模式识别实验报告
模式识别 实验报告一
402
132
识别正确率
73.36
84.87
99.71
70.31
82.89
86.84
结果分析:
实验中图像3的识别率最高,图像1和图像2的识别率次之。图像1和图像2的分辨率相对图像3更低,同时图像2有折痕影响而图像1则有大量噪声。通过阈值处理能较好的处理掉图像1的噪声和图像2的折痕,从而使得图像1的识别率有所提升,而图像2的识别率变化不大。从而可以得出结论,图像3和图像2识别率不同的原因主要在于图像分辨率,而图像2和图像1识别率的不同则在于噪声干扰。
实验报告
题目
模式识别系列实验——实验一字符识别实验
内容:
1.利用OCR软件对文字图像进行识别,了解图像处理与模式识别的关系。
2.利用OCR软件对文字图像进行识别,理解正确率的概念。
实验要求:
1.利用photoshop等软件对效果不佳的图像进行预处理,以提高OCR识别的正确率。
2.用OCR软件对未经预处理和经过预处理的简体和繁体中文字符图像进行识别并比较正确率。
图像4内容既有简体又有繁体,从识别结果中可了解到错误基本处在繁体字。
遇到的问题及解决方案:
实验中自动旋转几乎没效果,所以都是采用手动旋转;在对图像4进行识别时若采用系统自己的版面分析,则几乎识别不出什么,所以实验中使用手动画框将诗的内容和标题及作者分开识别。
主要实验方法:
1.使用汉王OCR软件对所给简体和繁体测试文件进行识别;
2.理,再次识别;
实验结果:
不经过图像预处理
经过图像预处理
实验图像
图像1
图像2
图像3
图像4
图像1
图像2
字符总数
458
《模式识别》实验报告 K-L变换 特征提取
基于K-L 变换的iris 数据分类一、实验原理K-L 变换是一种基于目标统计特性的最佳正交变换。
它具有一些优良的性质:即变换后产生的新的分量正交或者不相关;以部分新的分量表示原矢量均方误差最小;变换后的矢量更趋确定,能量更集中。
这一方法的目的是寻找任意统计分布的数据集合之主要分量的子集。
设n 维矢量12,,,Tn x x x ⎡⎤⎣⎦=x ,其均值矢量E ⎡⎤⎣⎦=μx ,协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u ,此协方差阵为对称正定阵,则经过正交分解克表示为x =T C U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u ⎡⎤⎣⎦=U 为对应特征值的特征向量组成的变换阵,且满足1T -=U U 。
变换阵T U 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协方差阵12[,,,]x n diag λλλ==x UC U C 。
通过略去对应于若干较小特征值的特征向量来给y 降维然后进行处理。
通常情况下特征值幅度差别很大,忽略一些较小的值并不会引起大的误差。
对经过K-L 变换后的特征向量按最小错误率bayes 决策和BP 神经网络方法进行分类。
二、实验步骤(1)计算样本向量的均值E ⎡⎤⎣⎦=μx 和协方差阵()T x E ⎡⎤⎣⎦=--C x u)(x u 5.8433 3.0573 3.7580 1.1993⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=μ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.1216 1.29560.5810x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦----=--C (2)计算协方差阵x C 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=U 从上面的计算可以看到协方差阵特征值0.023835和0.07821相对于0.24267和4.2282很小,并经计算个特征值对误差影响所占比重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最小的特征值,得到新的变换阵12,,,new n k u u u -⎡⎤⎣⎦=U 。
《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
模式识别方PCA实验报告
模式识别作业《模式识别》大作业人脸识别方法一 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器一、 理论知识1、主成分分析主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。
在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。
当特征较多时,在高维空间中研究样本的分布规律就更麻烦。
主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。
主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。
1.1 问题的提出一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将它们综合成n 综合变量,即11111221221122221122n nn n n n n nn ny c x c x c x y c x c x c x y c x c x c x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ij c 由下列原则决定:1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立;2、y 的排序原则是方差从大到小。
这样的综合指标因子分别是原变量的第1、第2、……、第n 个主分量,它们的方差依次递减。
1.2 主成分的导出我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是一个n 维随机向量,12n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦是满足上式的新变量所构成的向量。
于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。
坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。
变换后的N 个点在1y 轴上有最大方差,而在n y 轴上有最小方差。
同时,注意上面第一条原则,由此我们要求i y 轴和j y 轴的协方差为零,那么要求T YY =Λ12n λλλ⎡⎤⎢⎥⎢⎥Λ=⎢⎥⎢⎥⎣⎦令T R XX =,则T T RC C =Λ经过上面式子的变换,我们得到以下n 个方程111111212112111221122111121211()0()0()0n n n n n n nn n r c r c r c r c r c r c r c r c r c λλλ-+++=+-++=+++-=1.3 主成分分析的结果我们要求解出C ,即解出上述齐次方程的非零解,要求ij c 的系数行列式为0。
模式识别实习报告
实习报告一、实习背景及目的随着科技的飞速发展,模式识别技术在众多领域发挥着越来越重要的作用。
模式识别是指对数据进行分类、识别和解释的过程,其应用范围广泛,包括图像处理、语音识别、机器学习等。
为了更好地了解模式识别技术的原理及其在实际应用中的重要性,我参加了本次模式识别实习。
本次实习的主要目的是:1. 学习模式识别的基本原理和方法;2. 掌握模式识别技术在实际应用中的技巧;3. 提高自己的动手实践能力和团队协作能力。
二、实习内容及过程实习期间,我们团队共完成了四个模式识别项目,分别为:手写数字识别、图像分类、语音识别和机器学习。
下面我将分别介绍这四个项目的具体内容和过程。
1. 手写数字识别:手写数字识别是模式识别领域的一个经典项目。
我们使用了MNIST数据集,这是一个包含大量手写数字图片的数据集。
首先,我们对数据集进行预处理,包括归一化、数据清洗等。
然后,我们采用卷积神经网络(CNN)作为模型进行训练,并使用交叉验证法对模型进行评估。
最终,我们得到了一个识别准确率较高的模型。
2. 图像分类:图像分类是模式识别领域的另一个重要应用。
我们选择了CIFAR-10数据集,这是一个包含大量彩色图像的数据集。
与手写数字识别项目类似,我们先对数据集进行预处理,然后采用CNN进行训练。
在模型训练过程中,我们尝试了不同的优化算法和网络结构,以提高模型的性能。
最终,我们得到了一个识别准确率较高的模型。
3. 语音识别:语音识别是模式识别领域的又一项挑战。
我们使用了TIMIT数据集,这是一个包含大量语音样本的数据集。
首先,我们对语音样本进行预处理,包括特征提取、去噪等。
然后,我们采用循环神经网络(RNN)作为模型进行训练。
在模型训练过程中,我们尝试了不同的优化算法和网络结构。
最后,我们通过对模型进行评估,得到了一个较为可靠的语音识别系统。
4. 机器学习:机器学习是模式识别领域的基础。
我们使用了UCI数据集,这是一个包含多个数据集的数据集。
实验七基于神经网络的模式识别实验
实验七基于神经网络的模式识别实验
一、实验背景
模式识别是机器学习领域中的一项重要研究领域,它可以被应用于多个领域,包括计算机视觉,图像处理,智能交通,自然语言处理和生物信息学等。
模式识别的目的是从观察到的数据中检测,理解和预测结果。
其中,神经网络(应用模式识别)是人工智能的关键部分,它模拟人类的神经元的工作方式,并且可以被用来识别,分类,计算和获取模式。
二、实验目标
本次实验的目的是,探讨神经网络在模式识别中的应用,并使用一个基于神经网络的模式识别系统来识别模式。
三、实验内容
(一)数据预处理
在进行本次实验之前,需要进行数据预处理,以便能够更好地使用神经网络。
数据预处理的目的是通过将原始数据处理成神经网络可以处理的格式,以便更好地提取特征。
(二)神经网络模型设计
(三)神经网络模型训练
在训练神经网络模型时,首先需要准备一组被识别的模式。
模式识别实验
模式识别实验
一、实验任务
本次实验任务是模式识别,主要包括形式化的目标追踪、字符流分类和语音识别等。
二、所需软件
本实验所需软件包括MATLAB、Python等。
三、实验步骤
1. 首先需要安装MATLAB 和Python等软件,并建立实验环境。
2. 然后,通过MATLAB 进行基于向量量化(VQ) 的目标追踪实验,搭建端到端的系统,并使用Matlab编程实现实验内容。
3. 接着,使用Python进行字符流分类的实验,主要包括特征提取、建模和识别等,并使用Python编程实现实验内容。
4. 最后,使用MATLAB 进行语音识别的实验,主要是使用向量量化方法识别语音,并使用Matlab编程实现实验内容。
四、结果分析
1.在基于向量量化的目标追踪实验中,我们通过计算误差,确定了最优参数,最终获得了较高的准确率。
2.在字符流分类实验中,我们通过选择最佳分类器,得到了较高的准确率。
3.在语音识别实验中,我们使用向量量化方法,最终也获得了不错的准确率。
五、总结
本次实验研究了基于向量量化的目标追踪、字符流分类和语音识别等三项模式识别技术,经实验,探讨了不同方法之间的优劣,并获得了较高的准确率。
本次实验的结果为日常模式识别工作提供了有价值的参考。
中科大模式识别miniproject实验报告
模式识别miniproject实验报告一、算法介绍:本实验采用了SVM( Support Vector Machines)分类模型。
由于实际问题中很少线性可分,故本实验采用非线性SVM方法。
即通过一个适当的非线性映射ϕ(x) ,将数据由原始特征空间映射到一个新特征空间,然后在新空间中寻求最优(线性)判定面。
本实验选取的的核函数为RBF(径向基函数)中的高斯核函数,即k(x,y) = exp(-0.5*(norm(x-y)/s)^2)。
关于支持向量机的类型,本实验选取为二类分类算法,即svc_c。
算法方面,由于同时求解n个拉格朗日乘子涉及很多次迭代,计算开销太大,所以实验采用Sequential Minimal Optimization(SMO)算法,即每次只更新两个乘子,迭代获得最终解。
计算时,首先根据预先设定的规则,从所有样本中选出两个拉格朗日因子,然后保持其他拉格朗日乘子不变,更新所选样本对应的拉格朗日乘子,循环N次直到满足要求。
二、实验1、评价标准本实验采用正确率来作为评价指标,即。
2、整体试验方法及步骤(1)定义核函数的类型及相关参数;(2)构建两类训练样本:(考虑到实验程序运行时间问题,本实验只选用了testdata的第200至1200项共1000个作为训练样本)(3)训练支持向量机;(4)寻找支持向量;(5)测试输出;(6)计算评价指标,即正确率3、分类器训练算法的参数调整步骤(1)随机生成多个参数向量(解)(2)在目标函数上验证解的质量(3)根据解的质量由好到坏进行排序。
取出其中较好的一部分(例如一半)解,在这些解的每一个元素上加上一个随机数,从而得到一些新解(4)把新解和老解比较,取出最好的一部分,作为下一次迭代的初始解4、实验结果经实验,得到测试输出,将其第十一列,即样本类别与testdata 中的第十三列相比,即可得到正确率。
本实验将以上结果取于EXECL 中进行统计,部分结果截图如下。
《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。
二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。
在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。
2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。
在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。
4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。
5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。
具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。
然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。
最后,取后验概率最大的类别作为测试数据的分类结果。
三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。
2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。
计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。
对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。
5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。
6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。
模式识别实习报告
一、贝叶斯估计做分类【问题描述】实习题目一:用贝叶斯估计做分类。
问题描述:给出试验区裸土加水田的tif图像,要求通过贝叶斯估计算法对房屋、水田及植被进行分类。
问题分析:首先通过目视解译法对图像进行分类,获取裸土、水田和植被的DN值,在此基础上,通过该部分各个类别的面积计算先验概率,然后带入公式进行计算,从而对整个图像进行分类。
【模型方法】与分布有关的统计分类方法主要有最大似然/ 贝叶斯分类。
最大似然分类是图像处理中最常用的一种监督分类方法,它利用了遥感数据的统计特征,假定各类的分布函数为正态分布,在多变量空间中形成椭圆或椭球分布,也就是和中个方向上散布情况不同,按正态分布规律用最大似然判别规则进行判决,得到较高准确率的分类结果。
否则,用平行六面体或最小距离分类效果会更好。
【方案设计】①确定需要分类的地区和使用的波段和特征分类数,检查所用各波段或特征分量是否相互已经位置配准;②根据已掌握的典型地区的地面情况,在图像上选择训练区;③计算参数,根据选出的各类训练区的图像数据,计算和确定先验概率;④分类,将训练区以外的图像像元逐个逐类代入公式,对于每个像元,分几类就计算几次,最后比较大小,选择最大值得出类别;⑤产生分类图,给每一类别规定一个值,如果分10 类,就定每一类分别为1 ,2 ……10 ,分类后的像元值便用类别值代替,最后得到的分类图像就是专题图像. 由于最大灰阶值等于类别数,在监视器上显示时需要给各类加上不同的彩色;⑥检验结果,如果分类中错误较多,需要重新选择训练区再作以上各步,直到结果满意为止。
【结果讨论】如图所示,通过贝叶斯算法,较好地对图像完成了分类,裸土、植被和水田三个类别清晰地判别出来。
在计算先验概率时,选择何种数据成为困扰我的一个问题。
既有ENVI自身提供的精确的先验概率值,也可以自己通过计算各个类别的面积,从而获取大致的先验概率值。
最后,在田老师的讲解下,我知道了虽然数据可能不太精确,但是,计算先验概率时,总体的倾向是一致的,所以在最后判别时,因此而引起的误差是微乎其微的,所以,一定要弄清楚算法原理,才能让自己的每一步工作都有理可循。
模式识别实验报告
模式识别实验报告关键信息项:1、实验目的2、实验方法3、实验数据4、实验结果5、结果分析6、误差分析7、改进措施8、结论1、实验目的11 阐述进行模式识别实验的总体目标和期望达成的结果。
111 明确实验旨在解决的具体问题或挑战。
112 说明实验对于相关领域研究或实际应用的意义。
2、实验方法21 描述所采用的模式识别算法和技术。
211 解释选择这些方法的原因和依据。
212 详细说明实验的设计和流程,包括数据采集、预处理、特征提取、模型训练和测试等环节。
3、实验数据31 介绍实验所使用的数据来源和类型。
311 说明数据的规模和特征。
312 阐述对数据进行的预处理操作,如清洗、归一化等。
4、实验结果41 呈现实验得到的主要结果,包括准确率、召回率、F1 值等性能指标。
411 展示模型在不同数据集或测试条件下的表现。
412 提供可视化的结果,如图表、图像等,以便更直观地理解实验效果。
5、结果分析51 对实验结果进行深入分析和讨论。
511 比较不同实验条件下的结果差异,并解释其原因。
512 分析模型的优点和局限性,探讨可能的改进方向。
6、误差分析61 研究实验中出现的误差和错误分类情况。
611 分析误差产生的原因,如数据噪声、特征不充分、模型复杂度不足等。
612 提出减少误差的方法和建议。
7、改进措施71 根据实验结果和分析,提出针对模型和实验方法的改进措施。
711 描述如何优化特征提取、调整模型参数、增加训练数据等。
712 预测改进后的可能效果和潜在影响。
8、结论81 总结实验的主要发现和成果。
811 强调实验对于模式识别领域的贡献和价值。
812 对未来的研究方向和进一步工作提出展望。
在整个实验报告协议中,应确保各项内容的准确性、完整性和逻辑性,以便为模式识别研究提供有价值的参考和借鉴。
模式识别实验报告
实验一Bayes 分类器设计本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
1实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。
2实验内容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。
3 实验要求1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。
2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。
模式识别实验报告
二、实验步骤 前提条件: 只考虑第三种情况:如果 di(x) >dj(x) 任意 j≠ i ,则判 x∈ωi 。
○1 、赋初值,分别给 c 个权矢量 wi(1)(i=1,2,…c)赋任意的初
值,选择正常数ρ ,置步数 k=1;
○2 、输入符号未规范化的增广训练模式 xk, xk∈{x1, x2… xN} ,
二、实验步骤
○1 、给出 n 个混合样本,令 I=1,表示迭代运算次数,选取 c
个初始聚合中心 ,j=1,2,…,c;
○2 、 计 算 每 个 样 本 与 聚 合 中 心 的 距 离
,
。
若
, ,则
。
○3 、 计 算 c 个 新 的 聚 合 中 心 :
,
。
○4 、判断:若
,
,则 I=I+1,返回
第二步 b 处,否则结束。 三、程序设计
聚类没有影响。但当 C=2 时,该类别属于正确分类。 而类别数目大于 2 时,初始聚合中心对聚类的影响非常大,仿真
结果多样化,不能作为分类标准。 2、考虑类别数目对聚类的影响: 当类别数目变化时,结果也随之出现变化。 3、总结 综上可知,只有预先分析过样本,确定合适的类别数目,才能对
样本进行正确分类,而初始聚合中心对其没有影响。
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
初始聚合中心为(0,0),(2,2),(5,5),(7,7),(9,9)
K-均 值 聚 类 算 法 : 类 别 数 目 c=5 9
8
7
6
5
4
模式识别实验
《模式识别》实验报告班级:电子信息科学与技术13级02 班姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。
2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中。
二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中。
最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。
(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。
(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离。
(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步。
否则,聚类中心的计算步骤结束。
这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。
在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。
(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。
三、实验结果及分析该实验的问题是书上课后习题2.1,以下利用的matlab 中的元胞存储10个二维模式样本X{1}=[0;0];X{2}=[1;1];X{3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4];利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。
模式识别实验一报告
用身高体重数据进行性别分类实验一一.题目要求:1.用dataset1.txt 作为训练样本,用dataset2.txt 作为测试样本,采用身高和体重数据为特征,在正态分布假设下估计概率密度(只用训练样本),建立最小错误率贝叶斯分类器,写出所用的密度估计方法和得到的决策规则,将该分类器分别应用到训练集和测试集,考察训练错误率和测试错误率。
将分类器应用到dataset3 上,考察测试错误率的情况。
(在分类器设计时可以尝试采用不同先验概率,考查对决策和错误率的影响。
)2.自行给出一个决策表,采用最小风险贝叶斯决策重复上面的实验。
二.数据文件:1.dataset1.txt----- 328 个同学的身高、体重、性别数据(78 个女生、250 个男生)(datasetf1:女生、datasetm1:男生)2.dataset2.txt -----124 个同学的数据(40 女、84 男)3.dataset3.txt----- 90 个同学的数据(16 女,74 男)三.题目分析:要估计正态分布下的概率密度函数,假设身高随机变量为X,体重随机变量为Y,二维随机变量(X,Y)的联合概率密度函数是:p x,y=1122{−121−ρ2[x−μ12ς12−2ρx−μ1y−μ2ς1ς2+(y−μ2)2ς22]}其中−∞<x,y<+∞;−∞<μ1,μ2<+∞;ς1,ς2>0;−1≤ρ≤1.并其μ1,μ2分别是X与Y的均值,ς12,ς22,分别是X与Y的方差,ρ是X与Y的相关系数。
运用最大似然估计求取概率密度函数,设样本集中包含N个样本,即X={x1,x2,…x N},其中x k是列向量。
根据教材中公式,令μ=(μ1,μ2)T,则μ=1 Nx kNk=1;协方差矩阵=ς12ρς1ς2ρς1ς2ς22,那么=1N(x kNk=1−μ)(x k−μ)T。
采用最小错误率贝叶斯分类器,设一个身高体重二维向量为x,女生类为ω1,男生类为ω2,决策规则如下:x∈ω1,当Pω1x)>P(ω2|x)ω2,当Pω2x)>P(ω1|x)。
模式识别技术实验报告
模式识别技术实验报告本实验旨在探讨模式识别技术在计算机视觉领域的应用与效果。
模式识别技术是一种人工智能技术,通过对数据进行分析、学习和推理,识别其中的模式并进行分类、识别或预测。
在本实验中,我们将利用机器学习算法和图像处理技术,对图像数据进行模式识别实验,以验证该技术的准确度和可靠性。
实验一:图像分类首先,我们将使用卷积神经网络(CNN)模型对手写数字数据集进行分类实验。
该数据集包含大量手写数字图片,我们将训练CNN模型来识别并分类这些数字。
通过调整模型的参数和训练次数,我们可以得到不同准确度的模型,并通过混淆矩阵等评估指标来评估模型的性能和效果。
实验二:人脸识别其次,我们将利用人脸数据集进行人脸识别实验。
通过特征提取和比对算法,我们可以识别不同人脸之间的相似性和差异性。
在实验过程中,我们将测试不同算法在人脸识别任务上的表现,比较它们的准确度和速度,探讨模式识别技术在人脸识别领域的应用潜力。
实验三:异常检测最后,我们将进行异常检测实验,使用模式识别技术来识别图像数据中的异常点或异常模式。
通过训练异常检测模型,我们可以发现数据中的异常情况,从而做出相应的处理和调整。
本实验将验证模式识别技术在异常检测领域的有效性和实用性。
结论通过以上实验,我们对模式识别技术在计算机视觉领域的应用进行了初步探索和验证。
模式识别技术在图像分类、人脸识别和异常检测等任务中展现出了良好的性能和准确度,具有广泛的应用前景和发展空间。
未来,我们将进一步深入研究和实践,探索模式识别技术在更多领域的应用,推动人工智能技术的发展和创新。
【字数:414】。
模式识别实验报告哈工程
一、实验背景随着计算机科学和信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。
模式识别是指通过对数据的分析、处理和分类,从大量数据中提取有用信息,从而实现对未知模式的识别。
本实验旨在通过实践操作,加深对模式识别基本概念、算法和方法的理解,并掌握其应用。
二、实验目的1. 理解模式识别的基本概念、算法和方法;2. 掌握常用的模式识别算法,如K-均值聚类、决策树、支持向量机等;3. 熟悉模式识别在实际问题中的应用,提高解决实际问题的能力。
三、实验内容本次实验共分为三个部分:K-均值聚类算法、决策树和神经网络。
1. K-均值聚类算法(1)实验目的通过实验加深对K-均值聚类算法的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组二维数据,包括100个样本,每个样本包含两个特征值;② 初始化聚类中心:随机选择K个样本作为初始聚类中心;③ 计算每个样本到聚类中心的距离,并将其分配到最近的聚类中心;④ 更新聚类中心:计算每个聚类中所有样本的均值,作为新的聚类中心;⑤ 重复步骤③和④,直到聚类中心不再变化。
(3)实验结果通过实验,可以得到K个聚类中心,每个样本被分配到最近的聚类中心。
通过可视化聚类结果,可以直观地看到数据被分成了K个类别。
2. 决策树(1)实验目的通过实验加深对决策树的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组具有分类标签的二维数据,包括100个样本,每个样本包含两个特征值;② 选择最优分割特征:根据信息增益或基尼指数等指标,选择最优分割特征;③ 划分数据集:根据最优分割特征,将数据集划分为两个子集;④ 递归地执行步骤②和③,直到满足停止条件(如达到最大深度、叶节点中样本数小于阈值等);⑤ 构建决策树:根据递归分割的结果,构建决策树。
(3)实验结果通过实验,可以得到一棵决策树,可以用于对新样本进行分类。
3. 神经网络(1)实验目的通过实验加深对神经网络的理解,掌握其基本原理和实现方法。
模式识别实验报告2_贝叶斯分类实验_实验报告(例)
end
plot(1:23,t2,'b','LineWidth',3);
%下面是bayesian_fun函数
functionf=bayesian_fun(t2,t1,W1,W2,w1,w2,w10,w20)
x=[t1,t2]';
f=x'*W1*x+w1'*x+w10- (x'*W2*x+w2'*x+w20);
%f=bayesian_fun.m
function f=bayesian_fun(t2,t1,W1,W2,w1,w2,w10,w20)
x=[t1,t2]';
f=x'*W1*x+w1'*x+w10 - (x'*W2*x+w2'*x+w20);
w10=-1/2 * u1'*S1tinv*u1 - 1/2 *log(det(S1t)) + log(pw1);
w20=-1/2 * u2'*S2tinv*u2 - 1/2 *log(det(S2t)) + log(pw2);
t2=[]
fort1=1:23
tt2 = fsolve('bayesian_fun',5,[],t1,W1,W2,w1,w2,w10,w20);
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0 1 0],...
'MarkerSize',10)
模式识别实验报告_3
模式识别实验报告_3第⼀次实验实验⽬的:1.学习使⽤ENVI2.会⽤MATLAB读⼊遥感数据并进⾏处理实验内容:⼀学习使⽤ENVI1.使⽤ENVI打开遥感图像(任选3个波段合成假彩⾊图像,保存写⼊报告)2.会查看图像的头⽂件(保存或者copy⾄报告)3.会看地物的光谱曲线(保存或者copy⾄报告)4.进⾏数据信息统计(保存或者copy⾄报告)5.设置ROI,对每类地物⾃⼰添加标记数据,并保存为ROI⽂件和图像⽂件(CMap贴到报告中)。
6.使⽤⾃⼰设置的ROI进⾏图像分类(ENVI中的两种有监督分类算法)(分类算法名称和分类结果写⼊报告)⼆MATLAB处理遥感数据(提交代码和结果)7.⽤MATLAB读⼊遥感数据(zy3和DC两个数据)8.⽤MATLAB读⼊遥感图像中ROI中的数据(包括数据和标签)9.把图像数据m*n*L(其中m表⽰⾏数,n表⽰列数,L表⽰波段数),重新排列为N*L的⼆维矩阵(其中N=m*n),其中N表⽰所有的数据点数量m*n。
(提⽰,⽤reshape函数,可以help查看这个函数的⽤法)10.计算每⼀类数据的均值(平均光谱),并把所有类别的平均光谱画出来(plot)(类似下⾯的效果)。
11.画出zy3数据中“农作物类别”的数据点(⾃⼰ROI标记的这个类别的点)在每个波段的直⽅图(matlab函数:nbins=50;hist(Xi,nbins),其中Xi表⽰这类数据在第i波段的数值)。
计算出这个类别数据的协⽅差矩阵,并画出(figure,imagesc(C),colorbar)。
1.打开遥感图像如下:2.查看图像头⽂件过程如下:3.地物的光谱曲线如下:4.数据信息统计如下:(注:由于保存的txt⽂件中的数据信息过长,所以采⽤截图的⽅式只显⽰了出⼀部分数据信息)5.设置ROI,对每类地物⾃⼰添加标记数据,CMap如下:6.使⽤⾃⼰设置的ROI进⾏图像分类(使⽤⽀持向量机算法和最⼩距离算法),⽀持向量机算法分类结果如下:最⼩距离算法分类结果如下:对⽐两种算法的分类结果可以看出⽀持分量机算法分类结果⽐最⼩距离算法分类结果好⼀些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样本集合的散布矩阵为:
散布矩阵的特征值和特征向量为:
1000个 三 维 高 斯 分 布 的 三 维 散 点 图
20 样本 第一特征向量 第二特征向量 第三特征向量
15
10
5 20 15 10 5 0 -10 -5 5 0 10
1.6
对集合 X 中的每一个向量 x 进行下面的变换,生成集合 Y
y DX (x mx )
9
0.4 1
生成 1000 个二维样本矢量的数据集合 X,并绘出该样本集合的二维散点图。
散布矩阵的特征值和特征
向量,在二维坐标中,以均值向量为中心,画出每一个特征向量方向的直线,特 征向量方向的直线叠加在二维散点图上。 样本集合的均值向量和散布矩阵为:
1
0.8
0.6
0.4
0.2
0
-0.2 -5
0
5
10
15
20
计算得到的分类器的训练误差:
2.7
实验结果分析
通过对比 fisher 线性判别方法找的最优方向与非最优方向的分类结果,前者 的效果不如后者。由于样本点的个数不能反映真实的误差情况,需要更多的样本 点来验证最优方向的分类效果要好于非最优方向。
-1.9 0.76 -2.1; 0.87 -1.0 -2.6]; w(:,:,2)=[-0.4 0.58 0.089; -0.31 0.27 -0.04; 0.38 0.055 -0.035; -0.15 0.53 -0.35 0.47 0.011; 0.034;
m x 为集合 X 的均值向量,Dx [e1 ,e2 ,e3 ] 为散布矩阵的特征向量,分别绘出
集合 X 和集合 Y 的三维散点图。
集 合 X和 集 合 Y的 三 维 散 点 图
20 15 10 5 0 -5 -10 20 10 0 -5 -10 -10 0 10 5
结论:可以从图中看出,集合 Y 是集合 X 经过平移旋转之后得到的,且其 与集合 X 正交。
从直线上来看,右图比较好,可以很好地将不同类别的样本点分离。 2.1 样本均值 如果 mi 为 d 维样本均值为
mi
那么,投影后的点的样本均值为
1 ni 1
xi
x
t
(7)
mi
1 ni
y
y w n
i
i x
x w t mi
(8)
i
2.2 类内散布矩阵 Si 和总类内散布矩阵 Sw
2.
Fisher 线性判别分析 %fisher 线性判别 w(:,:,1)=[0.42 -0.087 0.58;
-0.2 -3.3 -3.4; 1.3 -0.32 1.7; 0.39 0.71 0.23; -1.6 -5.3 -0.15; -0.029 0.89 -4.7; -0.23 1.9 0.27 -0.3 2.2; -0.87;
类数据看作满足一维高斯分布,求出其均值和方差。并且求出分类决策面(两个 一维高斯分布的交点处) 。 类别 w2 在最优方向 w 投影后数据的均值和方差为:
类别 w3 在最优方向 w 投影后数据的均值和方差为:
最优方向及样本点投影后在直线上的位置
4 3 2 1 0 -1 2 1 0 -1 -1 -2 0 2 1 第 2类 样 本 点 第 3类 样 本 点 最优方向
散布矩阵的特征值和特征向量为:
1000个 二 维 高 斯 分 布 的 二 维 散 点 图 12 样本 第一特征向量 第二特征向量
10
8
6
4
2
0
-2 -6
-4
-2
0
2
4
6
8
10
12
14
1.3
对集合 X 中的每一个向量 x 进行下面的变换,生成集合 Y
y DX (x mx )
m x 为集合 X 的均值向量, Dx [e1 , e2 ] 为散布矩阵的特征向量,分别绘出集
2.
Fisher 线性判别分析
2.1
编写用 Fisher 线性判别方法,对三维数据求最优方向 w 的通用程序。 求最优方向的函数为:fisher()函数 对表格中的类别 w2 和 w3 ,计算最优方向 w 。 类别 w2 和 w3 的最优方向 w 为:
2.2
2.3 2.4
画出表示最优方向 w 的直线,并且标记出投影后的点在直线上的位置。 在这个子空间中,对每种分布用一维高斯函数拟合,即把投影后的每一
2.6
使用非最优方向 w (1.0, 2.0, 1.5)t 重复实验 2.4、2.5 两个步骤,计算在 类别 w2 在最优方向 w 投影后数据的均值和方差为:
这个非最优子空间中的训练误差。
类别 w3 在最优方向 w 投影后数据的均值和方差为:
两类样本投影后的一维高斯分布 1.2 第 2类 投 影 一 维 高 斯 第 3类 投 影 一 维 高 斯 决策面 第 2类 正 确 分 类 第 3类 正 确 分 类
使得类与类之间尽可能分开。 有一组 n 个 d 维的样本 x1 , x 2 , 它们分属于两个不同的类别, 即其中的 , xn , 大小为 n1 的样本属于 1 ,大小为 n2 的样本属于 2 。如果对 x 中的各个成分作线 性组合,就得到点积,结果是一个标量
y wt x
(6)
当 x 是二维的,我们就是要找一条直线(方向为 w)来做投影,然后寻找最 能使样本点分离的直线。如下图:
x m ae a k et (x k m)
(3)
3.1 散布矩阵
S (x k m)(x k m)t
k 1 n
(4)
4.1 直线 e 的最优方向 散布矩阵最大的本征值对应的那个本征向量作为投影直线 e 的方向:
Se e
(5)
2.
Fisher 线性判别分析
Fisher 线性判别是将 n 类 m 维数据尽可能地投影到一个方向(一条直线) ,
, x n ,用一个 d 维的向量 x 0 代表 n 个样本,平方误差准
n 2
J 0 (x 0 ) x 0 x k
k 1
(1)
J 0 (x 0 ) 最小化的那个 d 维的向量 x 0 m ,其中 m 是样本均值:
m 1 n xk n k 1
(2)
2.1 样本投影的直线 通过把全部样本向通过样本均值的一条直线作投影, 我们能够得到代表全部 样本的一个一维向量, e 表示通过样本均值的直线上的单位向量,那么,这条直 线的方程可以表示为:
两类样本投影后的一维高斯分布 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 第 2类 投 影 一 维 高 斯 第 3类 投 影 一 维 高 斯 决策面 第 2类 正 确 分 类 第 3类 正 确 分 类
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
2.5
计算得到的分类器的训练误差。
深圳大学研究生课程:模式识别理论与方法
课程作业实验报告
实验名称 : PCA 主分量分析与 Fisher 线性判别分析 实验编号:Proj03-02 签 姓 学 名: 名: 罗升 号: 2140130418
截止提交日期:2015 年 4 月 20 日
摘要: PCA 主分量分析是把多个特征映射为少数几个综合特征的一种统计分析方法, 其是寻找在最小均方意义下最能够代表原始数据的投影方法。Fisher 线性判别是将 n 类 m 维数据尽可能地投影到一个方向(一条直线),使得类与类之间尽可能分开。 由 PCA 主分量分析实验可以得出, PCA 分析可以对数据集合在特征空间进行平移和 旋转。由 Fisher 线性判别分析实验可以得出,Fisher 线性判别方法可以实现高维数据 在一维中分类,然而通过对比 Fisher 线性判别方法找的最优方向与非最优方向的分类 结果,前者的分类效果不如后者。
附录
1.
PCA 主分量分析
%生成 1000 个二维样本矢量数据集合 mu1=[5 7]; sigma1=[9 0.4;0.4 1]; X1=mvnrnd(mu1,sigma1,1000); plot(X1(:,1),X1(:,2),'.'); title('1000 个二维高斯分布的二维散点图'); grid on; hold on; %计算样本集合的均值向量和散布矩阵,计算散布矩阵的 %特征值和特征向量,并画出每一个特征向量方向的直线 [mu,S,V ,D]=PCA(X1); %生成 1000 个三维样本矢量数据集合 mu2=[4 5 9]; sigma2=[4 0.2 0;0.2 2 0;0 0 0.5]; X2=mvnrnd(mu2,sigma2,1000); scatter3(X2(:,1),X2(:,2),X2(:,3),'.'); title('1000 个三维高斯分布的三维散点图'); grid on; hold on; %计算样本集合的均值向量和散布矩阵,计算散布矩阵的 %特征值和特征向量,并画出每一个特征向量方向的直线 [mu,S,V ,D]=PCA(X2); %计算样本集合的均值向量和散布矩阵,计算散布矩阵的 %特征值和特征向量,并画出每一个特征向量方向的直线 function [mu,S,V ,D] = PCA(X) %r,N 分别为样本集合,样本点数 %mu 为均值向量,S 为散布矩阵,V ,D 为散布矩阵的特征向量和特征值
Si
x
(x m )(x m )
i i
i
t
(9) (10)
Sw S1 S2
2.3 投影后的最佳方向
w Sw1 (m1 m2 )
(11)
二、 实验方法
1.
PCA 主分量分析