时变电磁场习题
电磁场复习习题
一、选择题1、下列的矢量运算规律有错误的一项是:( B ) A 、θsin AB e B A n →→→=⨯ B 、→→⨯B A =→→⨯A BC 、)()()(→→→→→→→→→⋅-⋅=⨯⨯B A C C A B C B A D 、)()(→→→→→→⨯=⨯⋅A C B C B A2、选出下列的场中不属于矢量场的项:( C ) A 、电场 B 、磁场 C 、高度场 D 、力场3、关于梯度的性质下列说法不正确的是:( D ) A 、标量场的梯度是一个矢量场B 、在标量场中,在给定点沿任意方向的方向导数等于梯度在该方向上的投影C 、标量场中每一点M 处的梯度,垂直于过该点的等值面D 、标量场中每一点M 处的梯度,指向场减小的方向 4、关于矢量场的性质,下列说法有误的是:( A )A 、在矢量线上,任一点的法线方向都与该点的场矢量方向相同B 、静电场中的正电荷就是发出电场线的正通量源C 、磁感应强度B 在某一曲面S 上的面积分就是矢量B 通过该曲面的磁通量D 、漩涡源产生的矢量线是闭合曲线5、下列不属于电磁学三大实验定律的是:( A )A 、高斯定律B 、安培定律C 、库伦定律D 、法拉第电磁感应定律 6、关于电荷,下列描述不正确的是:( B ) A 、点电荷是电荷分布的一种极限情况 B 、实际上带电体上的电荷分布是连续的C 、宏观上我们常用电荷密度来描述电荷的分布情况D 、电荷不能被创造也不能被消灭只能转移 7、关于静电场,下列说法中 (1)由空间位置固定的电荷产生 (2)由电量不随时间变化的电荷产生 (3)基本物理量是电场强度 (4)性质由其散度和旋度来描述 (5)基本实验定律是库仑定律 下列判断正确的是:( D )A 、都不对B 、有一个错C 、有三个错D 、全对 8、0E ερ=⋅∇→是高斯定理的微分形式,它表明任意一点电场强度的( C )与该处的电荷密度有关。
A 、梯度B 、旋度C 、散度D 、环流9、静磁场的磁感应强度在闭合曲线上的环量等于闭合曲线交链的恒定电流的代数和与( B )的乘积。
电磁场与电磁波课后习题及答案六章习题解答
第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。
滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。
设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。
设、、,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。
讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。
故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。
一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。
设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。
流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。
电磁场与电磁波 课后答案(冯恩信 著)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场计算题
重要习题例题归纳第二章 静电场和恒定电场一、例题:1、例2.2.4(38P )半径为0r 的无限长导体柱面,单位长度上均匀分布的电荷密度为l ρ。
试计算空间中各点的电场强度。
解:作一与导体柱面同轴、半径为r 、长为l 的闭合面S ,应用高斯定律计算电场强度的通量。
当0r r <时,由于导体内无电荷,因此有0=⋅⎰→→SS d E ,故有0=→E ,导体内无电场。
当0r r>时,由于电场只在r 方向有分量,电场在两个底面无通量,因此2ερπl rl E dS E dS a a E S d E l r Sr r Sr r r r S=⋅=⋅=⋅=⋅⎰⎰⎰→→→→则有:r E l r 02περ=2、例2.2.6(39P )圆柱坐标系中,在m r2=与m r 4=之间的体积内均匀分布有电荷,其电荷密度为3/-⋅m C ρ。
利用高斯定律求各区域的电场强度。
解:由于电荷分布具有轴对称性,因此电场分布也关于z 轴对称,即电场强度在半径为r 的同轴圆柱面上,其值相等,方向在r 方向上。
现作一半径为r ,长度为L 的同轴圆柱面。
当m r20≤≤时,有02=⋅=⋅⎰→→rL E S d E r Sπ,即0=r E ;当m rm 42≤≤时,有)4(1220-=⋅=⋅⎰→→r L rL E S d E r Sπρεπ,因此,)4(220-=r rE r ερ;当m r 4≥时,有L rL E S d E r Sπρεπ0122=⋅=⋅⎰→→,即r E r 06ερ=。
3、例2.3.1(41P )真空中,电荷按体密度)1(220ar -=ρρ分布在半径为a 的球形区域内,其中0ρ为常数。
试计算球内、外的电场强度和电位函数。
解:(1)求场强:当a r >时,由高斯定律得2224επQ E r S d E S==⋅⎰→→而Q 为球面S 包围的总电荷,即球形区域内的总电荷。
300242002158)(44)(a dr a r r dr r r Q aaπρπρπρ=-==⎰⎰因此20302152r a a E rερ→→=当a r <时)53(44)(1425300020121a r r dr r r E r S d E rS -===⋅⎰⎰→→επρπρεπ因此)33(23001a r r a E r-=→→ερ (2)球电位;当a r >时,取无穷远的电位为零,得球外的电位分布为ra r d E r r03022152)(ερ=⋅=Φ⎰∞→→当a r =时,即球面上的电位为20152ερa S =Φ 当a r <时)1032(2)(24220011a r r a r d E r a rS +-=⋅+Φ=Φ⎰→→ερ4、例2.4.1(48P )圆心在原点,半径为R 的介质球,其极化强度)0(≥=→→m r a P m r 。
谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】
(2)推导 J% j&。提示:
r A
0。
解:(1) H% J% jD% jD%,方程左边做旋度运算,有:
H% H% 2H%
由于 H%
1 j
E%,于是有
H% 0
4 / 17
圣才电子书
十万种考研考证电子书、题库视频学习平
Ñ
s
v (E
v H)
v dS
d dt
(We
Wm )
P
或
Ñ
vv v (E H ) dS
d
(1 E2 1 H 2 )d
E2d
s
dt 2
2
反映了电磁场中能量的守恒和转换关系。
4.试解释什么是 TEM 波。 答:与传播方向垂直的平面称为横向平面;若电磁场分量都在横向平面中,则称这种 波称为平面波;又称横电磁波即 TEM 波。
f ck 3108 3 4.5 108 Hz
2π 2π
π
E% jB%
2.从复数形式的麦克斯韦方程组源自 H% J% D% &
j
D%推导:
B% 0
(1)自由空间( & 0、 J% 0 )磁场复数形式波动方程 2 k 2 H% 0 。提示:
r
r
r
A A 2A ;
5.说明矢量磁位和库仑规范。
答: 由于 g( A) 0 ,而 gB 0 ,所以令 B A ,A 称为矢量磁位,它是一
个辅助性质的矢量。从确定一个矢量场来说,只知道一个方程是不够的,还需要知道 A 的
散度方程后才能唯一确定 A,在恒定磁场的情况下,一般总是规定 gA 0 ,这种规定为
库仑规范。
增加的电磁场能量与损耗的能量之和——能量守恒。
电磁场理论练习题
第一章 矢量分析1.1 3ˆ2ˆˆz y x e e eA -+= ,z y e eB ˆ4ˆ+-= ,2ˆ5ˆy x e eC -= 求(1)ˆA e ;(2)矢量A 的方向余弦;(3)B A ⋅;(4)B A ⨯;(5)验证()()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ ;(6)验证()()()B A C C A B C B A ⋅-⋅=⨯⨯。
1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢量。
设A 为已知矢量,X A B ⋅=和X A B ⨯=已知,求X 。
1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e el ˆ2ˆ2ˆ-+= 方向上的方向导数。
1.4 计算矢量()()3222224ˆˆˆz y x e xy e x eA z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ⋅∇对此立方体的体积分,以验证散度定理。
1.5 计算矢量z y e x e x eA z y x 22ˆˆˆ-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ⨯∇对此回路所包围的表面积的积分,以验证斯托克斯定理。
1.6 f 为任意一个标量函数,求f ∇⨯∇。
1.7 A 为任意一个矢量函数,求()A ⨯∇⋅∇。
1.8 证明:A f A f A f ⋅∇+∇=∇)(。
1.9 证明:A f A f A f ⨯∇+⨯∇=⨯∇)()()(。
1.10 证明:)()()(B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇。
1.11 证明:A A A 2)(∇-⋅∇∇=⨯∇⨯∇。
1.12 ϕρϕρϕρρsin cos ˆ),,(32z e ez A += ,试求A ⋅∇,A ⨯∇及A 2∇。
1.13 θθθϕθϕθcos 1ˆsin 1ˆsin ˆ),,(2re r e r e r A r ++= ,试求A ⋅∇,A ⨯∇及A 2∇。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
工程电磁场工程电磁场试卷(练习题库)(2023版)
工程电磁场工程电磁场试卷(练习题库)1、场2、力线3、通量4、环量5、旋度6、高斯散度定理7、斯托克斯定理8、亥姆霍兹定理9、电流元10、电偶极子11、电位移矢量12、电位函数13、电解质的极化14、极化强度15、静电力16、自感17、镜像法18、坡印廷矢量19、平面电磁波20、均匀平面电磁波21、相位常数22、偏振23、相速24、群速25、色散煤质26、关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是O27、两个载流线圈之间存在互感,对互感没有影响的是O28、以下关于时变电磁场的叙述中,正确的是O29、两个相互平行的导体平板构成一个电容器,与电容无关的是O30、用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是O31、电磁波的右旋极化和左旋极化分别指电场强度矢量的旋转方向和波的传播方向间满足右手螺旋关系和左手螺旋关系32、一封闭曲面的电场强度通量为零,则在封闭面上的场强一定处处为零。
33、电磁波在界面处的反射系数指反射电磁波的电场强度振幅与入射区域内的总电场强度振幅之比。
34、电磁场矢量的本构关系反映了不同电磁特性的介质对电磁场有着不同的影响。
35、引入电磁场的复数表示,是为了在电磁场的分析过程中简化数学处理, 它并不反映任何实质性的物理考虑。
36、电荷在静电场中沿闭合路线移动一周时,电场力作功一定为零。
则电流元在磁场中沿闭合路线移动一周时,磁场力37、一小电流回路,不论是在产生磁场方面,还是在磁场中受力方面都等效于一个磁偶极子。
38、如果天线上的电流幅值一定,则天线的辐射电阻越大,它的辐射功率就越小。
39、某电磁场是感应电磁场还是辐射电磁场,判断的标准是看其平均能流密度是否为零。
40、静止电荷产生的电场,称之为O场。
它的特点是有散无旋场,不随时间变化。
41、高斯定律说明静电场是一个O场。
42、安培环路定律说明磁场是一个O场。
43、电流密度是一个矢量,它的方向与导体中某点的O的运动方向相同。
时变电磁场习题课.
0
H y t
E0 sin(t z)
Hy
E0 0
cos(t
z)
H
ey
E0 0
cos(t
z)
例3、在两导体平板(z=0和z=d)之间的空气中传播的
电磁波,已知其电场强度为
E
ey E0
sin(
d
z) cos(t
kx)
式中k为常数,求:(1)磁场强度;(2)两导体表面的面电流
密度。
解:(1)磁场强度
例2 已知在无源的自由空间中,
E exE0 cos(t z)
其中E0、β为常数,求 H。
解:无源即所研究区域内没有场源电流和电荷,J =0, ρ =0。
ex ey ez
E x
y
z
0
H t
Ex 0 0
ey
E0
sin
t
z
0
t
(ex Hx
ey
H
y
ez
Hz
)
由上式可以写出:
Hx 0, Hz 0
磁场强度和坡印廷矢量
例 1、 在无源的自由空间中,已知磁场强度
H ey 2.63105 cos(3109t 10z) (A/ m)
求位移电流密度JD 。
解:无源的自由空间中J = 0, 由
D H t JD
ex ey
ez
JD
D t
H
x
y
z
ex
H y z
0 Hy(z) 0
ex 2.63104 sin(3109 t 10z) ( A / m2 )
( E) 2E H t
H E E
t
E 0
所以,电场强度满足的波动方程为
(电磁场)练习题A
(电磁场)练习题A【一】填空题1、矢量z y x e e eA ˆˆˆ++= 的大小为。
2、由相关于观看者静止的,且其电量不随时间变化的电荷所产生的电场称为。
3、时变电磁场的频率越高,集肤效应越。
4、反映电磁场中能量守恒与转换规律的定理是。
5、介质极化以后,介质中出现许多排列方向大致相同的6、亥姆霍兹定理说明:在无界空间区域,矢量场可由其及〔〕确定。
5、单色平面波中的“单色”是指波的单一。
6.关于某一标量u ,它的梯度用哈密顿算子表示为; 在直角坐标系下表示为。
【二】选择题1、静电场是()A.无旋场B.旋涡场C.无散场D.既是有散场又是旋涡场2、一个标量场中某个曲面上梯度为常数时 〔〕A.其旋度必不为零B.其散度为零C.该面为等值面D.其梯度也为零3、磁感应强度与磁场强度的一般关系为( )A.H B μ=B.B H μ=C.0H B μ=D.0B H μ=4、有100Ω、1000Ω、10千欧的三个电阻,它们的额定功率基本上0.25瓦,现将三个电阻串联起来,如图,那么加在这三个电阻上的电压U 最多不能超过多少?〔〕A 、5伏B 、45伏C 、50伏D 、55.5伏5、均匀导电媒质的电导率不随()变化。
A.电流密度B.空间位置C.时间D.温度【三】名词解释 1、坡印廷矢量。
2、均匀平面电磁波。
3、无散场:【四】计算题1、标量场()z e y x z y x +=32,,ψ,在点()0,1,1-P 处〔1〕求出其梯度的大小〔2〕求梯度的方向2、按要求完成以下题目〔1〕判断矢量函数y x e xz ey B ˆˆ2+-= 是否是某区域的磁通量密度? 〔2〕假如是,求相应的电流分布。
【五】综合题1、一内半径为a 外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点,试求1〕球壳内外表面上的电荷〔2〕球心O 点处,由球壳内表面上电荷产生的电势〔3〕球心O 点处的总电势《电磁场》复习题B一、填空题1、A ,B 为真空中两个平行的“无限大”均匀带电平面,两平面间的电场强度大小为0E ,两平面外侧电场强度大小都为3E 0,方向如图,那么A ,B 两平面上的电荷密度分别为=σA ,=σB 。
电磁场与电磁波习题及答案
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u v g2静电场的基本方程积分形式为:CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
第07章 时变电磁场(1)
在理想导体中,无位移电流,但有传导电流;
在一般介质中,既有传导电流,又有位移电流。
例 1 已知 海水的电导率为4S/m,相对介电常数为81,求频率为1MHz时,
位移电流振幅与传导电流振幅的比值。
解:设电场随时间作正弦变化,表示为
E ex Em cos t
则位移电流密度为
D Jd ex 0 r Em sin t t
其振幅值为 传导电流的振幅值为
J dm 0 r Em 4.5 103 Em
J cm Em 4 Em
J dm 1.125 10 3 J cm
故
例 2 自由空间的磁场强度为
H ex H m cos(t kz ) A/m
式中的 k 为常数。试求:位移电流密度和电场强度。
解:E 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利用麦克斯韦 方程组可以确定 k 与ω 之间所满足的关系,以及与 E 相应的其它场矢量。
B E (ex t Ex e y e y z
对时间 t 积分,得
ey ez ) ex Ex x y z E0 cos(t kz ) ey kE0 sin(t kz ) z
H y k 2 Em ex ex sin(t kz ) z z Hz
由
D H t
D Dx ex ex Em sin(t kz ) t t
k
2 2
习题7-4
爱因斯坦(1879-1955)在他所著的“物理学演变”一书中关于麦
而由 H J
J 0 t J ( H ) 0
电磁场精选复习题 附答案
电磁场精选复习题一、单项选择题(在答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)。
1、导体在静电平衡下,其体内电荷密度( B )。
A.为常数B.为零C.不为零D.不确定2、两个点电荷对试验电荷的作用力可表示为两个力的( D )。
A.算术和B.代数和C.平方和D.矢量和3、电介质极化后,其内部存在( D )。
A. 自由正电荷B. 自由负电荷C. 自由正负电荷D. 电偶极子4、在两种导电介质的分界面处,电场强度的( A )保持连续.A.切向分量B.幅值C.法向分量D.所有分量5、介电常数为ε的介质区域中,静电荷的体密度为ρ,已知这些电荷产生的电场为E(x,y,z),而D(x,y,z)=εE(x,y,z)。
下面的表达式中正确的是( C )。
A. ▽·D=0B. ▽·E=ρ/ε0C. ▽·D=ρD. ▽×D=ρ6、介质的极化程度取决于:( D )。
A:静电场B: 外加电场C: 极化电场D: 外加电场和极化电场之和7、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。
A.ε0εrB. 1/ε0εrC. εrD. 1/εr8、梯度的:( C )。
A: 散度为0 B: 梯度为0 C: 旋度为09、旋度的:( A )。
A: 散度为0 B: 梯度为0 C: 旋度为0 10、导体电容的大小( C ) A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关D.与导体间电位差有关11、下面的矢量函数中哪些可能是磁场:( B )。
A: r ar =H e B:()x y ay ax =-+H e e C: ()x y ax ay =+-H e e12、在两种介质的分界面上,若分界面上存在传导电流,则边界条件为( B ) A. H t 不连续,B n 不连续B. H t 不连续,B n 连续C. H t 连续,B n 不连续D. H t 连续,B n 连续13、磁介质中的磁场强度由( D )产生. A.自由电流 B.束缚电流C.磁化电流D.自由电流和束缚电流共同14、相同场源条件下,磁媒质中的磁感应强度是真空中磁感应强度的( C )倍。
工程电磁场导论-知识点-时变电磁场习题
1、时变电磁场的激发源是( )。
A .电荷和电流B .变化的电场和磁场2.坡印廷矢量S 的瞬时表示为__________________,平均值为________________。
3.位移电流的表达式为( )A .J D =⎰⎰∂∂S t D ·dsB .J D =t D ∂∂C .JD =⎰⎰∂∂-S t D ·dsD .J D =tD ∂∂- 4.在理想介质中,波阻抗为( )A .实数B .虚数C .复数D .零5.电磁波的传播速度等于___________。
6.时变电磁场中的感应电动势,包括发电机电动势和变压器电动势二部分,它们产生的条件是( )。
A. 导体回路和磁场随时间变化B. 只要磁通随时间变化C. 导体回路运动和磁场随时间变化D. 导体回路运动切割磁力线和磁场随时间变化7.由动态位A 和ϕ求E 和B 的关系式是( )。
A.E =ϕ-∇,B =∇·A B. E =ϕ-∇-t A ∂∂ 和B =∇⨯A C. E=ϕ∇+t A∂∂ 和B =∇⨯A D. E =ϕ-∇-t A ∂∂ ,B =-∇⨯A8.平面电磁波的波阻抗等于( )。
A.μεB. με1 C.με1D. εμ9. 电磁感应定律的本质就是变化的磁场产生 。
10.全电流定律的微分方程为( )A .▽×H=J CB .▽×H=J+t D ∂∂C .▽×H=tD ∂∂ D .▽×H=011.达朗贝尔方程(动态位)12.什么是传导电流?在时变场中,传导电流是否保持连续?13. 坡印亭矢量14. 用场的观点分析静电屏蔽、磁屏蔽和电磁屏蔽,对屏蔽材料有什么要求?。
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场第4章时变电磁场在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。
电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。
在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。
本章对时变电磁场的位函数及其微分方程进行了讨论。
电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。
本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。
4. 1 波动方程由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。
下面建立无源空间中电磁场的波动方程。
在无源空间中,电流密度和电荷密度处处为零,即0ρ=、0=J 。
在线性、各向同性的均匀媒质中,E 和H 满足的麦克斯韦方程为t ε=?EH (4.1.1) tμ=-?HE (4.1.2) 0?=H (4.1.3) 0?=E (4.1.4)对式(4.1.2)两边取旋度,有()()tμ=-E H 将式(4.1.1)代入上式,得到22()0t με+=?EE利用矢量恒等式2()()=??-?E E E 和式(4.1.4),可得到2220tμε??-=?EE (4.1.5)此式即为无源区域中电场强度矢量E 满足的波动方程。
同理可得到无源区域中磁场强度矢量H 满足的波动方程为2220tμε??-=?H H (4.1.6)无源区域中的E 或H 可以通过求解式(4.1.5)或式(4.1.6)的波动方程得到。
在直角坐标系中,波动方程可以分解为三个标量方程,每个方程中只含有一个场分量。
例如,式(4.1.5)可以分解为222222220x x x xE E E E x y z tμε++-= (4.1.7) 222222220yyyyE E E E x y z t με++-= (4.1.8)222222220z z z zE E E E x y z t με++-= (4.1.9)在其它坐标系中分解得到的三个标量方程都具有复杂的形式。
《电磁场理论》练习题与参考答案(最新版)
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场理论习题
《电磁场理论》题库《电磁场理论》综合练习题1一、 填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为:。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为。
4.在理想导体的表面,的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为:。
6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。
8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。
二、 简述题(每题5分,共20分) 11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题(每题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+= ,z y x e e e B ˆˆ3ˆ5--= ,求 (1)B A + (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为(1) 试写出其时间表达式;(2) 说明电磁波的传播方向;四、应用题(每题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球内任一点的电场强度(2) 球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
电磁场习题答案
1-25 已知圆球坐标系中矢量为 A = a R (2 cos ϕ R 3 ) + a θ sin θ ,求该矢量在直角坐标系中
的表达式。
3
答案: A = ax Ax + a y Ay + az Az 其中, Ax = (
2 x2 x +y
2 2
+ x3 z + xy 2 z + xz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
1-9 已知一标量函数 φ = sin (πx 2) sin (πy 3) e − z ,求:① 点 p( 1, 2, 3) 处 φ 增加速率最
快的方向及大小; ② 点 p( 处向坐标原点方向 φ 增加速率 1, 2, 3) (方向导数) 的大小。 答案:① am =
-1
π 2 + 27
=
(π ay + 3 3az ), ∇u =
Ay = (
2 xy
x +y
2 2
+ x 2 yz + y 3 z + yz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
Az = (
2 xz
x +y
2 2
− x4 − 2 x2 y 2 − x2 z 2 − y 2 z 2 − y 4 ) ( x2 + y 2 + z 2 )2 。
1-26 球 坐 标 系 中 的 两 个 矢 径 r1 和 r2 的 终 点 p1 和 p 2 的 坐 标 分 别 为 ( R1 ,θ 1 , ϕ 1 ) 和
1 (ax + 2a y − 3az ) ;② A − B = 53 ;③ A • B = −11 ; 14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、时变电磁场的激发源是( )。
A .电荷和电流
B .变化的电场和磁场
C .同时选择A 和B
2.坡印廷矢量S 的瞬时表示为__________________,平均值为________________。
3.位移电流的表达式为( )
A .J D =⎰⎰∂∂S t
D ·ds B .J D =t D ∂∂ C .J D =⎰⎰∂∂-S t D ·ds D .J D =t
D ∂∂- 4.在理想介质中,波阻抗为( )
A .实数
B .虚数
C .复数
D .零
5.电磁波的传播速度等于___________。
P159
6.时变电磁场中的感应电动势,包括发电机电动势和变压器电动势二部分,它们产生的条件
是( )。
A. 导体回路和磁场随时间变化
B. 只要磁通随时间变化
C. 导体回路运动和磁场随时间变化
D. 导体回路运动切割磁力线和磁通随时间变化
7.由动态位A 和ϕ求E 和H 的关系式是( )。
A. E =ϕ-∇,B =∇·A
B. E =ϕ-∇-t A ∂∂ 和B =∇⨯A
C. E=ϕ∇+t A ∂∂ 和B =∇⨯A
D. E =ϕ-∇-t A ∂∂ ,B =-∇⨯A P156 8.平面电磁波的波阻抗等于( )。
A.με
B. με
1 C.με1
P159 D. ε
μ
9. 电磁感应定律的本质就是变化的磁场产生 。
10.全电流定律的微分方程为( )
A .▽×H=J C
B .▽×H=J+t D ∂∂
C .▽×H=t
D ∂∂ D .▽×H=0 11.达朗贝尔方程(动态位)
12.什么是传导电流?在时变场中,传导电流是否保持连续?
13. 坡印亭矢量
14. 用场的观点分析静电屏蔽、磁屏蔽和电磁屏蔽,对屏蔽材料有什么要求?
静电屏蔽p51:利用导体在静电场中达到平衡状态时具有(1)导体内电场为0;(2)导体为等位体;(3)电荷只分布在导体表面。
故把导体空腔接地,可把导体内外的场分割为两个互不影响的独立系统,达到屏蔽的目的。
(把不可受外界电场影响的带电体或不希望去影响外界的带电体用一接地的金属壳罩起来,以隔绝有害的静电影响)
磁屏蔽P138:利用高磁导率材料具有低磁阻的特性,将其制成有一定厚度的外壳,起磁分路作用,使壳内设备少受磁干扰,达到磁屏蔽。
电磁屏蔽p207:一方面利用电磁波在金属表面产生涡流,从而抵消原来的磁场;另利用电磁波在金属表面产生反射损耗和透射波在金属内的传播过程中衰减产生吸收损耗,达到屏蔽作用。
屏蔽材料:静电屏蔽——金属
磁屏蔽 ——铁磁性材料
电磁屏蔽——良导体。