表明,新的交通信号灯设置方案能够有效地减少交通拥堵的发生,提高交通效率。

这为城市的交通规划和交通管理提供了有力的参考。

三、实践收获通过这次实践活动,我收获了很多。

首先,我了解了数学建模的基本原理和方法,学会了如何将数学知识应用于实际生活中。

其次,我培养了团队合作精神和独立思考能力,通过与队友合作,分工合作,充分发挥每个人的特长,取得了良好的实践成果。

最后,我增强了自己的实践能力和社会责任感,明白了作为一名数学建模者的重要性和使命感。

四、实践感悟通过这次实践活动,我深刻理解了数学建模在社会中的重要性和应用价值。

数学建模不仅可以帮助我们解决实际问题,提高生活质量,还可以为社会发展提供有力的支持和指导。

同时,我也意识到数学建模需要广泛的知识储备和实践经验,需要不断学习和提高自己的能力。

总结起来,这次暑假数学建模社会实践活动让我收获颇丰。

我通过实践了解了数学建模的理论和实践,锻炼了自己的综合能力和团队合作能力,培养了社会责任感。

我相信,在今后的学习和工作中,我会继续努力,发挥数学建模的优势,为社会的发展做出贡献。

西安交通大学数学实验报告模板

西安交通大学数学实验报告模板

成绩 西安交通大学实验报告课 程________概率论与数理统计__________________ 实验日期___2016.12.11________________________专业班号_物理51_____________________ 姓 名 _____________李淏淼_____________学 号_________2150900015_________________一、 实验问题1某大米生产厂将产品包装成1000克一袋出售,在众多因素的影响下包装封口后一袋的重量是随机变量,设其服从正态分布N(m ,),其中σ已知,m 可以在包装时调整,出厂检验时精确地称量每袋重量,多余1000克的仍按1000克一袋出售,因而厂家吃亏;不足1000克的直接报废,这样厂方损失更大,问如何调整m 的值使得厂方损失最小?二、 问题分析(涉及的理论知识、数学建模与求解的方法等)设定x 为产品包装后的重量,依题意x 为一随机变量,且服从正态分布N ,概率密度函数为f (x )当成品重量M 给定后,记:P 为x 大于等于M 的概率P ’为x 小于M 的概率故而有: P +P’=1分析题意可知,厂方损失Y 由两部分组成:(1)x≥L 时,多余部分,重量为(x -L );(2)x<L 时,整袋报废,重量为x ;Y =()()()MM x M f x dx xf x dx ∞-∞-+⎰⎰=m -MP生产N 袋大米报废总量为Nm -NMP成品袋数为NP则成品中,平均每袋损失的重量为J=mN MPN m M PN P-=- 求J 的最小值即可三、 程序设计1. 在MATLAB 中建立文件Jmin.m function J=Jmin(m)J=m/(1-normcdf( (1000-m),0,1));2. 在Matlab 的Medit 窗口建立文件figer.mfor m=1000:0.001:1020J=Jmin(m);plot(m,J)hold onend可得出函数图像根据图像,可知函数在该区间存在最小值3.在Matlab的Medit建立文件zuixiaozhi.mmin=1100;minm=0;for m=1000:0.001:1010J=Jmin(m);if J<=minmin=J;minm=m;endendminm,min运行程序得出结果为四、问题求解结果与结论m的值为1003.5时,厂方损失最小五、问题的进一步拓展与实验m的值为1003.5时,平均每袋的损失为多少?六、实验问题2设(X, Y)的联合分布律为求X与Y的协方差及相关系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模实验报告1,存货问题(一)问题描述某企业对于某种材料的月需求量为随机变量,具有如下表概率分布:每次订货费为500元,每月每吨保管费为50元,每月每吨货物缺货费为1500元,每吨材料的购价为1000元。

该企业欲采用周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。

(注:),(S s 策略指的是若发现存货量少于s 时立即订货,将存货补充到S ,使得经济效益最佳。

)(二)问题分析随机产生每个月需求量的概率,取遍每一个S 和s 的值,将每种S ,s 的组合对应的每月平均花费保存在数组money 里,筛选数组,选出其中费用最小值,并求出对应的S 和s 。

模拟400个月的生产情况。

(三)程序代码clear;clc;need=0; remain=0; cost=0; mincostavg=inf; forsl=30:10:70 forsh=80:10:140 fornum=1:100000m=rand; if m<=0.1 need=50;elseif m<=0.3 need=60;elseif m<=0.45 need=70;elseif m<=0.7 need=80;elseif m<=0.75 need=90;elseif m<=0.85 need=100;elseif m<=0.95need=110;elseneed=120;endif remain<slcost=cost+(sh-remain)*1000+500;ifsh<needcost=cost+(need-sh)*1500;remain=0;elsecost=cost+(sh-need)*50;remain=sh-need;endelseif remain<needcost=cost+(need-remain)*1500;remain=0;elsecost=cost+(remain-need)*50;remain=remain-need;endendendcostavg=cost/100000;ifcostavg<mincostavgmincostavg=costavg;propersl=sl;propersh=sh;endfprintf('s=%d, S=%d\nMonthly average cost=%.1f\n',sl,sh,costavg);cost=0;endendfprintf('\nWhen s=%d, S=%d\nThe least monthly average cost=%.1f\n',propersl,propersh,mincostavg);(四)运行结果s=30, S=80Monthly average cost=85466.9s=30, S=90Monthly average cost=87007.6Monthly average cost=87114.2 s=30, S=110Monthly average cost=87951.0 s=30, S=120Monthly average cost=86778.9 s=30, S=130Monthly average cost=86411.8 s=30, S=140Monthly average cost=86374.8 s=40, S=80Monthly average cost=83707.2 s=40, S=90Monthly average cost=84026.6 s=40, S=100Monthly average cost=85089.1 s=40, S=110Monthly average cost=85386.0 s=40, S=120Monthly average cost=86294.0 s=40, S=130Monthly average cost=85148.0 s=40, S=140Monthly average cost=84992.9 s=50, S=80Monthly average cost=83693.0 s=50, S=90Monthly average cost=82548.0 s=50, S=100Monthly average cost=82730.9 s=50, S=110Monthly average cost=83873.1 s=50, S=120Monthly average cost=84029.5 s=50, S=130Monthly average cost=84908.4 s=50, S=140Monthly average cost=84134.1 s=60, S=80Monthly average cost=83615.9 s=60, S=90Monthly average cost=82503.9 s=60, S=100Monthly average cost=81677.0Monthly average cost=81905.5s=60, S=120Monthly average cost=82946.0s=60, S=130Monthly average cost=83449.2s=60, S=140Monthly average cost=83871.3s=70, S=80Monthly average cost=83522.6s=70, S=90Monthly average cost=82525.8s=70, S=100Monthly average cost=81627.9s=70, S=110Monthly average cost=81323.3s=70, S=120Monthly average cost=82005.5s=70, S=130Monthly average cost=82601.6s=70, S=140Monthly average cost=82858.3When s=70, S=110The least monthly average cost=81323.3(五)结果分析用计算机模拟的结果和用数学分析的结果有一定的差异,由于计算机模拟时一般情况都是要简化模型的,所以在一定程度上会有所差异,我们可以考虑能不能通过改进算法来消除该差异,但对于一般的生产要求亦可以满足。

2,数据处理(一)问题描述在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。

(a).输入插值基点数据(b).在矩形区域(70,200)×(-50,150)做二维插值,三次插值。

(c).做海底曲面图(d).做出水深小于5的海域范围,即z = 5的等高线。

(二)问题分析本题所给值为离散点,可以采用先插值,再画图,最后画出等高线的方法解题。

(三)程序代码用matlab解题的程序代码:x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];xi=75:5:200;yi=-50:5:150;figure(1)z1i=griddata(x,y,z,xi,yi','linear');//线性插值surfc(xi,yi,z1i) //surfc画的三维曲面在曲面底部有等高线图xlabel('X'),ylabel('Y'),zlabel('Z')title('二次插值')figure(2)z2i=griddata(x,y,z,xi,yi','cubic'); //立方插值surfc(xi,yi,z2i)xlabel('X'),ylabel('Y'),zlabel('Z')title('三次插值')figure(3)subplot(1,2,1),contour3(xi,yi,z1i,[-5 -5],'r') //一行两列第一个//三维等高线图title('二次插值z = -5的等高线')subplot(1,2,2),contour3(xi,yi,z2i,[-5 -5],'r') //一行两列第一个title('三次插值z = -5的等高线')(四)运行结果(五)结果分析图像表明,在红圈以内的区域,船只都应该避免进入3,线性规划(一)问题描述有A、B、C三个场地,每一个场地都出产一定数量的原料,同时也消耗一定数量的产品,具体数据如下表所示。

已知制成每吨产品需要消耗3吨原料,A、B 两地,A、C两地和B、C两地之间的距离分别为150千米、100千米和200千米,假设每万吨原料运输1千米的运费为5000元,每万吨产品运输1千米的运费为6000元。

由于地区条件的差异,在不同地区设厂的费用不同,由于条件的限制,在B处建厂的规模不能超过5万吨,问:在这三地如何建厂、规模建多大才能使得总费用最小?(二)问题分析设A地建厂规模为每年生产x万吨;B地建厂规模为每年生产y万吨;C地建厂规模为每年生产z万吨。

又设从C运到A的产品共计J万吨;从C运到B 的产品共计T万吨;从A运到B的产品共计F万吨;从B运到A的产品共计G 万吨;从C运到A的原料共计R万吨;从C运到B的原料共计P万吨;从A运到B的原料共计L万吨;从B运到A的原料共计M万吨;从A运到C的原料共计N 万吨;从B运到C的原料共计V万吨.又有约束条件:①本地生产的产品必须必运出多;②不可能产生原料和产品经过超过两个地方的运输值;③运输量皆为正值;④经过运输后产品配置已经达到最优,即每个地方产品量等于销量;⑤要达到最优从C地只能往外运原料和产品,因为C地不可销售,所以产品不能运往C地,否则产品从生产到销售必经过两个以上的地点。

目标函数:O=100*Z+120*Y+150*X+(F*150*6000)/10000+(J*100*6000)/10000+(T*200*600 0)/10000+(G*150*6000)/10000+(R*100*5000)/10000+(P*200*5000)/10000+(L*150*5000)/10000+(M*150*5000)/10000+(N*100*5000)/1 0000+(V*200*5000)/10000约束条件:X+Y+Z 20,N+L≤20,16≥M+V,24≥R+P,X-F≥0,Y-G≥0,F-G+T+Y==13,G+J-F+X==7,J+T-Z 0,M≥0,L≥0,P≥0,R≥0,Y≤5,Y≥0,Z≥0,X≥0,J≥0,T≥0,G≥0,F≥0,3X-M+L-R-20+N 0,3 Y-P-16+M-L+V 0,3 Z-24-N-V+P+R 0,N≥0,V≥0(三)程序代码(四)运行结果(五)结果分析由程序和运行结果知,(1)A地建7万吨。

相关文档
最新文档