二次函数图象的平移和对称 变换专题(无答案)
二次函数图像及图像变换
二次函数图像及图像变换专题1、抛物线y=3x 2+6的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ,当x= 时,取得最 值,这个值等于 。
2、抛物线3-1x 2-y 2)(+=的开口________,对称轴是_________,顶点坐标是_______,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ,当x =____时,函数有最_____值为________。
3、二次函数y=-3(x-4)2的图像是由抛物线y= -3x 2向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y 有最 值,是 .4、将二次函数y=2x 2的图像向左平移3个单位后得到函数 的图像,其对称轴是 ,顶点是 ,当x 时,y 随x 的增大而增大;5、抛物线9x 7y 2-= 与抛物线2x 7y =的__________相同,__________不同;抛物线9x 7y 2-=可由抛物线2x 7y =向_______平移______个单位得到。
6、抛物线42x 31y 2++=)(可以通过将抛物线2x 31y =向 平移 个单位、再向 平移 个单位得到。
7、把抛物线y =12212-+x x 先向 平移 个单位,再向 平移 个单位的抛物线的解析式为5212--=x x y 。
8、(1)将函数42x 31y 2++=)(的图象沿y 轴翻折后得到的函数解析式是 ; (2)将函数42x 31y 2++=)(的图象沿x 轴翻折后得到的函数解析式是 。
9、抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______。
10、若二次函数y =ax 2+4x +a 的最大值是3,则a =______。
11、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )12、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )13、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )14、在同一坐标系中,直线 y=ax+b(a ≠0) 与抛物线y=ax 2+bx+c(a ≠0)的图象可能是 ( )A B C D15、函数y=(x-1)2+k 与y=xk -(k ≠0)在同一坐标系中的大致图象是 ( )A B C D16、二次函数c bx ax y 2++=的图象如图所示,则一次函数ac 4-b bx y 2+=与反比例函数xc b a y ++=在同一坐标系内的图象大致为( )17、二次函数()02≠++=a c bx ax y 的图像如图,则点M (b ,a c )在第_______象限。
专题05二次函数中的平移、旋转、对称(五大题型)解析版
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数图象变换题库-二次函数,专题,中考,提高
二次函数图象变换综合习题一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【习题分类】一、二次函数图象的平移变换【例1】 函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )A. 右移两个单位,下移一个单位B. 右移两个单位,上移一个单位C. 左移两个单位,下移一个单位D. 左移两个单位,上移一个单位【例2】 函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位【例3】 二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( )A. 向左移动1个单位,向上移动3个单位.B. 向右移动1个单位,向上移动3个单位.C. 向左移动1个单位,向下移动3个单位.D. 向右移动1个单位,向下移动3个单位.【例4】 将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .4【例5】 把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.【例6】 对于每个非零自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )A . 20092008B .20082009C .20102009D .20092010【例7】 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .()213y x =--- B .()213y x =-+- C .()213y x =--+D .()213y x =-++【例8】 将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .()221y x =+B .()221y x =-C .221y x =+D .221y x =-【例9】 将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( )A. 232y x =-B. 23y x =C. 23(2)y x =+D. 232y x =+【例10】 一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.【例11】 如图,ABCD 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c=++经过x 轴上的点A ,B .⑴ 求点A ,B ,C 的坐标. ⑵ 若抛物线向上平移后恰好经过点D 【例12】 抛物线254y ax x a =-+与x 轴相交于点A B 、,且过点()54C ,.⑴ 求a 的值和该抛物线顶点P 的坐标.⑵ 请你设计一种平移的方法,使平移后抛物线的 顶点落要第二象限,并写出平移后抛物线的解析式.二、二次函数图象的对称变换【例13】 函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到.【例14】 已知二次函数221y x x =--,求:⑴关于x 轴对称的二次函数解析式;⑵关于y 轴对称的二次函数解析式;⑶关于原点对称的二次函数解析式.【例15】 在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++【例16】 已知二次函数2441y ax ax a =++-的图象是1c .⑴ 求1c 关于()10R ,成中心对称的图象2c 的函数解析式; ⑵ 设曲线12c c 、与y 轴的交点分别为A B ,,当18AB =时,求a 的值.【例17】 已知抛物线265y x x =-+,求⑴ 关于y 轴对称的抛物线的表达式;⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.【例18】 设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.【例19】 对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,我们称这两个二次函数的图象为全等抛物线,现有ABM ∆,()()1010A B -,,,,记过三点的二次函数抛物线为“C”(“□□□”中填写相应三个点的字母).⑴ 若已知()01M ,,ABM ABN ∆∆≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线;⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形.① 若已知()0M n ,,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C”;若不存在,请说明理由.【例20】 已知:抛物线2:(2)5f y x =--+. 试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图, 并求:⑴ x 的值什么范围,抛物线1f 和2f 都是下降的;⑵ x 的值在什么范围,曲线1f 和2f 围成一个封闭图形;⑶ 求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.。
专题二次函数与几何变换
2、在平面直角坐标系中,先将抛物线y=x2+x-2
关于x轴作轴对称变换,再将所得的抛物线关于y
轴作轴对称变换,那么经两次变换后所得的新抛
物线的解析式为( )
A.y=-x2-x+2
B.y=-x2+x-2
(三)、抛物线的旋转
情况一:关于原点成中心对称(即绕原点旋转1800)
例题:若抛物线C:y=ax2+bx+c与抛物线 y=2x2-4x+3关于原点成中心对称,则抛物 线C的解析式为___________。
情况二:关于顶点成中心对称(即绕顶点旋转00)
若抛物线C:y=ax2+bx+c绕顶点旋转180后得 到抛物线y=2x2-4x+3,则抛物线C的解析式 为___________。
C.y=-x2+x+2 D.y=x2+x+2
3、将抛物线l:y=2x2-4x+3沿直线y=-1翻折 得到抛物线l′,则抛物线l′的解析式为 __________
4、已知二次函数y=x2+4x+3的顶点为A,与y 轴交于点B,作它关于以P(1,0)为中心的中 心对称的图象顶点为C,交y轴于点D,则四边 形ABCD面积为
(二)、抛物线的轴对称
情况一:关于x轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线y=2x24x+3关于x轴对称,则抛物线C的解析式为 ___________。
情况二:关于y轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线 y1=x2-4x+1关于y轴对称,则抛物线C的解析式 为___________。
专题8 二次函数的图象抛物线与三大几何变换(原卷版)-2024-2025学年九年级数学上册提优专题及
专题8 二次函数的图象抛物线与三大几何变换(原卷版)类型一抛物线与平移1.(2023•牡丹江)将抛物线y=(x+3)2向下平移1个单位长度,再向右平移个单位长度后,得到的新抛物线经过原点.2.(2023•青岛)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y轴上,坐标原点O为伞骨OA,OB的交点.点C为抛物线的顶点,点A,B在抛物线上,OA、OB关于y轴对称.OC =1分米,点A到x轴的距离是0.6分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长AO,BO交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为S1,将抛物线向右平移m(m>0)个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为S2.若S2=35S1,求m的值.4.(2023•常州)如图,二次函数y=12x2+bx﹣4的图象与x轴相交于点A(﹣2,0),B,其顶点是C.(1)b=;(2)D是第三象限抛物线上的一点,连接OD,tan∠AOD=52.将原抛物线向左平移,使得平移后的抛物线经过点D,过点(k,0)作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知△PCQ是直角三角形,求点P的坐标.4.(2023•绥化)如图,抛物线y1=ax2+bx+c的图象经过A(﹣6,0),B(﹣2,0),C(0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式;(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标;如果不存在,请说明理由;(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为m.过点P作PD⊥NC于点D,求m为何值时,CD+12PD有最大值,最大值是多少?5.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.类型二抛物线与翻折6.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=94,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A 的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.7.(2023•德阳)已知:在平面直角坐标系中,抛物线与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式;(2)如图1,如果把抛物线x轴下方的部分沿x轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=kx+6与新图象有三个公共点时,求k的值;8.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.类型三二次函数与旋转9.(2023•平昌县校级模拟)如图,抛物线C1:y=x2﹣2x(0≤x≤2)交x轴于O,A两点;将C1绕点A旋转180°得到抛物线C2,交x轴于A1;将C2绕点A1旋转180°得到抛物线C3,交x轴于A2,…,如此进行下去,则抛物线C10的解析式是()A.y=﹣x2+38x﹣360B.y=﹣x2+34x﹣288C.y=x2﹣36x+288D.y=﹣x2+38x+36010.(2023•青秀区校级模拟)将抛物线y=2(x﹣1)2+3绕原点旋转180°,旋转后的抛物线解析式为()A.y=﹣2(x﹣1)2+3B.y=2(x+1)2﹣3C.y=﹣2(x+1)2﹣3D.y=2(x﹣1)2﹣311.(2023•岳阳县二模)在平面直角坐标系中,将抛物线∁l:y=2x2﹣(m+1)x+m绕原点旋转180°后得到抛物线C2,在抛物线C2上,当x<1时,y随x的增大而增大,则m的取值范围是()A.m≥5B.m≤5C.m≥﹣5D.m≤﹣512.(2023•高青县二模)边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为.13.(2023•高新区模拟)如图,抛物线y=12x2−32x−2与x轴交于A,B两点,抛物线上点C的横坐标为5,D点坐标为(3,0),连接AC,CD,点M为平面内任意一点,将△ACD绕点M旋转180°得到对应的△A′C′D′(点A,C,D的对应点分别为点A′,C′,D′),若△A′C′D′中恰有两个点落在抛物线上,则此时点C'的坐标为(点C'不与点A重合).14.(2023•静安区校级一模)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+32bx﹣2与y=﹣x2−14cx+c(b、c是常数)互为“旋转函数”,写出点P(b,c)的坐标.15.(2022秋•连云港期末)已知二次函数y=ax2+c的图象经过点(8,10),(−2,52 ).(1)求二次函数的表达式;(2)点P为二次函数图象上一点,点F在y轴正半轴上,将线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,求点P的坐标.16.(2023•郸城县二模)如图1,抛物线y1=ax2+bx+c分别交x轴于A(﹣1,0),B(3,0)两点,且与y 轴交于点C(0,﹣3).(1)求抛物线的表达式及顶点P的坐标.(2)如图2,将该抛物线绕点(4,0)旋转180°.①求旋转后的抛物线的表达式;②旋转后的抛物线顶点坐标为Q,且与x轴的右侧交于点D,顺次连接A,P,D,Q,求四边形APDQ的面积.17.(2023•鞍山二模)如图,抛物线C1:y=x2+bx+c与y轴交于点D(0,﹣3),与x轴交于A(﹣3,0),B两点,顶点为H.(1)求抛物线的解析式;(2)将抛物线C1:y=x2+bx+c平移后得到抛物线C2,且抛物线C2的顶点P(m,n)始终在抛物线C1上,①当点P在第一象限时,抛物线C2与y轴交于点E,若△PED的面积为6m时,直接写出P点坐标;②将平移后的抛物线C2绕点P旋转180°得到抛物线C3,抛物线C3与直线BH交于点M(M与H不重合),与y轴交于点N,连接MN,NH,若∠MNH=15°,求直线NH的解析式.18.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥y轴,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.。
专题5.4 求二次函数解析式常考类型(六大题型)(原卷版)
专题5.4 求二次函数解析式常考类型(六大题型)【题型1 开放型】【题型2 一般式】【题型3 顶点式】【题型4两根式】【题型5平移变换型】【题型6 对称变换型】【题型1 开放型】【典例1】(2023秋•海淀区期中)写出一个顶点在坐标原点,开口向下的抛物线的表达式.【变式1-1】(2023秋•昌平区期中)请写出一个开口向下,对称轴为直线x=3的抛物线的解析式.【变式1-2】(2022秋•伊川县期末)请写出一个开口向上,并且与y轴交于点(0,2)的抛物线的表达式:.【变式1-3】(2023•苏州二模)已知抛物线顶点坐标为(2,3),则抛物线的解析式可能为()A.y=﹣(x+2)2﹣3B.y=﹣(x﹣2)2﹣3C.y=﹣(x+2)2+3D.y=﹣(x﹣2)2+3【题型2 一般式】【方法点拨】当题目给出函数图像上的三个点时,设为一般式2=++(a,y ax bx ca≠),转化成一个三元一次方程组,以求得a,b,c的值;b,c为常数,0【典例2】(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.【变式2-1】(2022秋•新罗区校级月考)求经过A(﹣1,﹣5)、B(0,﹣4)、C(1,1)三点的抛物线的表达式?【变式2-2】(2023春•海淀区校级期末)已知抛物线y=2x2+bx+c过点(1,3)和(﹣1,5),求该抛物线的解析式.【变式2-3】(2023秋•崆峒区校级月考)已知二次函数过点A(﹣1,2),B(1,﹣4),C(0,3)三点,求这个二次函数的解析式.【变式2-4】(2023秋•博乐市月考)已知抛物线y=﹣x2+bx+c经过A(﹣1,0),B(5,0)两点,顶点为P.(1)求抛物线的解析式;(2)求△ABP的面积.【方法点拨】若已知抛物线的顶点或对称轴、最值,则设为顶点式()k-=2.这顶点坐标为(h,k),对称轴直线x = h,最值为当x = h y+axh时,y最值=k来求出相应的系数.【典例3】(2023秋•龙马潭区月考)若抛物线的顶点坐标是A(﹣1,﹣3),并且抛物线经过点B坐标为(1,﹣1).(1)求出该抛物线的关系式;(2)当x满足什么条件时,y随x的增大而增大.【变式3-1】(2023秋•临潼区月考)已知二次函数的图象顶点为P(﹣2,2),且过点A(0,﹣2).(1)求该抛物线的解析式;(2)试判断点B(1,﹣6)是否在此函数图象上.【变式3-2】(2023秋•越秀区校级月考)已知二次函数图象的顶点坐标为A(2,﹣3),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(3,﹣4)、D(1,0)是否在该函数图象上,并说明理由.【方法点拨】已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.【典例4】(2023•荔湾区校级一模)如图,二次函数y =ax 2+bx +c 经过点A (﹣1,0),B (5,0),C (0,﹣5),点D 是抛物线的顶点,过D 作x 轴垂线交直线BC 于E .(1)求此二次函数解析式及点D 坐标.(2)连接CD ,求三角形CDE 的面积.(3)ax 2+bx +c >0时,x 的取值范围是 .【变式4-1】(2023秋•广西月考)若二次函数的图象经过(﹣1,0),(3,0),(0,3)三点,求这个二次函数的解析式.【变式4-2】(2023秋•长沙月考)已知二次函数y =ax 2+bx +c 的图象经过点A (0,﹣3)、(1,0)和C (﹣3,0).求此二次函数的解析式.【变式4-3】(2023•南山区三模)如图,抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0),且OB=OC.(1)求抛物线的表达式;(2)如图,点D是抛物线的顶点,求△BCD的面积.【题型5平移变换型】【方法点拨】将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x – h)2 + k,当图像向左(右)平移n个单位时,就在x – h上加上(减去)n;当图像向上(下)平移m个单位时,就在k上加上(减去)m.其平移的规律是:h值正、负,右、左移;k值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a得值不变.【典例5】将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,求平移后的抛物线解析式.【变式5-1】(2022秋•洪山区期中)将二次函数y=(x﹣1)2﹣4的图象沿直线y=1翻折,所得图象的函数表达式为()A.y=﹣(x﹣1)2+4B.y=(x+1)2﹣4C.y=﹣(x+1)2﹣6D.y=﹣(x﹣1)2+6【变式5-2】(秋•普陀区校级期中)将抛物线y=2x2先向下平移3个单位,再向右平移m(m>0)个单位,所得新抛物线经过点(1,5),求新抛物线的表达式及新抛物线与y轴交点的坐标.【变式5-3】已知a+b+c=0且a≠0,把抛物线y=ax2+bx+c向下平移一个单位长度,再向左平移5个单位长度所得到的新抛物线的顶点是(﹣2,0),求原抛物线的表达式.【变式5-4】抛物线y=x2+2x﹣3与x轴正半轴交于A点,M(﹣2,m)在抛物线上,AM交y轴于D点,抛物线沿射线AD方向平移√2个单位,求平移后的解析式.【题型6 对称变换型】【方法点拨】根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.【典例6-1】(2022秋•上城区月考)已知y=﹣3(x﹣2)2﹣7将它的图象沿着x轴对折后的函数表达式是.【典例6-2】(2022秋•汉阳区校级月考)抛物线y=x2﹣6x+7绕其顶点旋转180°后得到抛物线y=ax2+bx+c,则a=,b=,c=.【变式6-1】(2022秋•萧山区月考)抛物线y=(x+3)2﹣4关于y轴对称的抛物线解析式为.【变式6-2】(2022秋•汉川市月考)若抛物线y=ax2+c与y=﹣4x2+3关于x轴对称,则a+c=.【变式6-3】(2021秋•镇海区期末)把二次函数y=(x﹣1)2+2的图象关于y 轴对称后得到的图象的函数关系式为.【变式6-4】(2021秋•闽侯县期中)二次函数y=2(x﹣3)2+1图象绕原点旋转180°得新图象的解析式为.【变式6-5】(2023•雁塔区校级三模)已知抛物线L:y=x2+bx+c经过点A(﹣2,0),点B(4,﹣6).抛物线L′与L关于x轴对称,点B在L'上的对应点为B′.(1)求抛物线L的表达式;(2)抛物线L'的对称轴上是否存在点P,使得△AB′P是以AB′为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.【变式6-6】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.。
专题14二次函数的图象与性质(讲练)-2023年中考一轮复习(原卷版)
2023年中考数学总复习一轮讲练测()专题14二次函数的图象与性质(讲练)1.理解二次函数的意义,掌握二次函数的表达式,熟练应用待定系数法求二次函数的表达式;2.会画二次函数的图象,掌握二次函数的性质1.二次函数的定义:一般地,形如(其中a,b,c是常数,a≠0)的函数叫做二次函数.2.二次函数的三种表达式:(1)一般式:(a,b,c是常数,a≠0).(2)顶点式:(a,h,k是常数,a≠0),顶点坐标是.(3)交点式:(a,x1,x2是常数,a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图象的对称轴为直线.3.二次函数的图象与性质:二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0时,抛物线的开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.当a<0时,抛物线开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.该抛物线的对称轴是直线,顶点坐标是4.二次函数的图象的平移:平移规律:左右平移由h值决定:左加右减;上下平移由k值决定:上加下减.二次函数与x轴交点情况5.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.考点一、二次函数的定义例1(2022秋•义乌市月考)若函数y=是二次函数,即m的值是()A.﹣1B.﹣1或3C.2D.3【变式训练】1.(2022•苏州模拟)下列各式中,y是关于x的二次函数的是()A.y=4x+2B.y=ax2+1C.y=3x2+5﹣4x D.y=2.(2021秋•林口县期末)是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣13.(2022秋•禹州市期中)若函数y=(m﹣3)x|m|﹣1+5是关于x的二次函数,则m=()A.﹣3B.3C.3或﹣3D.2考点二、二次函数的图象例2(2022秋•舟山月考)在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.【变式训练】1.(2022秋•巧家县期中)直线y=ax+b与抛物线y=ax2+bx+2在同一平面直角坐标系中的图象可能是()A.B.C.D.2.(2022秋•洪山区校级月考)在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.3.(2022秋•凉州区校级月考)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()A.B.C.D.考点三、二次函数的性质例3(2022秋•淳安县期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a>0)的图象经过点(﹣2,0)和(2,3),该函数图象的对称轴为直线x=m,则下列说法正确的是()A.0<m≤2B.m<0C.m>0D.﹣2≤m<0【变式训练】1.(2021秋•新会区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表.下列结论错误的是()x…﹣10123…y…03430…A.函数图象开口向下B.当x=1时,y取最大值4C.对称轴是直线x=1D.当x>1时,y的值随x的增大而增大2.(2021秋•孝义市期末)对于二次函数y=﹣x2﹣2x+m(m为常数),当y随x的增大而减小时,x的取值范围是()A.x>﹣1B.x>﹣2C.x>1D.x>03.(2021秋•榆阳区期末)如表中所列的x,y的5对值是二次函数y=ax2+bx+c的图象上的点所对应的坐标:x…﹣2﹣1034…y…1163611…若(x1,y1),(x2,y2)是该函数图象上的两点,根据表中信息,以下说法正确的是()A.该函数的最小值为3B.这个函数图象的开口向上C.当x1<x2时,y1<y2D.当y1>y2时,x1<x24.(2022春•沙坪坝区校级月考)一列自然数0,1,2,3,⋯,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()①当原数取50时,原数与对应新数的差最大②原数与对应新数的差不可能等于零③原数与对应新数的差,随着原数的增大而增大④当原数与对应新数的差等于21时,原数等于30和70A.①②B.①③C.①④D.②③考点四、二次函数的图象与系数关系例4(2022•金华模拟)已知二次函数y=ax2+bx+c的图象如图所示,与x轴有个交点(﹣1,0),有以下结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(其中m≠1).其中所有正确结论的个数是()A.3个B.2个C.1个D.0个【变式训练】1.(2021秋•昌吉市校级期末)已知抛物线y=ax2+bx+c(a=0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a>0B.b<0C.c<0D.a+b+c>02.(2022春•成都月考)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法不正确的是()A.abc<0B.2a﹣b=0C.3a+c=0D.若(﹣5,y1),(3,y2)是抛物线上两点,y1>y23.(2022•东港区校级二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣1,则下列结论:①abc>0,②a+b<﹣c,③4a﹣2b+c>0,④3b+2c<0,⑤a﹣b>m(am+b)(其中m为任意实数).中正确的个数是()A.2个B.3个C.4个D.5个考点五、二次函数的点的坐标特征例5(2022秋•宁波月考)已知点(﹣1,y1),(﹣2,y2),(﹣4,y3)在二次函数y=﹣2x2﹣8x+c的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【变式训练】1.(2022春•九龙坡区校级月考)已知A(﹣,y1),B(,y2),C(﹣,y3)是二次函数y=﹣x2+4x ﹣k的图象上的三点,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y22.(2022秋•范县期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a(x+1)2+k(a>0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23.(2022秋•林州市校级月考)在函数y=x2﹣2x+a(a为常数)的图象上有三个点(﹣1,y1),(﹣2,y2),(1,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y34.(2022秋•闽清县校级月考)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论中,不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两个角为45°C.存在实数k,使得△ABC为直角三角形D.存在实数k,使得△ABC为等边三角形考点六、二次函数与几何变换例6(2022秋•拱墅区校级期中)抛物线y=x2﹣4x+3可以由抛物线y=x2平移得到,则下列平移方法正确的是()A.先向左平移2个单位,再向上平移7个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移7个单位D.先向右平移2个单位,再向下平移1个单位【变式训练】1.(2022•珙县模拟)抛物线y=x2+4x﹣1的顶点坐标向上平移一个单位后,再向右平移一个单位后的坐标为()A.(4,﹣1)B.(2,﹣1)C.(﹣1,﹣4)D.(1,﹣4)2.(2022秋•庐阳区校级期中)将抛物线y=x2先向右平移4个单位,再向下平移3个单位,所得抛物线表达式为()A.y=(x﹣4)2﹣3B.y=(x﹣4)2+3C.y=(x+4)2+3D.y=(x+4)2﹣33.(2022秋•林州市月考)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经过变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度4.(2022秋•林州市校级月考)将抛物线y=(x+1)2的图象位于直线y=4以上的部分向下翻折,得到如图图象,若直线y=x+m与此图象只有四个交点,则m的取值范围是()A.B.C.D.考点七、二次函数的最值例7(2022秋•萧山区月考)已知非负数a,b,c,满足a﹣b=2且c+3a=9,设y=a2+b+c的最大值为m,最小值为n,则m﹣n的值是()A.1B.2C.3D.4【变式训练】1.(2022秋•宁明县月考)二次函数y=﹣(x+2)2﹣5的最大值是()A.5B.﹣5C.2D.﹣22.(2022秋•思明区校级期中)已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A.函数有最小值1,有最大值3B.函数有最小值﹣1,有最大值0C.函数有最小值﹣1,有最大值3D.函数有最小值﹣1,无最大值3.(2022秋•番禺区校级期中)二次函数y=﹣x2﹣2x+c2﹣2c在﹣3≤x≤2的范围内有最小值为﹣5,则c的值()A.3或﹣1B.﹣1C.﹣3或1D.3考点八、二次函数与坐标轴交点例8(2022秋•舟山期中)在研究函数图象的性质时,若将自变量x变为|x|,则函数图象变化为:保留y轴右侧的图象,y轴左侧的图象变为右侧图象关于y轴的对称图形.已知抛物线y=﹣x2+2x+3的图象,则对于y=﹣x2+2|x|+3,当y>0时,x的取值范围是()A.﹣1<x<3B.﹣1<x<1C.﹣3<x<3D.x<﹣1或x>3【变式训练】1.(2022秋•庐阳区校级期中)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.﹣B.﹣4C.D.42.(2022•海陵区校级三模)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①若y≥c,则x≤﹣2或x≥0;②b+c=m.其中正确的是()A.①B.②C.都对D.都不对3.(2022秋•庐阳区校级期中)已知二次函数y=﹣x2+bx+c的图像与x轴的两个交点分别是(﹣n,0)和(n+2,0),且抛物线还经过点(2,y1)和(﹣2,y2),则下列关于y1,y2的大小关系判断正确的是()A.y1=y2B.y1>y2C.y1<y2D.y1与y2的大小无法比较考点九、二次函数与方程不等式例9(2022秋•桐庐县期中)若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为()A.x<1或x>3B.x>3C.x<﹣1D.x<3或x>5【变式训练】1.(2022秋•朝阳区校级期中)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.42.(2022•罗庄区二模)如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,有以下结论:①b2﹣4c>0;②3b+c+6=0;③当1<x<3时,x2+(b﹣1)x+c<0;④当x>2时,x2+bx+c>.其中正确的个数是()A.1B.2C.3D.43.(2021秋•微山县期末)如图,二次函数y=x2﹣2x﹣3的图象与一次函数y=x+b的图象相交于点A,B.若点A的坐标是.那么不等式x2﹣2x﹣3<x+b的解集是()A.B.或C.﹣1<x<3D.x<﹣1或x>34.(2021秋•梁山县期末)如图是抛物线图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;其中正确的是()A.①②③B.①③④C.②④⑤D.①③⑤考点十、待定系数法求二次函数解析式例10(2022秋•温州校级月考)如图,抛物线的顶点坐标为(1,﹣4),且图象经过点(3,0).(1)求抛物线的表达式;(2)若在y轴正半轴上取一点P(0,m),过点P作x轴的平行线,分别交抛物线于A,B两点(A在B 点左侧),若P A:PB=1:2,求m的值.【变式训练】1.(2022秋•林州市月考)如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m的值;(2)求抛物线的解析式.2.(2022秋•朝阳区校级月考)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(6,0)两点.(1)请求出抛物线的解析式;(2)当0<x<4时,请直接写出y的取值范围.3.(2022秋•宁明县月考)已知抛物线经过点(3,﹣1),顶点坐标为(2,﹣2).(1)求抛物线对应的函数表达式;(2)若点P(t,y1),(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标.4.(2022秋•西城区校级月考)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣101 2.53…y=ax2+bx+c…m1﹣2n﹣2…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)求此二次函数的解析式;(3)在(2)条件下,求当﹣1≤x≤3.8时,函数值y的取值范围.考点十一、二次函数的推理计算与证明例11(2022秋•西湖区月考)设二次函数y=(x+1)(ax+2a+2)(a是常数,a≠0).(1)若a=1,求该函数图象的顶点坐标.(2)若该二次函数图象经过(﹣1,1),(﹣2,3),(0,﹣2)三个点中的一个点,求该二次函数的表达式.(3)若二次函数图象经过(x1,y1),(x2,y2)两点,当x1+x2=2,x1<x2时,y1>y2,求证:a<﹣.【变式训练】1.(2022•永嘉县模拟)已知二次函数y=2x2﹣bx+c的图象经过A(1,n),B(3,n).(1)用含n的代数式表示c.(2)若二次函数y=2x2﹣bx+c的最小值为,求n的值.2.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.3.(2021•河西区一模)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(Ⅲ)若该函数的图象不经过第三象限,当﹣3≤x≤4时,函数的最大值与最小值之差为40,求b的值.。
二次函数图像对称变换前后系数的关系(专题)
二次函数图像对称变换前后系数的关系课时学习目标:1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。
2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。
3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。
学习重点:利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。
学习难点:利用图像认识总结函数性质变化规律。
一、复习预备1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。
2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。
3.已知函数y= x 2 -2x -3 ,(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。
例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个.二、归纳二次函数y=ax2+bx+c(a≠0)的图像2-的关系与系数a、b、c、acb4三、二次函数图像对称变换前后系数的关系探究例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。
二次函数平移、旋转、轴对称变换汇总
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
2024年九年级数学中考专题:二次函数平移对称旋转 课件
(x,y +b)
(x,y -b)
口诀:上加下减,左减右加
坐
标
旋
转
变
换
一、坐标平移旋转对称
点(x,y) 绕着(m,n)旋转180° ,求旋转后的
点的坐标?
中点坐标公式:
A(1 , 1 ), B(2 , 2 ),
1 +2 1 +2
AB中点 (
,
)
2
2
旋转后的点的坐标( − ,2n-y)
中考专题:
二次函数平移旋转对称
目录
一
二
三
坐标平移旋
转对称
二次函数
表达式
例题讲解
四
方法归纳
五
学以致用
一、坐标平移
旋转对称
坐
标
平
移
变
换
一、坐标平移旋转对称
x轴 向左平移a个单位(x,y)
向右平移a个单位(x,y)
(x-a,y)
(x+a,y)
y轴 向上平移b个单位(x,y)
向下平移b个单位(x,y)
坐
标
对
称
变
换
一、坐标平移旋转对称
关于x轴对称 (x,y)
关于y轴对称 (x,y)
(x, -y)
(- x, y)
口诀:关于谁对称,谁不变,另一个互为相反数
关于原点O对称 (x,y部互为相反数
二 、二次函数
表达式
二、二次函数表达式
一般式:y = 2 + + ( ≠ 0, , 均为常数)
变式2
(3)抛物线2 与抛物线1 关于原点O对称,求抛物线 2 的表达
式
三、例题讲解
二次函数图象的平移和对称变换
2二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。
所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。
利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。
下面由具体的例子进行说明。
一 、 平 移 。
例1、 把抛物线 y=x -4x+6 向左平移 3 个单位,再向下平移 4 个单位后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0, 6),( 1, 3),( 2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3 个单位,再向下平移4 个单位后得到三个新点( -3 , 2),( -2 , -1 ),(-1 ,-2 ),把这三个新点代入到新的函数关 系式的一般形式 y=ax 2+bx+c 中,求出各项系数即可。
例 2、已知抛物线 y=2x 位,求其解析式。
法(二)2-8x+5, 求其向上平移 4 个单位,再向右平移 3 个单先利用配方法把二次函数化成y a( x h)2 k 的形式,确定其顶点( 2,-3 ),然后把顶点( 2, -3 )向上平移 4 个单位,再向右平移 3 个单位后得到新抛物线的顶点为( 5, 1),因为是抛物线的平移,因此平移前后 a 的值应该相等,这样我们就得到新的抛物线的解析式中 a=2,且顶点为( 5, 1),就可以求出其解析式了。
22222【平移规律:在原有函数的基础上“左加右减、上加下减”】 .法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为 “左右平移即把解析式中自变量 x 改为 x 加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。
二次函数中的平移、翻折、对称、旋转、折叠问题
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
高一数学专题:图像平移对称翻折变换(含答案)
图像平移、对称翻折变换(时间:40分钟出题人:金伟审题人:)一、单选题(本大题共7小题,共35.0分。
在每小题列出的选项中,选出符合题目的一项)1.将二次函数y=−12x2向左平移1个单位,再向下平移1个单位,得到的图像的解析式为( )A. y=−12(x+1)2−1 B. y=−12(x−1)2+1C. y=−12(x+1)2+1 D. y=−12(x−1)2−12.函数y=x|x|的图像大致是( )A. B.C. D.3.函数f(x)=x2−2|x|的图像是( )A. B.C. D.4.已知定义在区间(0,2)上的函数y=f(x)的图像如图所示.则y=−f(2−x)的图像为( )A.B.C.D.5.函数f(x)=|x+1|+1的图像是( )A. B.C. D.6. 把函数y =−1x 的图象向左平移1个单位再向上平移1个单位后,所得函数的图像应为( )A. B.C. D.7. 在平面直角坐标系中,先将抛物线y =x 2+2x −3关于原点作中心对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经过两次变换后所得的新抛物线的解析式为( )A. y =−x 2+2x −3B. y =−x 2+2x +3C. y =−x 2−2x +3D. y =x 2+2x +3二、多选题(本大题共1小题,共5.0分。
在每小题有多项符合题目要求) 8. 下列关于函数f(x)=1|x|+1的叙述正确的是( )A. f(x)的定义域为{x|x ≠0},值域为{y|y ≥1}B. f(x)的图象关于y 轴对称C. 当x ∈[−1,0)时,f(x)有最小值2,但没有最大值D. 函数g(x)=f(x)−x 2+1有2个零点第II 卷(非选择题)三、填空题(本大题共2小题,共10.0分)9. 要得到函数y =f(−2x)的图像,只需将函数y =f(−2x +4)的图像向 平移 个单位.10. 已知y =f(x)的图像如图①,则y =f(−x)的图像是 ;y =−f(x)的图像是 ;y =f(|x|)的图像是 ;y =|f(x)|的图像是 .四、解答题(本大题共3小题,共36.0分。
二次函数图像平移专题训练(含解析)
二次函数图像平移专题训练(含解析)一、单选题1.将直线向上平移2个单位,相当于()A.向左平移2个单位B.向左平移1个单位C.向右平移2个单位D.向右平移1个单位2.抛物线y=(x+2)2+1可由抛物线y=x2平移得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位3.抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移5个单位B.向左平移1个单位,再向上平移5个单位C.向右平移1个单位,再向下平移5个单位D.向右平移1个单位,再向上平移5个单位4.若抛物线平移得到,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位二、填空题5.在平面直角坐标系中,将点M(2,3)向左平移3个单位,再向下平移2个单位,则平移后的点的坐标是.6.抛物线向右平移1个单位,再向上平移2个单位,平移后的抛物线的顶点坐标是.7.平移抛物线y=2x2,使其顶点为(2,3),平移后的抛物线是8.将抛物线向上平移个单位,再向右平移个单位,则平移后的抛物线为.9.把抛物线向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式为.10.如果将抛物线先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为.11.把抛物线y=先向上平移2个单位长度,再向左平移1个单位长度,则平移后抛物线的解析式是.12.将抛物线向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.答案解析部分1.【答案】B【解析】【解答】解:将直线向上平移2个单位,可得函数解析式为:直线向左平移2个单位,可得故A不符合题意;直线向左平移1个单位,可得故B符合题意;直线向右平移2个单位,可得故C不符合题意;直线向右平移1个单位,可得故D不符合题意.故答案为:B.【分析】一次函数y=kx+b向左平移m(m>0)个单位长度,得到的新一次函数的解析式为y=k(x+m)+b;一次函数y=kx+b向右平移m(m>0)个单位长度,得到的新一次函数的解析式为y=k(x-m)+b;一次函数y=kx+b向上平移m(m>0)个单位长度,得到的新一次函数的解析式为y=kx+b+m;一次函数y=kx+b向下平移m(m>0)个单位长度,得到的新一次函数的解析式为y=kx+b-m,据此一一判断得出答案.2.【答案】C【解析】【解答】解:根据题意将y=x2向左平移2个单位再向上平移1个单位即可得y=(x+2)2+1,故答案为:C【分析】根据抛物线平移的性质:左加右减,上加下减的原则求解即可。
二次函数的表达式,图象平移对称变换问题
二次函数的表达式,图象的平移对称变换问题一、待定系数法求二次函数表达式:1、已知图象过三点,求二次函数的解析式,一般用它的一般形式:较方便。
利用图象上三个点的坐标代入二次函数的基本形式 y =ax 2 +bx +c ,组成三元一次方程组进行求解。
2、已知顶点坐标,对称轴、最大值或最小值,求二次函数解析式,一般用它的顶点式较方便。
解题时要注意“顶点”的灵活性,题目中不一定直接给出,要根据已知转化为顶点,方可使用。
下面几道题目都是可用这一方法求解二次函数的解析式。
①已知一条抛物线,当 x =3时,y 有最小值-2,并且经过点(5,0); ②若抛物线的对称轴是x =1,函数有最大值4 ,并且经点(0,3);③二次函数的最小值为-10,当x ≤-1时,函数y 随着x 的增大而减小;当x ≥-1时,函数y 随着x 的增大而增大;并且经过点 (2,8) ;④抛物线与 x 轴有且只有一个公共点(2,0) ,并且交y 轴于(0,2)点。
⑤若抛物线的对称轴是x =2, 并且经过点(3,8),与x 轴的两个交点的距离为6。
3、已知图象与轴两交点坐标,可用的形式,其中、为抛物线与轴的交点的横坐标,也是一元二次方程的两个根。
二、二次函数图象的平移变换: (1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”,“上加下减”。
)0(2≠++=a c bx ax y n m x a y +-=2)(x ))((21x x x x a y --=1x 2x x )0(02≠=++a c bxax三、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; 4. 关于顶点对称()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.一、待定系数法求二次函数表达式1、已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。
专题—二次函数图像平移对称与旋转PPT课件
小试牛刀
1.将抛物线y=-3x2的图象向右平移1个单位,再向下
平移2个单位后,则所得抛物线解析式为
A
A.y=-3x-12-2; B.y=-3x-12+2;
C.y=-3x+12-2; D.y=-3x+12+2.
2.将二次函数y=-2x2+4x+6的图象向左平移1个单 位,再向下平移2个单位,求平移后的解析式
简称上加下减
沿x轴平移
向左平移m个单位: 二次函数y=ax-h2+ka ≠0变为______y_=a_x_-_h+m2+k 二次函数y=ax2+bx+ca≠0变为 _y_=_a_x_+m__2+_b_x_+m+c
向右平移m个单位: 二次函数y=ax-h2+ka ≠0变为_____y_=_a_x_-h_-m2+k 二次函数y=ax2+bx+ca≠0 变为 __y_=_a_x-_m_2_+_b_x-m+c
A. y=2x-22+2 B. y=2x+22-2 C. y=2x-22-2 D. y=2x+22+2 分析: 若抛物线不动,把x、y轴分别向上、向右平移2 个单位相当于将该抛物线在原坐标系内向下再向左平移 两个单位,由此可得该抛物线在x、y平移后得解析式为 y=2x+22-2 答案:B
图像对称
对称点的坐标规律:
二次函数图像平移,对称与旋转
图像平移
沿Y轴平移
向上平移n个单位: 二次函数y=ax-h2+ka ≠0变为_____y_=_a_x_-h_2_+k+n 二次函数y=ax2+bx+ca≠0变为 ___y_=_a_x_2_+_bx_+_c+n 向下平移n个单位: 二次函数y=ax-h2+ka ≠0变为_____y_=_a_x_-h_2_+k-n 二次函数y=ax2+bx+ca≠0 变为 ____y_=a_x_2_+b_x_+_c-n
专题1.2 二次函数的图象【六大题型】(举一反三)(浙教版)(解析版)
专题1.2 二次函数的图象【六大题型】【浙教版】【题型1 二次函数的配方法】 (1)【题型2 二次函数的五点绘图法】 (4)【题型3 二次函数的图象与各系数之间的关系】 (9)【题型4 二次函数图象的平移变换】 (12)【题型5 二次函数图象的对称变换】 (14)【题型6 利用对称轴、顶点坐标公式求值】 (16)【题型1 二次函数的配方法】【例1】(2022秋•饶平县校级期末)用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=12x2﹣2x+3=12(x﹣2)2+1,开口向上,对称轴是直线x=2,顶点坐标(2,1);(2)y=(1﹣x)(1+2x)=﹣2x2+x+1=﹣2(x―14)2+98,开口向下,对称轴是直线x=14,顶点坐标(14,98).【变式1-1】(2022•西华县校级月考)用配方法确定下列二次函数图象的对称轴与顶点坐标.(1)y=2x2﹣8x+7;(2)y=﹣3x2﹣6x+7;(3)y=2x2﹣12x+8;(4)y=﹣3(x+3)(x﹣5).【分析】(1)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(2)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(3)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标;(4)利用配方法表示解析式配成顶点式,然后根据二次函数的性质写出抛物线的对称轴、顶点坐标.【解答】解:(1)y=2(x2﹣4x)+7=2(x2﹣4x+4﹣4)+7=2(x﹣2)2﹣1,对称轴为x=2,顶点坐标为(2,﹣1);(2)y=﹣3(x2+2x)+7=﹣3(x2+2x+1﹣1)+7=﹣3(x+1)2+10,对称轴为x=﹣1,顶点坐标为(﹣1,10);(3)y=2x2﹣12x+8=2(x2﹣6x+9﹣9)+8=2(x﹣3)2﹣10,对称轴为x=3,顶点坐标为(3,﹣10);(4)y=﹣3(x+3)(x﹣5)=﹣3(x2﹣2x﹣15)=﹣3(x2﹣2x+1﹣1﹣15)=﹣3(x﹣1)2+16 3,对称轴为x=1,顶点坐标为(1,163).【变式1-2】(2021•邵阳县月考)把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+1 2 x2(2)y=﹣2x2﹣5x+7(3)y=ax2+bx+c(a≠0)【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,可把一般式转化为顶点式,从而求出函数图象的顶点坐标及最值.【解答】解:(1)y=﹣2x﹣3+1 2 x2=12(x2﹣4x+4)﹣2﹣3=12(x﹣2)2﹣5,顶点坐标是(2,﹣5),最小值是﹣5;(2)y=﹣2x2﹣5x+7=﹣2(x2+52x+2516)+258+7=﹣2(x+54)2+818,顶点坐标是(―54,818),最大值是818;(3)y=ax2+bx+c=a(x2+bax+b24a2)―b24a+c=a(x+b2a)2+4ac b24a,顶点坐标是(―b2a,4ac b24a),当a<0时,最大值是4ac b24a;当a>0时,最小值是4ac b24a.【变式1-3】(2022•监利市期末)用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x= 2 时,代数式﹣3(x﹣2)2+4有最 大 (填写大或小)值为 4 .(2)当x= 2 时,代数式﹣x2+4x+4有最 大 (填写大或小)值为 8 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【分析】(1)由完全平方式的最小值为0,得到x=2时,代数式的最大值为4;(2)将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为14m,表示出平行于墙的一边为(14﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【解答】解:(1)∵(x﹣2)2≥0,∴当x=2时,(x﹣2)2的最小值为0,则当x=2时,代数式﹣3(x﹣2)2+4的最小值为4;(2)代数式﹣x2+4x+4=﹣(x﹣2)2+8,则当x=2时,代数式﹣x2+4x+4的最大值为8;(3)设垂直于墙的一边为xm,则平行于墙的一边为(14﹣2x)m,∴花园的面积为x(14﹣2x)=﹣2x2+14x=﹣2(x2﹣7x+494)+492=―2(x―72)2+492,则当边长为3.5米时,花园面积最大为492m2.故答案为:(1)2,大,4;(2)2,大,8;【题型2 二次函数的五点绘图法】【例2】(2022•东莞市模拟)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…52125…(1)求该二次函数的表达式;(2)当x=6时,求y的值;(3)在所给坐标系中画出该二次函数的图象.【分析】(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,利用待定系数法即可解决问题.(2)把x=6代入(1)中的解析式即可.(3)利用描点法画出图象即可.【解答】解:(1)由表格可知抛物线顶点坐标(2,1),设抛物线解析式为y=a(x﹣2)2+1,∵x=0时,y=5,∴5=4a+1,∴a=1,∴二次函数解析式为y=(x﹣2)2+1即y=x2﹣4x+5.(2)当x=6时,y=(6﹣2)2+1=17.(3)函数图象如图所示,.【变式2-1】(2022•竞秀区一模)已知抛物线y=x2﹣2x﹣3(1)求出该抛物线顶点坐标.(2)选取适当的数据填入表格,并在直角坐标系内描点画出该抛物线的图象.x……y……【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用描点法画出二次函数的图象.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故该抛物线顶点坐标为:(1,﹣4);(2)如图所示:x…﹣10123…y…0﹣3﹣4﹣30….【变式2-2】已知二次函数y=ax2﹣2的图象经过(﹣1,1).(1)求出这个函数的表达式;(2)画出该函数的图象;(3)写出此函数的开口方向、顶点坐标、对称轴.【分析】(1)直接把(﹣1,1)代入y=ax2﹣2中求出a的值即可得到抛物线解析式;(2)利用描点法画函数图象;(2)根据二次函数的性质求解.【解答】解:(1)把(﹣1,1)代入y=ax2﹣2得a﹣2=1,解得a=3,所以抛物线解析式为y=3x2﹣2;(2)如图:(3)抛物线的开口向上,顶点坐标为(0,﹣2),对称轴为y轴.【变式2-3】(2022•越秀区模拟如图,已知二次函数y=―12x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点;(3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴.【分析】(1)根据图象经过A (2,0)、B (0,﹣6)两点,把两点代入即可求出b 和c ,(2)把二次函数写成顶点坐标式,据此写出顶点坐标,对称轴等,(3)在坐标轴中画出图象即可.【解答】解:(1)∵的图象经过A (2,0)、B (0,﹣6)两点,∴―2+2b +c =0c =―6,解得b =4,c =﹣6,∴这个二次函数的解析式为y =―12x 2+4x ―6,(2)y =―12x 2+4x ―6=―12(x 2﹣8x +16)+8﹣6=―12(x ﹣4)2+2,∴二次函数图象的顶点坐标为(4,2)、对称轴为x =4、二次函数图象与x 轴相交时:0=―12(x ﹣4)2+2,解得:x =6或2,∴另一个交点为:(6,0),(3)作图如下.【题型3 二次函数的图象与各系数之间的关系】【例3】(2022春•玉山县月考)函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.【分析】根据题目中的函数解析式、二次函数的性质和一次函数的性质,利用分类讨论的方法可以得到函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是哪个选项中的图象.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第一、二、三象限,故选项A、D错误;当a<0时,函数y=ax2﹣a的图象开口向下,顶点坐标为(0,﹣a),y=ax+a(a≠0)的图象经过第二、三、四象限,故选项B错误,选项C正确;故选:C.【变式3-1】(2022•邵阳县模拟)二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.【变式3-2】(2022•凤翔县一模)一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【分析】由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,然后根据二次函数的性质即可得到结论.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=―k2a在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.【变式3-3】(2022•澄城县三模)已知m,n是常数,且n<0,二次函数y=mx2+nx+m2﹣4的图象是如图中三个图象之一,则m的值为( )A.2B.±2C.﹣3D.﹣2【分析】可根据函数的对称轴,以及当x=0时,y的值来确定符合题意的函数式,进而确定m的值.【解答】解:∵y=mx2+nx+m2﹣4,∴x=―n2m,因为n<0,所以对称轴不可能是x=0,所以第一个图不正确.二,三两个图都过原点,∴m2﹣4=0,m=±2.第二个图中m>0,开口才能向上.对称轴为:x=―n2m>0,所以m可以为2.第三个图,m<0,开口才能向下,x=―n2m<0,而从图上可看出对称轴大于0,从而m=﹣2不符合题意.故选:A.【题型4 二次函数图象的平移变换】【例4】(2022•绍兴县模拟)把抛物线y=ax2+bx+c的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y=(x﹣3)2+5,则a+b+c= 3 .【分析】先得到抛物线y=(x﹣3)2+5的顶点坐标为(3,5),通过点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),然后利用顶点式写出平移后的抛物线解析式,再把解析式化为一般式即可得到a、b和c的值.【解答】解:∵y=(x﹣3)2+5,∴顶点坐标为(3,5),把点(3,5)先向左平移2个单位再向下平移2个单位得到点的坐标为(1,3),∴原抛物线解析式为y=(x﹣1)2+3=x2﹣2x+4,∴a=1,b=﹣2,c=4.∴a+b+c=3,故答案为3.【变式4-1】(2022•澄城县二模)要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象( )A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【分析】根据抛物线顶点的变换规律得到正确的选项.【解答】解:抛物线y=﹣(x﹣3)2的顶点坐标是(3,0),抛物线y=﹣(x﹣2)2+3的顶点坐标是(2,3),所以将顶点(3,0)向左平移1个单位,再向上平移3个单位得到顶点(2,3),即将函数y=﹣(x﹣3)2的图象向左平移1个单位,再向上平移3个单位得到函数y=﹣(x﹣2)2+3的图象.故选:C.【变式4-2】(2022秋•滨江区期末)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则4a﹣2b﹣1的值是 2 .【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后整体代入求值即可.【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则4a﹣2b﹣1=3﹣1=2.故答案为:2.【变式4-3】(2022•澄城县二模)二次函数y=(x﹣1)(x﹣a)(a为常数)图象的对称轴为直线x=2,将该二次函数的图象沿y轴向下平移k个单位,使其经过点(0,﹣1),则k的值为( )A.3B.4C.2D.6【分析】根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值,结合抛物线解析式求平移后图象所对应的二次函数的表达式,利用待定系数法求得k的值.【解答】解:由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1a2=2.解得a=3.则该抛物线解析式是:y=x2﹣4x+3.∴抛物线向下平移k个单位后经过(0,﹣1),∴﹣1=3﹣k.∴k=4.故选:B.【题型5 二次函数图象的对称变换】【例5】(2022•绍兴县模拟)在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为( )A.﹣5B.3C.5D.15【分析】根据关于x轴对称,函数y是互为相反数即可求得.【解答】解:∵抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,∴﹣y=﹣x2﹣(2a﹣b)x﹣b﹣1,∴―(2a―b)=a+b ―b―1=a―4,解得a=0,b=3,∴a+b=3,故选:B.【变式5-1】(2022•苍溪县模拟)抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为 y=﹣(x﹣2)2 .【分析】写出顶点关于y轴对称的点,把它作为所求抛物线的顶点,这样就可确定对称后抛物线的解析式.【解答】解:抛物线y=﹣(x+2)2顶点坐标为(﹣2,0),其关于y轴对称的点的坐标为(2,0),∵两抛物线关于y轴对称时形状不变,∴抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为y=﹣(x﹣2)2.故答案是:y=﹣(x﹣2)2.【变式5-2】(2022•蜀山区校级二模)在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是( )A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.【解答】解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.【变式5-3】(2022春•仓山区校级期末)在平面直角坐标系中,已知抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,且它们的顶点相距8个单位长度,则k的值是( )A.﹣1或3B.1或﹣2C.1或3D.1或2【分析】先求出抛物线L1的顶点坐标,再根据顶点相距8个单位长度列方程即可解得答案.【解答】解:∵y=kx2+4kx+8=k(x+2)2+8﹣4k,∴抛物线L1:y=kx2+4kx+8顶点为(﹣2,8﹣4k),∵抛物线L1:y=kx2+4kx+8(k≠0)与抛物线L2关于x轴对称,它们的顶点相距8个单位长度,∴8﹣4k=82或8﹣4k=―82,解得k=1或k=3,故选:C.【题型6 利用对称轴、顶点坐标公式求值】【例6】(2022•苍溪县模拟)已知二次函数y=(a﹣1)x2﹣x+a2﹣1图象经过原点,则a的取值为( )A.a=±1B.a=1C.a=﹣1D.a=0【分析】把(0,0)代入函数解析式求出a的值,再由a﹣1≠0求解.【解答】解:把(0,0)代入y=(a﹣1)x2﹣x+a2﹣1得0=a2﹣1,解得a=1或a=﹣1,∵a﹣1≠0,∴a=﹣1,故选:C.【变式6-1】(2022•合肥模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,则c的值等于 7或15 .【分析】根据抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,可知顶点的纵坐标的绝对值是4,然后计算即可.【解答】解:∵抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是4,∴|4×1×(c2)(6)24×1|=4,解得c1=7,c2=15,故答案为:7或15.【变式6-2】(2022•襄城区模拟)已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B (m+3,n)均在二次函数图象上,求n的值为 4 .【分析】根据题意得出b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A 的坐标代入即可求得n的值.【解答】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴―b2=m1m32,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴b2﹣4c=0,∴[﹣2(m +1)]2﹣4c =0,∴c =(m +1)2,∴y =x 2﹣2(m +1)x +(m +1)2,把A 的坐标代入得,n =(m ﹣1)2﹣2(m +1)(m ﹣1)+(m +1)2=4,故答案为:4.【变式6-3】(2022•公安县期中)已知二次函数y =x 2+mx +m ﹣1,根据下列条件求m 的值.(1)图象的顶点在y 轴上.(2)图象的顶点在x 轴上.(3)二次函数的最小值是﹣1.【分析】(1)将二次函数配方成顶点式y =(x +m 2)2―m 24m 44,由图象的顶点在y 轴上可得―m 2=0,即m =0;(2)由图象的顶点在x 轴上可得m 24m 44=0,解之即可;(3)由二次函数的最小值是﹣1可得―m 24m 44=―1,解之即可.【解答】解:(1)y =x 2+mx +m ﹣1=x 2+mx +m 24―m 24+m ﹣1=(x +m 2)2―m 24m 44,∴抛物线的顶点坐标为(―m 2,―m 24m 44)∵图象的顶点在y 轴上,∴―m 2=0,即m =0;(2)∵图象的顶点在x 轴上,∴m 24m 44=0,解得m =2;(3)∵二次函数的最小值是﹣1,∴―m 24m 44=―1,解得:m =0或m =4.。
二次函数的变换(热考题型)-解析版
专题06 二次函数的变换【思维导图】◎考点题型1二次函数的平移(1) 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:(2) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2例.(2021·内蒙古通辽·九年级期末)将抛物线y =﹣3x 2+1向左平移2个单位长度,再向下平移1个单位长度,所得的抛物线解析式为( ) A .y =﹣3(x +2)2 B .y =﹣3(x ﹣2)2﹣1 C .y =﹣3(x +1)2﹣1 D .y =﹣3(x ﹣1)2+3【答案】A 【解析】 【分析】根据二次函数图象平移的规律进行解答即可. 【详解】解:抛物线y =﹣3x 2+1向左平移2个单位长度得y =﹣3(x+2)2+1, 抛物线y =﹣3(x+2)2+1向下平移1个单位长度得y =﹣3(x +2)2. 故选:A . 【点睛】本题考查二次函数图象的平移,掌握平移规律:左加右减,上加下减是解题关键.变式1.(2021·山东烟台·九年级期中)将二次函数2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为223y x x =--,则b 、c 的值为( ) A .2b =,6c =- B .6b =-,8c = C .6b =-,2c = D .2b =,0c【答案】D 【解析】 【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【详解】由题意可得新抛物线的顶点为(1,4)-, ∴原抛物线的顶点为(1,1)--,设原抛物线的解析式为2()y x h k =-+, 代入得:22(1)12y x x x =+-=+,∴2b =,0c . 故选:D . 【点睛】主要考查了函数图象的平移,抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.变式2.(2022·广西·南宁市天桃实验学校八年级期末)将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是( ) A .22(8)2y x =-+ B .22(8)6y x =-- C .22(2)6y x =+- D .22(2)2y x =++【答案】D 【解析】 【分析】根据左加右减,上加下减的规律,可得答案. 【详解】解:将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是22(35)24y x =-+-+,即22(2)2y x =++.故选:D . 【点睛】本题考查了二次函数图像与几何变换,主要考查的是函数图像的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.变式3.(2022·河北邢台·九年级期末)怎么样才能由22y x =的图像经过平移得到函数22(6)7y x =-+的图像呢?小亮说:先向左平移6个单位长度,再向上平移7个单位长度; 小丽说:先向上平移7个单位长度,再向右平移6个单位长度. 对于上述两种说法,正确的是( ) A .小亮对 B .小丽对C .小亮、小丽都对D .小亮、小丽都不对【答案】B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:小亮:由y=2x2的图象先向左平移6个单位长度,再向上平移7个单位长度后得到抛物线解析式为:y=2(x+6)2+7,则小亮说法错误;小丽:由y=2x2的图象先向上平移7个单位长度,再向右平移6个单位长度后得到抛物线解析式为:y=2(x-6)2+7,则小丽说法正确;故选:B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.◎考点题型2 二次函数图象的对称(1)关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;(2)关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;(3)关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca =--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.例.(2022·河南周口·九年级期末)已知抛物线21y x mx =+-经过(1,)n -和(2,)n 两点,则n 的值为( ) A .1- B .1 C .2 D .3【答案】B 【解析】 【分析】根据(1,)n -和(2,)n 可以确定函数的对称轴1x =,再由对称轴的12mx =-=,即可求解. 【详解】解:抛物线21y x mx =+-经过(1,)n -和(2,)n 两点, 可知函数的对称轴12122x -+==, 122m ∴-=, 1m ∴=-;21y x x ∴=--,将点(1,)n -代入函数解析式,可得1n =; 故选:B . 【点睛】本题考查二次函数图象上点的坐标,解题的关键是熟练掌握二次函数图象上点的对称性. 变式1.(2020·黑龙江·勃利县大四站镇中学九年级期中)已知4a -2b +c =0,9a +3b +c =0,则二次函数y =ax 2+bx +c 的图象顶点可能在( ) A .第一或第四象限 B .第三或第四象限 C .第一或第二象限 D .第二或第三象限【答案】A 【解析】 【分析】首先由已知条件4a-2b+c=0,9a+3b+c=0,得出此二次函数过点(-2,0),(3,0),然后根据二次函数的对称性求出抛物线的对称轴,进而得出二次函数y=ax2+bx+c图象的顶点可能所在的象限.【详解】解:∴4a-2b+c=0,9a+3b+c=0,∴此二次函数过点(-2,0),(3,0),∴抛物线的对称轴为直线x=12,∴二次函数y=ax2+bx+c图象的顶点可能在第一或第四象限.故选:A.【点睛】此题考查了二次函数的性质,二次函数图象的对称性,掌握二次函数图象与性质求出对称轴为直线x=12是解题的关键.变式2.(2022·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)已知二次函数y=ax2+bx +c,函数y与自变量x的部分对应值如表:x……﹣11234……y (10521)25……若A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,则当m满足()时,y1<y2A.m≤2B.m≥3C.m52<D.m52>【答案】C【解析】【分析】根据表格中的数据先确定抛物线的对称轴为直线x=2,开口向下,然后根据二次函数图象的性质,列出m 的不等式,解不等式即可.【详解】解:由表格可知,该函数图象开口向上,对称轴为直线x042+==2,∴A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,y1<y2,∴2﹣(m ﹣1)>m ﹣2, 解得:m 52<,故C 正确.故选:C . 【点睛】本题主要考查了二次函数图象的性质,根据表格中的数据确定二次函数图象的对称轴,列出关于m 的不等式,是解题的关键.变式3.(2020·辽宁铁岭·九年级期中)点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y =>B .312y y y >=C .123y y y >>D .23y y y <<【答案】A 【解析】 【分析】已知函数表达式里面二次项系数和一次项系数,可以求出该函数图像的对称轴2ba-,结合对称轴,分析函数的增减性即可.当a <0,x >2b a -时,y 随x 的增大而减小;当a <0,x <2ba-时,y 随x 的增大而增大. 【详解】 对称轴:x =2ba-=212(1)-=⨯- 11(1)P y -,到对称轴有1-(-1)=2个单位长度; 22(3)P y ,到对称轴有3-1=2个单位长度;∴12y y = ∴a =-1<0 ∴当x >2ba-时,y 随x 的增大而减小 ∴33(5)P y ,,5>3>2b a- ∴32<y y综上:321y y y <= 故选:A【点睛】本题主要考查了二次函数的增减性,结合函数表达式求出函数图像的对称轴,根据二次项系数的正负和对称轴分析函数的增减性是解题的关键.◎考点题型3 二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上 ,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c ⏹ 二次项系数a二次函数y =ax 2+bx +c 中,a 作为二次项系数,显然a ≠0.⑴ 当a >0时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑴ 当a <0时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.【总结起来】a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,|a |的大小决定开口的大小. ⏹ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在a >0的前提下,当b >0时,−b2a <0,即抛物线的对称轴在y 轴左侧(a 、b 同号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a >0,即抛物线对称轴在y 轴的右侧(a 、b 异号). ⑵ 在a <0的前提下,结论刚好与上述相反,即当b >0时,−b2a >0,即抛物线的对称轴在y 轴右侧(a 、b 异号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a <0,即抛物线对称轴在y 轴的左侧(a 、b 同号). 【总结起来】在a 确定的前提下,b 决定了抛物线对称轴的位置.常数项c⑴ 当c >0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当c =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当c <0时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 【总结起来】c 决定了抛物线与y 轴交点的位置.总之,只要a , b , c 都确定,那么这条抛物线就是唯一确定的.例.(2021·山东烟台·九年级期中)在同一平面直角坐标系内,二次函数()20y ax bx c a =++≠与一次函数y ax b =+的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】逐图分析系数a ,b 的符号,即可判断. 【详解】A .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b >,此选项错误;B .由()20y ax bx c a =++≠的图象可知,0a <,0b <,由y ax b =+的图象可知,0a >,0b <,此选项错误;C .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b <,此选项正确;D .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a <,0b =,此选项错误. 故选:C . 【点睛】本题考查了一次函数与二次函数的图象,解题关键是会根据图象判断系数a ,b 的符号.变式1.(2022·云南玉溪·九年级期末)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论中不正确的是( )A .abc <0B .b =-4aC .4a +2b≥m (am +b )D .a -b +c >0【答案】D 【解析】 【分析】先根据抛物线的开口向下可知a <0,与y 轴的交点在y 轴的负半轴可知c <0,由抛物线的对称轴x =2可得出a 、b 的关系,再对四个选项进行逐一分析. 【详解】∴抛物线的开口向下, ∴a <0,∴抛物线与y 轴的交点在y 轴的正半轴, ∴c >0,∴抛物线的对称轴为直线2x =, ∴22ba-=,即4b a =- ∴4a +b =0,故B 正确,不符合题意;; ∴0b >,∴abc <0,故A 正确,不符合题意; ∴抛物线的对称轴为直线2x =,a <0, ∴当2x =时,y 取得最大值为42a b c ++ ∴对于任意实数m ,242a a c am bm c ++≥++∴4a +2b +c≥m (am +b )+ c ∴4a +2b ≥m (am +b ), 故C 正确,不符合题意;当x =﹣1时,抛物线与y 轴的交点在x 轴上,即a ﹣b +c =0,故D 错误, 符合题意.故选D . 【点睛】本题考查的是二次函数的图象与系数的关系,数形结合是解题的关键,二次函数y = ²+bx +c (a ≠0)的图象,当a <0时,抛物线向下开口,当a 与b 同号时(即ab >0,对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.变式2.(2022·湖北恩施·九年级期末)抛物线2y ax bx c =++的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:∴240b ac -<;∴当1x >-时,y 随x 增大而减小;∴0a b c ++<;∴若方程20ax bx c m ++-=没有实数根,则2m >;∴0b c -+>.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】 【分析】利用图象信息,以及二次函数的性质即可一一判断. 【详解】解:根据题意得:二次函数与x 轴有两个交点, ∴b 2-4ac >0,故∴错误;∴抛物线2y ax bx c =++的顶点为D (-1,2), ∴抛物线的对称轴为直线x =-1, ∴抛物线开口向下,∴当x >-1时,y 随x 增大而减小,故∴正确;∴抛物线与x 轴的一个交点A 在点(-3,0)和-2,0)之间,对称轴为直线x =-1, ∴抛物线与x 轴的另一个交点为在(0,0)和(1,0)之间,∴x =1时,y =a +b +c <0,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴函数的最大值为2,∴当m >2时,抛物线与直线y =m 没有交点, ∴方程ax 2+bx +c -m =0没有实数根,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴当x =-1时,2a b c -+=,0a <, ∴20b c a -+=->,故∴正确, ∴正确的有4个. 故选:C 【点睛】本题考查二次函数图象与系数的关系,根的判别式、抛物线与x 轴的交点等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合思想解答,属于中考常考题型.变式3.(2022·湖北武汉·中考真题)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【解析】 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限. 【详解】解:∴抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0, ∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限, 故选:D . 【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.◎考点题型4二次函数与一次函数的综合判断例.(2022·全国·九年级课时练习)如图,一次函数1y x =与二次函数22y x bx c =++的图像相交于P 、Q 两点,则函数()21y x b x c =+-+的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】根据函数图象和二次函数的性质判断即可. 【详解】解: 由2y =x 2+bx +c 图象可知,对称轴x =2b->0,0c <,0b ∴<,抛物线21y x b x c =+-+()与y 轴的交点在x 轴下方,故选项B ,C 错误,抛物线21y x b x c =+-+()的对称轴为1122b bx --=-=, ∴102b->, ∴抛物线y =x 2+(b -1)x +c 的对称轴在y 轴的右侧,故选项D 错误, 故选:A . 【点睛】本题考查二次函数图像和性质,明确二次函数2y ax bx c =++ 中各项系数的意义及利用数形结合的思想是解答本题的关键.变式1.(2022·全国·九年级课时练习)已知,在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】题干中二次函数2y ax =的图象开口向下,可以判断出a 的符号为负,一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,可以据此判断出b 、c 的符号皆为正,再去判断各选项哪个符合二次函数2y ax bx c =++的图象. 【详解】∴二次函数2y ax =的图象开口向下, ∴a <0,又∴一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,∴b >0,c >0, 则2ba->0, 可知二次函数2y ax bx c =++开口方向向下,对称轴在y 轴右侧,且与y 轴交点在y 的正半轴,选项B 图象符合, 故选:B . 【点睛】本题考查了一次函数、二次函数图象与系数的关系,题目比较简单,解决题目需要熟练掌握图象与系数的关系.变式2.(2021·河南驻马店·九年级期中)函数1y ax =+与()210y ax ax a =++≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由一次函数图象可确定a 的符号,再确定二次函数图象的大致形状和位置即可. 【详解】解:根据四个选项中一次函数图象在一、二、三象限,可以确定a >0时, ∴a >0,函数y =ax 2+ax +1(a ≠0)的图象开口向上, 对称轴为直线122a x a =-=-; 在y 轴左侧, 只有C 选项符合题意. 故选:C . 【点睛】本题一次函数和二次函数图象与系数的关系,解题关键是明确函数图象与系数的关系,树立数形结合思想,准确进行判断推理.变式3.(2021·北京市第六十六中学九年级期中)如图,在同一坐标系中,二次函数2y ax c =+与一次函数y ax c =+的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数图象,逐项判断,a c 符号,即可求解. 【详解】解:A 、由二次函数图象,可得0a < ,一次函数图象,可得0a > ,相矛盾,故本选项错误,不符合题意;B 、由二次函数图象,可得0a > ,一次函数图象,可得0a < ,相矛盾,故本选项错误,不符合题意;C 、由二次函数图象,可得0c > ,一次函数图象,可得0c < ,相矛盾,故本选项错误,不符合题意;D 、由二次函数图象,可得0a > ,0c <,一次函数图象,可得0a > ,0c <,故本选项正确,符合题意; 故选:D 【点睛】本题主要考查了二次函数和一次函数的图象和性质,根据函数图象,得到,a c 符号是解题的关键.◎考点题型5 根据图像判断式子符号例.(2021·广东湛江·九年级期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:∴ac <0;∴a -b +c =0;∴4ac -b 2<0;∴当x >-1时,y 随x 的增大而减小,其中正确的有( )A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【详解】∴∴抛物线开口向上,且与y轴交于负半轴,∴a> 0,c< 0∴ac<0故结论∴正确;∴从图中可以看出,抛物线经过点(-1,0),当x=-1时,y=0,∴a-b+c=0,故∴正确;∴∴抛物线与x轴有两个交点∴b2- 4ac> 0即4ac- b2< 0故结论∴正确;∴∴抛物线开口向上,且抛物线对称轴为直线x =1所以当x < 1时,y随x的增大而减小故结论∴错误故正确的结论有∴∴∴共3个;故选:B.【点睛】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.变式1.(2022·河北唐山·九年级期末)如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面四条信息:∴c>0;∴b2﹣4ac>0;∴a+b+c<0;∴对于图象上的两点(﹣5,m)、(1,n),有m<n.其中正确信息的个数有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】由抛物线与y轴交点在x轴上方可判断∴,由抛物线与x轴交点个数可判断∴,由图象可得x=1时y>0可判断∴,根据(-5,m)、(1,n)与对称轴的距离可判断∴.【详解】解:∴抛物线与y轴交点在x轴上方,∴c>0,∴正确.∴抛物线与x轴有2个交点,∴b2-4ac>0,∴正确.由图象可得x=1时y>0,∴a+b+c>0,∴错误.∴抛物线开口向上,对称轴为直线x=-3,且1-(-3)>-3-(-5),∴n>m,∴正确.故选:D.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.变式2.(2022·山东德州·九年级期末)1.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x…﹣3﹣2﹣101…y…﹣3010﹣3…下列结论正确的是()∴ab>0;∴a+b+c<0;∴若点(﹣7,y1),点(7,y2)在二次函数图象上,则y1<y2;∴方程ax2+bx+c=﹣3有两个不相等的实数根.A.∴∴∴B.∴∴∴C.∴∴∴D.∴∴∴【答案】B【解析】【分析】根据表格中的数据,可以得到此二次函数具有最大值,对称轴为x=1,再根据二次函数的性质,即可判断题目中的各个小题是否正确.【详解】解:由表格可知,该二次函数有最大值,开口向下,对称轴为直线x=-1,顶点坐标为(-1,1),∴a<0,b<0,∴ab>0,故∴正确;由表格可知,当x=1时,y=a+b+c=-3<0,故∴正确;∴点(-7,y1)到对称轴x=-1的距离小于点(7,y2)到对称轴的距离,∴y1>y2,故∴错误,∴图象经过(-3,-3)和(1,-3)两个点,∴方程ax2+bx+c=-3有两个不相等的实数根,故∴正确,故选:B.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.变式3.(2020·黑龙江·北安市教育局九年级期中)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:∴当x>3时,y<0;∴3a+b>0;∴﹣1≤a≤23;∴3≤n≤4中,其中正确的结论有()A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】∴由抛物线的对称轴为直线x =1,一个交点A (-1,0),得到另一个交点坐标,利用图象即可对于选项∴作出判断;∴根据抛物线开口方向判定a 的符号,由对称轴方程求得b 与a 的关系是b =-2a ,将其代入(3a +b ),并判定其符号;∴利用一元二次方程根与系数的关系可得3c a =-,然后根据c 的的取值范围利用不等式的性质来求a 的取值范围;∴把顶点坐标代入函数解析式得到43n a b c c =++=,利用c 的取值范围可以求得n 的取值范围. 【详解】解:∴抛物线的顶点坐标为(1,n ), ∴对称轴直线是x =1,∴抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0), ∴该抛物线与x 轴的另一个交点的坐标是(3,0), 观察图象得:当x >3时,y <0,故∴正确; ∴观察图象得:抛物线开口方向向下, ∴a <0, ∴对称轴12bx a=-=, ∴.2b a =-,∴3320a b a a a +=-=<,即3a +b <0,故∴错误; ∴抛物线y =ax 2+bx +c 与x 轴交于点(-1,0),(3,0), ∴方程ax 2+bx +c =0的两根为-1,3, ∴133c a =-⨯=-,即3ca =-, ∴抛物线与y 轴的交点在(0,2)、(0,3)之间(包含端点),∴23c ≤≤, ∴2133c -≤-≤-,即213a -≤≤-,故∴正确; ∴.2b a =-,3c a =-, ∴223c b a =-=, ∴顶点坐标为(1,n ),∴当x =1时,43n a b c c =++=, ∴23c ≤≤, ∴84433c ≤≤,即843n ≤≤,故∴错误; 综上所述,正确的有∴∴,共2个.故选:B【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定是解题的关键.◎考点题型6 抛物线y =ax 2+bx +c 最值抛物线y =ax 2+bx +c 的三要素:开口方向、对称轴、顶点.求抛物线的顶点、对称轴的方法(难点)⏹ 公式法:y =ax 2+bx +c =a (x +b 2a )2+4ac−b 24a , ∴顶点是(−b 2a ,4ac−b 24a ),对称轴是直线x =−b 2a . ⏹ 配方法:运用配方的方法,将抛物线的解析式化为y =a (x −h )2+k 的形式,得到顶点为(h ,k ),对称轴是直线x =h .【抛物线的性质】由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.例.(2022·浙江金华·九年级期末)飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米【解析】【分析】先根据滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,求出函数的解析式,然后求出函数的最大值即可.【详解】解:∴10t =时,450s m =;20t =时,600s m =,∴1001045040020600a b a b +=⎧⎨+=⎩,解得:3260a b ⎧=-⎪⎨⎪=⎩, ∴23602S t t =-+, ∴()2233602060022S t t t =-+=--+, ∴当20t =时,S 最大,且最大值为600,即飞机的最大滑行距离为600米,故A 正确.故选:A .【点睛】本题主要考查了求二次函数解析式和最大值,根据题意求出二次函数解析式,是解题的关键.变式1.(2022·全国·九年级课时练习)某商场降价销售一批名牌衬衫,已知所获利润y (元)与降价x (元)之间的关系是y =-2x 2+60x +800,则利润获得最多为( )A .15元B .400元C .800元D .1250元【答案】D【解析】【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y =-2x 2+60x +800=-2(x -15)2+1250∴-2<0故当x =15时,y 有最大值,最大值为1250即利润获得最多为1250元故选:D .此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.变式2.(2022·广西贺州·中考真题)已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.4【答案】D【解析】【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.【详解】解:∴二次函数y=2x2-4x-1=2(x-1)2-3,∴抛物线的对称轴为x=1,顶点(1,-3),∴1>0,开口向上,∴在对称轴x=1的右侧,y随x的增大而增大,∴当0≤x≤a时,即在对称轴右侧,y取得最大值为15,∴当x=a时,y=15,∴2(a-1)2-3=15,解得:a=4或a=-2(舍去),故a的值为4.故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.变式3.(2022·全国·九年级课时练习)已知抛物线y=x2+(2a﹣1)x﹣3,当﹣1≤x≤3时,函数最大值为1,则a值为()A.12-B.13-C.12-或13-D.﹣1或13-【答案】D 【解析】【分析】根据顶点的位置分两种情况讨论即可.【详解】解:2(21)3y x a x =+--,∴图象开口向上,对称轴为直线212a x -=-, ∵﹣1≤x ≤3, ∴当2112a --时,即12a -,3x =时有最大值1, 9(21)331a ∴+-⨯-=,13a ∴=-, 当2112a --时,即12-a ,1x =-时有最大值1, 1(21)(1)31a ∴+-⨯--=,1a ∴=-,1a ∴=-或13-, 故选:D .【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.◎考点题型7 待定系数法求函数解析式例.(2022·全国·九年级课时练习)在平面直角坐标系xOy 中,二次函数225y x mx m =-+的图象经过点()1,2-.(1)求二次函数的表达式;(2)求二次函数图象的对称轴.【答案】(1)1m =-;(2)直线1x =-【解析】【分析】(1)利用待定系数法求解析式即可;(2)利用对称轴公式2b x a=-求解即可. 【详解】解:(1)∴二次函数y =x 2-2mx +5m 的图象经过点(1,-2),∴-2=1-2m +5m ,解得1m =-;∴二次函数的表达式为y =x 2+2x -5.(2)二次函数图象的对称轴为直线2122b x a =-=-=-; 故二次函数的对称轴为:直线1x =-;【点睛】本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式.变式1.(2022·全国·九年级课时练习)已知二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5),求这个二次函数的表达式.【答案】二次函数的表达式为24y x =+.【解析】【分析】将点(﹣2,8)和(﹣1,5)代入二次函数表达式,列出二元一次方程组,进行求解即可.【详解】 解:二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5), ∴485a c a c +=⎧⎨+=⎩,解得:14a c =⎧⎨=⎩. ∴二次函数的表达式为24y x =+.【点睛】本题主要是考查了待定系数法求解二次函数表达式,将已知点代入表达式,再解方程,然后确定二次函数的表达式.变式2.(2022·全国·九年级课时练习)已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式【答案】245y x x =-++【解析】【分析】利用待定系数法设出抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入求解即可.【详解】解:∴抛物线经过点()1,0A -,()5,0B ,()0,5C ,∴设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,∴()()21545y x x x x =-+-=-++.∴该抛物线的函数关系式为245y x x =-++.【点睛】此题考查了待定系数法求二次函数表达式,解题的关键是熟练掌握待定系数法求二次函数表达式. 变式3.(2022·全国·九年级课时练习)已知二次函数2y x bx c =-++的图象与x 轴的一个交点坐标为()1,0-,与y 轴的交点坐标为()0,3.(1)求此二次函数的解析式;(2)用配方法求此抛物线的顶点坐标.【答案】(1)223y x x =-++;(2)()1,4 .【解析】【分析】(1)利用待定系数法,将(1,0)-,(0,3)两个点代入函数解析式求解即可确定函数解析式;(2)根据配方法将函数解析式化为顶点式,即可得出顶点坐标.【详解】解:(1)把(1,0)-,(0,3)代入2y x bx c =-++得:103b c c --+=⎧⎨=⎩, 解得:23b c =⎧⎨=⎩, 所以抛物线解析式为:2y x 2x 3=-++;(2)()222232113(1)4=-++=--+-+=--+y x x x x x ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图象的平移和对称变换执笔:欧国斌 审核: 初三数学组 课型:新授 授课时间:
【学习重难点】1、抛物线的平移、对称等变换。
【学习过程】
1、 抛物线的平移
1、抛物线y=3x2经过如何平移就可以得到抛物线y=3x2+6 ?
2、抛物线y=-x2经过如何平移就可以得到抛物线y=-(x+4)2 ?
3、抛物线y=-x2经过如何平移就可以得到抛物线y=-(x+4)2+6?
4、抛物线y=3x2经过如何平移就可以得到抛物线y=3x2+6x-2 ?
5、抛物线y=3x2+1经过如何平移就可以得到抛物线y=3x2+6x-2 ?
6、归纳你的做法:
针对练习:
1、(2011山东滨州)抛物线可以由抛物线平移得到,则下列平移过程正
确的是( )
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
2、(2009年泸州)在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的解析式为()
A. B. C. D.
3、( 2011重庆江津)将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位等到的抛物线是___ ____.
4、在同一平面直角坐标系内,将函数
的图象沿
轴方向向右平移2个单位长度后再沿
轴向下平移1个单位长度,得到图象的顶点坐标是( )
A.(
,1) B.(1,
)C.(2,
)D.(1,
)
5、抛物线经过()可以得到抛物线。
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
2、 抛物线的对称
1、已知抛物线C1的解析式是,
求:(1)抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式;
(2)抛物线C2与抛物线C1关于y轴对称,求抛物线C2的解析式;
(2)抛物线C3与抛物线C1关于原点对称,求抛物线C3的解析式。
针对练习:
1、抛物线关于x轴对称的图象的解析式是__________,关于y轴对称的图
象的解析式是_____________。
关于原点对称的图象的解析式是
_____________。
2、抛物线y=-2(x+3)2+6关于x轴对称的图象的解析式是__________,关
于y轴对称的图象的解析式是_____________。
关于原点对称的图象的解析式是_____________。
三、思维拓展:
1、 将抛物线绕其定点旋转180度后所得到的抛物线解析式为
2、 抛物线y=-2(x+3)2+6关于直线x=3对称的抛物线解析式为
3、 抛物线y=-2(x+3)2+6关于直线y=3对称的抛物线解析式为
4、抛物线关于x轴对称的图象的解析式是__________,关于y轴对称的图象的解析式是_____________。
关于原点对称的图象的解析式
是_____________。