高中数学选修22-PPT精选.ppt
合集下载
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用
2.曲线 y=cos x(0≤x≤32π)与坐标轴所围图形的面积是( B )
A.2 解析
B.3
C.52
S=π2
0
cos
xdx-32πcos π
xdx=sin
π x2 0
D.4 3π 2
-sin x π 2
2
=sin π2-sin 0- sin 32π+sin π2=1-0+1+1=3.
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为__3__.
1234
S=4f(x)dx-7f(x)dx
1
4
③
S=a[g(x)-f(x)]dx+b[f(x)-g(x)]dx
0
a
④
A.①③ C.①④
B.②③ D.③④
1234
解析 ①应是 S=b[f(x)-g(x)]dx,②应是 S=82 2xdx-
a
0
8(2x-8)dx,③和④正确.故选 D.
4
答案 D
1234
跟踪演练2 求由曲线y=x2,直线y=2x和y=x围成的图形的面积.
y=x2, y=x2,
解 方法一 如图,由
和
y=x
y=2x
解出 O,A,B 三点的横坐标分别是 0,1,2.
故所求的面积 S=10(2x-x)dx+12(2x-x2)dx=x2210 + x2-x3321 =12-0+(4-83)-(1-13)=76.
y=2x, x=0, x=2,
解析 解方程组
得
或
y=x2, y=0, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320
人教A版高中数学选修22变化率与导数PPT课件
问题二:高台跳水
在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
高中数学选修2-2课件2.2.2《反证法》课件
反证法的思维方法:
正难则反
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成------立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结 -----论正确 归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论. (3)结论为“至少”、“至多”、“有无穷 多个” ---类命题; (4)结论为 “唯一”类命题;
例1:用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
例4 如图2.2 2,AB,CD为圆
的两条相交弦,且不全为直径. A
D
求证 AB,CD不能互相平分.
动画演示.
C
B
证明 假设AB,CD互相平分,
图2.2 2
则ACBD为平行四边形,故ACB ADB,
CAD CBD. 因为ABCD为圆内接四边形,所以
ACB ADB 180 0,CAD CBD 180 0.
指有面额的那面.
上述现 象可以用直 接证明的方 法解释, 但是, 我们这 里采用反证法.
假设经过若干次翻转可以使硬币全部反面向上. 由于每枚硬币从正面朝上变为反面朝上,都需要 翻转奇数次,所以3枚硬币全部反面朝上时,需要
翻转3个奇数之和次,即要翻转奇数次.
但由于每次用双手同时翻转2枚硬币,3枚硬币被
翻转的次数只能是2 的倍数,即偶数次.这个矛盾
说明假设错误,原结论正确,即无论怎样翻转都不
正难则反
反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成------立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结 -----论正确 归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论. (3)结论为“至少”、“至多”、“有无穷 多个” ---类命题; (4)结论为 “唯一”类命题;
例1:用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
例4 如图2.2 2,AB,CD为圆
的两条相交弦,且不全为直径. A
D
求证 AB,CD不能互相平分.
动画演示.
C
B
证明 假设AB,CD互相平分,
图2.2 2
则ACBD为平行四边形,故ACB ADB,
CAD CBD. 因为ABCD为圆内接四边形,所以
ACB ADB 180 0,CAD CBD 180 0.
指有面额的那面.
上述现 象可以用直 接证明的方 法解释, 但是, 我们这 里采用反证法.
假设经过若干次翻转可以使硬币全部反面向上. 由于每枚硬币从正面朝上变为反面朝上,都需要 翻转奇数次,所以3枚硬币全部反面朝上时,需要
翻转3个奇数之和次,即要翻转奇数次.
但由于每次用双手同时翻转2枚硬币,3枚硬币被
翻转的次数只能是2 的倍数,即偶数次.这个矛盾
说明假设错误,原结论正确,即无论怎样翻转都不
人教版高中数学选修2-2 数系的扩充与复数的概念 PPT课件
例2 已知 (2 x 1) i 求 x与 y .
y (3 y )i ,其中x, y R
转化
解题思考: 复数相等 的问题
求方程组的解 的问题
一种重要的数学思想:转化思想
1、如果(x+y)+(y-1) =(2x+3y)+(2y+1) , 求实数x,y的值.
i
i
2.若(2x2-3x-2)+(x2-5x+6) =0,求x的值.
2 i 7
0
2、判断下列命题是否正确:
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z= a一定不是虚数
例1 实数m取什么值时,复数
z m 1 (m 1)i
m 1时,复数z 是实数. m 1时,复数z 是虚数.
即 m 1时,复数z 是 纯虚数.
是(1)实数? (2)虚数? (3)纯虚数?
解: (1)当 m 1 0,即 (2)当 m 1 0 ,即 (3)当 m 1 0
m 1 0
2
练习:当m为何实数时,复数
Z m m 2 (m 1)i
2
是 (1)实数
(2)虚数
(3)纯虚数
思考? 5、复数集、实数集、虚数集、纯虚数集之间的 关系?
一. 数的发展过程(经历)
测量、分配中的等分 计数的需要 (循环小数) ————— 自然数 ————————分数 解方程3 x=5 表示相反意义的量 (整数集和有理数集到此才完整形成) ———————负数 解方程x+3=1 为什么方程没实 循环小数 _ __________ 度量 数解? 小数集 ————— 无理数 (实数集形成 ) 2 不循环小数 解方程x =2 __________ _
高中数学选修2-2函数的极值与导数课件
B. y=cos2x
C. y=tanx-x
课堂练习
2.曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( B )
A. –5
B. –6
C. –7
D. –8
课堂练习 3. 下列说法正确的是 ( C )
A. 函数在闭区间上的极大值一定比极小值大 B. 函数在闭区间上的最大值一定是极大值 C. 对于f(x)=x3+px2+2x+1,若|p|<√6,则f(x)无极值 D. 函数f(x)在区间(a,b)上一定存在最值
一般地,求函数y=f(x)的极值的方法是:解方程 f ' x 0 .当 f ' x0 0 时:
x (1)如果在 0 附近的左侧f′(x)>0,右侧f′(x)<0,那么
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
f x0
是极大值;
口诀:左负右正为极小,左正右负为极大.
例题讲解
求函数y=(x2-1)3+1的极值. 解:定义域为R,y ’=6x(x2-1)2.由y ’=0可得x1=-1,x2=0,x3=1 当x变化时,y ’ ,y的变化情况如下表:
当x=0时,y有极小值,并且y极小值=0.
课堂练习
1 . 下列函数中,x=0是极值点的函数是( B )
A. y=-x3 D. y=1/x
人教版高中数学选修2-2
第1章 导数及其应用
函数的极值与导数
课前导入
一般地,函数的单调性与导数的关系: 在某个区间a, b内, 如果f ' x > 0, 那么 函数y = f x在这个区间内单调递增; 如果 f ' x < 0,那么函数 y = f x在这个区间内
高中数学选修2-2微积分基本定理课件
3 dx
-1 1 + x2
= arctanx
3 -1
= arctan 3 - arctan -1
=
π 3
-
-
π 4
=
7 12
π
新知探究
例2. 计算
3 1
2x
-
1 x2
dx
解: 因为x2来自'=2x,
1 x
'
=
-
1 x2
,
由微积分基本定理得:
3
1
2x
-
1 x2
dx
=
3
2xdx -
课前导入
学习微积分,数学和思维水平都将进入一个新的阶段,能切实地训练学生的辨证思维.毫不夸张地 说,不学或未学懂微积分,思维难以达到较高的水平,难以适应21世纪对高中学生素质的要求. 利用本节学习的微积分基本定理,我们就能轻松解决首页的问题.
课前导入
学习微积分的意义 微积分是研究各种科学的工具,在中学数学中是研究初等函数最有效的工具.恩格斯称之为“17 世纪自然科学的三大发明之一”. 微积分的产生和发展被誉为“近代技术文明产生的关键事件之一,它引入了若干极其成功的、对 以后许多数学的发展起决定性作用的思想.” 微积分的建立,无论是对数学还是对其他科学以至于技术的发展都产生了巨大的影响,充分显示 了数学对于人的认识发展、改造世界的能力的巨大促进作用.
新知探究
变速直线运动
如图,一个作变速直线运动的物体的运动规律是y=y(t).由导数的概念的可知,它在任意时刻t的
速度
v t = y' t .设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?
北师大版高中数学选修2-2第三章《导数应用》导数在实际问题中的应用(二) 课件
2013-4-2
3
2
课堂小结:
1、解决优化问题的方法:通过搜集大量的统计数据,建 立与其相应的数学模型,再通过研究相应函数的性质, 提出优化方案,使问题得到解决.在这个过程中,导数 往往是一个有利的工具。 2、导数在实际生活中的应用主要是解决有关函数最大 值、最小值的实际问题, 主要有以下几个方面:(1)、与几何有关的最值问题; (2)、与物理学有关的最值问题;(3)、与利润及其 成本有关的最值问题;(4)、效率最值问题。
4 3 S 3 S 3 h h 由①得 b= h,代入②,∴l= 3 h 3 h 3
S 3h h
S S S S l′= 3 2 =0,∴h= 4 , 当 h< 4 时,l′<0,h> 4 时,l′>0. h 3 3 3
24 3 S ∴h= 4 时,l 取最小值,此时 b= 3 3
解
即半径越大 利润越高 半径r 2时, f r 0,它表 , ; 示f r 单调递减 即半径越大 利润越低 , , . ① 半径为 cm时, 利润最小 这时f 2 0, 表示此种 2 , 瓶内饮料的利润还不够 瓶子成本 此时利润是负值 , .
'
当r 0,2时, f r 0;当r 2,6时, f r 0. ' 因此,当半径r 2时, f r 0,它表示f r 单调递增 ,
2
o
3
r
好相等;当r 3时, 利润才为正值. 当r 0,2时, f r 是减函数 你能 , 图1.4 4 解释它的实际意义吗 ? 通过此问题的解决我们很容易回答开始时 , 的问 题.请同学们自己作出回答 .
2013-4-2
练习 1.一条水渠,断面为等腰梯形,如图所示,在 确定断面尺寸时, 希望在断面 ABCD 的面积为定值 S 时,使得湿周 l=AB+BC+CD 最小,这样可使水流 阻力小,渗透少,求此时的高 h 和下底边长 b.
3
2
课堂小结:
1、解决优化问题的方法:通过搜集大量的统计数据,建 立与其相应的数学模型,再通过研究相应函数的性质, 提出优化方案,使问题得到解决.在这个过程中,导数 往往是一个有利的工具。 2、导数在实际生活中的应用主要是解决有关函数最大 值、最小值的实际问题, 主要有以下几个方面:(1)、与几何有关的最值问题; (2)、与物理学有关的最值问题;(3)、与利润及其 成本有关的最值问题;(4)、效率最值问题。
4 3 S 3 S 3 h h 由①得 b= h,代入②,∴l= 3 h 3 h 3
S 3h h
S S S S l′= 3 2 =0,∴h= 4 , 当 h< 4 时,l′<0,h> 4 时,l′>0. h 3 3 3
24 3 S ∴h= 4 时,l 取最小值,此时 b= 3 3
解
即半径越大 利润越高 半径r 2时, f r 0,它表 , ; 示f r 单调递减 即半径越大 利润越低 , , . ① 半径为 cm时, 利润最小 这时f 2 0, 表示此种 2 , 瓶内饮料的利润还不够 瓶子成本 此时利润是负值 , .
'
当r 0,2时, f r 0;当r 2,6时, f r 0. ' 因此,当半径r 2时, f r 0,它表示f r 单调递增 ,
2
o
3
r
好相等;当r 3时, 利润才为正值. 当r 0,2时, f r 是减函数 你能 , 图1.4 4 解释它的实际意义吗 ? 通过此问题的解决我们很容易回答开始时 , 的问 题.请同学们自己作出回答 .
2013-4-2
练习 1.一条水渠,断面为等腰梯形,如图所示,在 确定断面尺寸时, 希望在断面 ABCD 的面积为定值 S 时,使得湿周 l=AB+BC+CD 最小,这样可使水流 阻力小,渗透少,求此时的高 h 和下底边长 b.
《复数代数形式的加、减运算及其几何意义》人教版高中数学选修2-2PPT课件(第3.2.1课时)
人教版高中数学选修2-2
第3章 数系的扩充与复数的引入 3.2.1复数代数形式的加、减运算及其几何意义
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
课前导入
上一节,我们主要讲了什么?
实数系
扩充到
动动脑
提示
新知探究
如图所示:
y Z
Z2Z1,OZ2分别与 复数a + bi,c + di对应, 则OZ1 = (a,b),OZ2 = (c,d). 由平面向量的坐标运算,
得OZ = OZ1 + OZ2
OZ1 + OZ2 = (a + c,b + d).
新知探究
这说明两个向量OZ1和OZ2的和就是 复数(a + c) + (b + d)i对应的向量.
(Z1 + Z2 ) + Z3 = Z1 + (Z2 + Z3 ).
新知探究
复数加法的几何意义 探究 复数与复平面内的向量有一一对应关系.我们讨论过向量加法的几何意义,你能由此出发讨论复数 加法的几何意义吗?
新知探究
观察 我们知道,两个向量的和满足平行四边形法则, 复数可以表示平面上的向量,那么复数的加法与向 量的加法是否具有一致性呢?
课堂练习
解法二: ∵(1-2i)+(-2+3i)=-1+i, (3-4i)+(-4+5i)=-1+i, …… (2001-2002i)+(-2002+2003i)=-1+i. 相加得(共有1001个式子):
第3章 数系的扩充与复数的引入 3.2.1复数代数形式的加、减运算及其几何意义
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
课前导入
上一节,我们主要讲了什么?
实数系
扩充到
动动脑
提示
新知探究
如图所示:
y Z
Z2Z1,OZ2分别与 复数a + bi,c + di对应, 则OZ1 = (a,b),OZ2 = (c,d). 由平面向量的坐标运算,
得OZ = OZ1 + OZ2
OZ1 + OZ2 = (a + c,b + d).
新知探究
这说明两个向量OZ1和OZ2的和就是 复数(a + c) + (b + d)i对应的向量.
(Z1 + Z2 ) + Z3 = Z1 + (Z2 + Z3 ).
新知探究
复数加法的几何意义 探究 复数与复平面内的向量有一一对应关系.我们讨论过向量加法的几何意义,你能由此出发讨论复数 加法的几何意义吗?
新知探究
观察 我们知道,两个向量的和满足平行四边形法则, 复数可以表示平面上的向量,那么复数的加法与向 量的加法是否具有一致性呢?
课堂练习
解法二: ∵(1-2i)+(-2+3i)=-1+i, (3-4i)+(-4+5i)=-1+i, …… (2001-2002i)+(-2002+2003i)=-1+i. 相加得(共有1001个式子):
苏教版高中数学选修2-2第一章第一节《瞬时变化率—导数》课件(共40张PPT)
Q 割线 切线
y=f(x) P(x0,f(x0))
f (x0+x) f (x0) Q(x0+△x,f(x0+ △x))
(即 y) △x>0时,点Q位于点P的右侧
x
M
X0+x x
△x<0时,点Q位于点P的左侧
求曲线y=f (x)上一点P(x0,f(x0))处切线斜率的一般步骤:
1.设曲线上另一点Q(x0+Δx,f(x0 + Δx))
2.1 2
(2)计算运动员在2s到2+Δt s(t∈[2,2+ Δt])内的平均速度.
则割线PQ的斜率为:
kPQ=
xQ 2-4 xQ-2
令xQ-2=x,
所以xQ=x+2
=xQ+2
k
PQ=
(2+x) x
2-4
= 4x+x2 x
=4+x
当xQ无限趋近于2时, kPQ无限趋近于常数4, 从而曲线f(x)=x2 在点(2,4)处的切线 斜率为4.
当Δx无限趋近于0时, kPQ无限趋近于常数4, 从而曲线f(x)=x2 在点(2,4)处的切线 斜率为4.
问题二:
跳水运动员从10m高跳台腾空到入水的过程 中,不同时刻的速度是不同的.假设t 秒后运动 员相对于水面的高度为H(t)=-4.9t2+6.5t + 10, 试确定t=2s时运动员的速度.
(1)计算运动员在2s到2.1s(t∈[2,2.1]) 内的平均速度.
v H 2.1 H 2 13.59m / s
高中数学 选修2-2
放大
放大
问题一 如何精确地刻画曲线上某一点处的变化趋势呢?
问题二 观察“点P附近的曲线”,随着图形放大,你 看到了怎样的现象?
人教B版高中数学选修2-2第三章6《微积分基本定理》ppt课件
4) (cos x )' sin x
b sin xdx
a
-
cos x |ba
5) (ln x )' 1
x
b 1 dx ax
ln|x ||ba
6) (e x )' e x
b e x dx
a
e x |ba
7) (ax )'
ax lna
b ax dx
这个结论叫微积分基本定理(fundamental theorem of calculus),又叫牛顿-莱布尼茨公式(Newton-Leibniz Formula).
牛顿-莱布尼茨公式提供了计算定积分的简便的 基本方法,即求定积分的值,只要求出被积函数
f(x)的一个原函数F(x),然后计算原函数在区间 [a,b]上的增量F(b)–F(a)即可.该公式把计算定
n
n
n
n
S Si hi v(ti1)t s '(ti1)t.
取极限i1 ,由定i1积分的i1 定义得 i1
b
b
S a v(t)dt a s '(t)dt s(b) s(a)
进而得出微积分基本定理.
从定积分角度来看:如果物体运动的速度函数为v=v(t), 那么在时间区间[a,b]内物体的位移s可以用定积分表示 为
x3
'
3x2 ,
1
'
x
1 x2
原式
3
3x2dx
31 dx
3
3x2dx
3 1 dx
1
x 1
2
《基本初等函数的导数公式及导数的运算法则》人教版高中数学选修2-2PPT课件(第1.2.2课时)
新知探究
例7
x+3
求y = 2
在点x = 3处的导数.
x +3
2
1
(
x
3) ( x 3) 2 x
'
解:y
( x 2 3) 2
x2 6 x 3
( x 2 3) 2
9 18 3 24
1
y |x 3
2
(9 3)
144
6
'
新知探究
2.导数的运算法则
1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′
2. [f(x) .g(x)] ′=f′(x) g(x)± f(x) g(x) ′
f x f′
x g x - f x g′
x
3.
g x 0
′=
2
g x
新知探究
名词解释
一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数
为函数y=f(u)和u=g(x)的复合函数.记做y=f(g(x)).
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为
y x′= y u′
u x′.
法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即
(u v) u v
新知探究
1.和(或差)的导数
(u v) u v
证明: y f ( x) u( x) v( x)
u ( x x) u ( x) v( x x) v( x)
( 人教A版)高中数学选修22:1.5.3定积分的概念课件 (共35张PPT)
)dx=1,
a
a
所以c2f(x)dx+b2f(x)dx
a
c
=2(cf(x)dx+bf(x)dx)
a
c
=2bf(x)dx=4. a
答案:4
3.计算定积分3(2x+1)dx=________. 0
解析:3(2x+1)dx 表示直线 f(x)=2x+1,x=0,x=3 围成的直角梯形 OABC 的 0
a
=b,y=0,再明确被积函数 f(x),从而确定曲边梯形的曲边,这样就可以通过求 曲边梯形的面积 S 而得到定积分的值: 当 f(x)≥0 时,bf(x)dx=S;
a
当 f(x)<0 时,bf(x)dx=-S. a
2.利用定积分的几何意义,求:
3
9-x2dx.
-3
解析:(1)在平面上 y= 9-x2表示的几何图形为以原点为圆心以 3 为半径的上半圆如
2
3552-x2dx=21×2×1=1,
∴5f(x)dx=2xdx+3(4-x)dx+
0
0
2
3552-x2dx=2+23+1=29.
利用定积分的性质计算定积分的步骤: (1)如果被积函数是几个简单函数的和的形式,可以利用定积分的线性性质计 算,可以简化计算. (2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连 续可加性质计算.
dx
1
1
=32.
(3)
1
1-x2dx 表示的是图(3)中阴影所示半径为 1 的半圆的面积,其值为π2,
-1
所以1
1-x2dx=π2.
-1
由定积分的几何意义求定积分的步骤: (1)当 f(x)≥0 时,bf(x)dx 等于由直线 x=a,x=b,y=0 与曲线 y=f(x)围 成曲边
a
a
所以c2f(x)dx+b2f(x)dx
a
c
=2(cf(x)dx+bf(x)dx)
a
c
=2bf(x)dx=4. a
答案:4
3.计算定积分3(2x+1)dx=________. 0
解析:3(2x+1)dx 表示直线 f(x)=2x+1,x=0,x=3 围成的直角梯形 OABC 的 0
a
=b,y=0,再明确被积函数 f(x),从而确定曲边梯形的曲边,这样就可以通过求 曲边梯形的面积 S 而得到定积分的值: 当 f(x)≥0 时,bf(x)dx=S;
a
当 f(x)<0 时,bf(x)dx=-S. a
2.利用定积分的几何意义,求:
3
9-x2dx.
-3
解析:(1)在平面上 y= 9-x2表示的几何图形为以原点为圆心以 3 为半径的上半圆如
2
3552-x2dx=21×2×1=1,
∴5f(x)dx=2xdx+3(4-x)dx+
0
0
2
3552-x2dx=2+23+1=29.
利用定积分的性质计算定积分的步骤: (1)如果被积函数是几个简单函数的和的形式,可以利用定积分的线性性质计 算,可以简化计算. (2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连 续可加性质计算.
dx
1
1
=32.
(3)
1
1-x2dx 表示的是图(3)中阴影所示半径为 1 的半圆的面积,其值为π2,
-1
所以1
1-x2dx=π2.
-1
由定积分的几何意义求定积分的步骤: (1)当 f(x)≥0 时,bf(x)dx 等于由直线 x=a,x=b,y=0 与曲线 y=f(x)围 成曲边
人教A版高中数学选修2-2课件变化率问题.pptx
观察:某城市3月18日——4月20日的温度T( ℃)相对于
时间t(天)的变化情况,用曲线图表示为:
T (℃)
C (34, 33.4)
30
思考
2(0 注: 3月18日
为第一天)
10 A (1, 3.5)
2
02
10
B (32, 18.6)
20
30 34t(天)
你能从图中观察出各时间段的温度变化情况吗? 温度快慢的变化情况怎么刻画?
h
65 计算运动员在0 t 这段时间
49
里的平均速度, 并思考下面的问题o :
t
1 运动员在这段时间里是静止的吗? 2你认为用平均速 度描述 运动员运动
状态有什么问题吗?
四.课堂小结
三个实际变 化率问题
函数的平均变化率
代数表示
意义(实际、
几何)
思想方法
从特殊到一般
平均速度
瞬时速度
如何求瞬时速度, 课下你怎么去做?
空白演示
在此输入您的封面副标题
引言
我们这一章研究的内容是导数及其应用, 导数研究的问题就是变化率问题, 即研究某个变量相对于另一个变量变化的快慢情况.
在我们的日常生活中丰富多彩的变化 率问题是随处可见的,我们就从现实中的 三个问题出发, 开始变化率与导数学习!
1.1.1 变化率问题
问题一 温度变化率问题
相对于水面的高度h与起跳后的时间t
存在的函数关系:
h(t) 4.9t2 6.5t 10
实践操作
h(t) 4.9t2 6.5t 10
计算
在0 t 0.5这段时间里, v h 0.5 h 0 4.05m / s
0.5 0
在1 t 2这段时间里,
人教新课标A版高中数学选修2-2全册完整课件
新课讲授
问题1 气球膨胀率 类似地,当空气容量V从1L增加到2L时, 气球半径增加了多少?
气球的平均膨胀率为多少?
新课讲授
问题1 气球膨胀率 类似地,当空气容量V从1L增加到2L时, 气球半径增加了多少?
r(2) r(1) 0.16(dm) 气球的平均膨胀率为多少?
新课讲授
问题1 气球膨胀率 类似地,当空气容量V从1L增加到2L时, 气球半径增加了多少?
可以看出,随着气球体积逐渐增大,它的平 均膨胀率逐渐变小了.
新课讲授
思考
当空气容量从V1增加到V2时,气球的 平均膨胀率为多少?
新课讲授
思考
当空气容量从V1增加到V2时,气球的 平均膨胀率为多少?
气球的平均膨胀率是:
r(V2 ) r(V1 )
3
3V2
4
3V1
4
V2 V1
V2 V1
新课讲授
新课讲授
平均变化率 上述问题中的变化率可用式子 f ( x2 ) f ( x1 )
表示,称为函数f(x)从x1到x2的平均变化x2率.x1
对于函数y f ( x), 若设x x2 x1, y f ( x2 ) f ( x1 ),(x看作对于x1的一个 增量,可用x1 x替代x2)则平均变化率为
1.1.1 变化率问题
复习旧知
微积分主要与四类问题的处理相关: 一、已知物体运动的路程作为时间的函数,
求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等.
复习旧知
导数研究的问题
变化率问题
研究某个变量相对于另一个变量 变化的快慢程度.
气球的平均膨胀率为多少?
高中数学优质课件精选人教版选修2-2课件第1章导数及其应用1.5.12
6分
(3)求和
sn=i=n1Δsi=i=n1gi-n 1·t·nt
=gnt22[0+1+2+…+(n-1)] =12gt21-1n. (4)取极限 当n无限趋近于∞时,sn无限趋近于12gt2.
10分 12分
1.求变速直线运动的路程问题,方法和步骤
类似于求曲边梯形的面积,仍然利用以直代曲的思想,将变速
物体下落的距离记作 Δsi(i=1,2,…,n).
3分
(2)近似代替
在每个小区间上以匀速运动的路程近似代替变速运动的路
程.
在 i-n 1t,int 上任取一时刻ξi(i=1,2,…,n),可取ξi使v(ξi)
=gi-n 1t近似代替第i个小区间上的速度,
因此Δsi≈gi-n 1t·nt (i=1,2,…,n).
直线运动问题转化为匀速直线运动问题,求解过程为:分割、
近似代替、求和、取极限.
2.将区间分成n等份时,每个小区间的表示易出现漏乘区
间长度
t n
的错误,主要原因在于常常将区间长度默认为1个单
位.
• 2.汽车行驶的速度为v=t2,求汽车在0≤t≤1 这段时间内行驶的路程s.
解析: (1)分割 将区间[0,1]等分为n个小区间 0,1n,1n,2n,…,i-n 1,ni ,…,n-n 1,1, 每个小区间的长度为Δt=ni -i-n 1=1n.
• 解析: 作近似计算时,Δx=xi+1-xi很小, 误差可忽略,所以f(x)可以是[xi,xi+1]上任一值
2.已知汽车在时间[0,t1]内以速度v=v(t)做直线运动, 则下列说法不正确的是( )
A.当v=a(常数)时,汽车做匀速直线运动,这时路程s= vt1
B.当v=at+b(a,b为常数)时,汽车做匀速直线运动, 这时路程s=bt1+12at21
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题二:请大家继续思考,当Δt取不同值时,尝试
计算 v4.9t1.31的 值 ,同时观察讨论,表格中
的数据有着怎样的规律?
Δt
-0.1 -0.01 -0.001 -0.0001 -0.00001
……….
v
-12.61
-13.051 -13.0951 -13.09951 -13.099951
….
Δt
4
❖ 什么是瞬时速度呢? ❖ 如何求瞬时速度呢?
5
1.1.2导数的概念
6
我们把物体在某一时刻的速度称为
瞬时速度.
又如何求 瞬时速度呢?
问题一:请大家思考如何求运动员的瞬时速度, 如t=2时刻的瞬时速度?
平均变化率
提示:可以通过研究它附近的平均速度变化情 况来寻找到问题的思路
vh(2t)h(2) 4.9 t1.1 3 t 8
49
思考下面的问题: (1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态 有什么问题吗?
3
平均速度不一定能反映运动员在某一时 刻的运动状态,可以看出,平均速度只 能粗略地描述物体在某段时间内的运动 状态,为了能更精确地刻画物体运动, 我们有必要研究某个时刻的速度即
瞬时速度。
高中数学选修2-2
1.1.2 导数的概念
灵山中学
王婧
1
回顾上节课中的探究问题 :见课本第3页
2
在高台跳水运动中,运动员相对水面的高度h (单位:m)与起跳后的时间t(单位:s)存 在函数关系 h(t4 ) .29 6t. 5 10 t计算运动员 在 0 t 6 5 这段时间里的平均速度,并
变式练习: 例1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对
原油进行冷却和加热. 如果第 x h时, 原油的温度(单位: C)为 f
(x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h, 原油温度的瞬时
变化率, 并说明它们的意义.
练习: 计算第3h和第5h时原油的瞬时变化率, 并说 明它们的意义.
归纳总结
❖1、瞬时速度的概念 ❖2、导数的概念 ❖3 、求导数的方法:一平二极
பைடு நூலகம்22
作业安排
❖ (必做)第10页习题A组第2、3、4 题 ❖ (选做):思考第11页习题B组第1题
23
24
由导数的 ,我定 们义 知 ,高道 度 h关于时 t的间 导数 就是运动员的 ;气瞬 球时 半 r关速 径 于度 体 V的积 导数就是气球 胀的 .率瞬时膨
实际上,导数可以描述任何事物的 瞬时变化率,如效率、点密度、国 内生产总值GDP的增长率,等等。
可见导数具有着广泛的实际应用价 值。
18
例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,
li m ylim f(x0 Δ x)f(x0)
x x 0
x 0
x
称为函数 y = f (x) 在 x = x0 处的导数, 记作
f ( x0 ) 或 y |xx0, 即
f(x 0 ) lx i0 m y x lx i0m f(x 0 Δ x )x f(x 0 ).
15
由导数的定义可知, 求函数 y = f (x)在x=x0的导数的一般方法:
需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单
位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h,
原油温度的瞬时变化率, 并说明它们的意义. 解: 在第2h和第6h时, 原油温度的瞬时变化率就是
f (2)和 f (6).
根据导数的定义,
t 0
t
探 究: 1.运动员在某一时刻 t0 的瞬时速度怎样表示?
lim h(t0t)h(t0)
t 0
t
lim 4.9(t)2 (9.8t0 6.5)t
t0
t
lim(4.9t
t0
9.8t0
6.5)
9.8t0 6.5
问题三:气球在体积 v 0 时的瞬时膨
胀率如何表示呢?
r (v ) 3 3v
yf(2x)f(2) 4x(x)27xx3
x
x
x
所以,
f(2)li m yli(m x3 ) 3. x 0 x x 0
同理可得 f(6)5.
在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5. 它说 明在第2h附近, 原油温度大约以3 C / h的速率下降; 在第6h附近, 原油温度大约以5 C / h的速率上升.
4
limr(v0v)r(v0)
v0
v
12
问题四:函数f (x)在 x = x 0 处的瞬
时变化率怎样表示?
lim f(x0Δ x)f(x0)li m y
x 0
x
x 0x
13
瞬时变化率
导数
瞬时变化率与导数是 同一概念的两个名称。
14
定 义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
(1).f(x0)与 x0的值有关x, 0其不 导同 数的 值一;般
f (x0)与x的具体取值无关。
课堂练习:
1、如果质点A按规律 s2t3 则在t=3s
时的瞬时速度为
C
A.6
B.18
C.54 D.81
2、已知一个物体运动的位移(m)与时
间t(s)满足关系s(t)2t25t (1)求物体第5秒和第6秒的瞬时速度 (2)求物体在 t 0 时刻的瞬时速度
0.1 0.01 0.001 0.0001 0.00001
…….
v
-13.59
-13.149 -13.1049
-13.10049
-13.100049
…
9
t=2当△t趋近于0时,即无论 △t 从小于 2的一边, 还是从大于2的一边趋近于2时, 平均速度都趋近与一个确定的值–13.1.
lim h(2t)h(2) 1.3 1
1.求平均变化率 yf(x0x)f(x0);
x
x
2. 取极限求值
f
(x0)
limy. x0 x
一平、二极
同学们可以这么记求导数的方法:“一贫而急”
17世纪,力学、航海、天 文等方面取得了突飞猛 进的发展,这些发展对数学提出新了的要求,它们 突出地表现为本章引言中到 提的四类问题,其中 的两类问题直接导致导了数的产生:一是根据物 体的路程关于时间的数函求速度和加速;度二是 求已知曲线的切.线