椭圆双曲线抛物线
圆椭圆双曲线抛物线知识点汇总
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
椭圆双曲线抛物线的参数方程
椭圆双曲线抛物线的参数方程简介椭圆、双曲线和抛物线是常见的平面曲线,它们具有广泛的应用于数学、物理、工程等领域中。
在本文中,我们将探讨椭圆、双曲线和抛物线的参数方程形式,以及它们的基本性质和应用。
一、椭圆的参数方程1. 椭圆的定义椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点的集合。
椭圆的参数方程可以通过将直角坐标系中的x和y用参数形式表示得到。
2. 椭圆的参数方程形式椭圆的参数方程形式如下:x = a * cos(t)y = b * sin(t)其中,t为参数,a为椭圆的长半轴长度,b为椭圆的短半轴长度。
3. 参数方程的优势使用参数方程形式表示椭圆可以简化计算和表达。
通过改变参数t的取值范围,我们可以绘制椭圆的各个部分,包括角点和曲线的弧段。
二、双曲线的参数方程1. 双曲线的定义双曲线可以被定义为平面上到两个定点F1和F2的距离之差等于常数2a的点的集合。
双曲线的参数方程可以通过将直角坐标系中的x和y用参数形式表示得到。
2. 双曲线的参数方程形式双曲线的参数方程形式如下:x = a * sec(t)y = b * tan(t)其中,t为参数,a为双曲线的横轴长度,b为双曲线的纵轴长度。
3. 参数方程的应用双曲线的参数方程可以用于解决各种问题,如天体运动中的轨道计算、物体运动中的抛物线模型等。
双曲线也在工程领域中具有广泛的应用,如电磁场分析、无线通信、流体力学等。
三、抛物线的参数方程1. 抛物线的定义抛物线可以被定义为平面上到一个定点F的距离等于点到一条直线L的垂直距离的点的集合。
抛物线的参数方程可以通过将直角坐标系中的x和y用参数形式表示得到。
2. 抛物线的参数方程形式抛物线的参数方程形式如下:x = a * t^2y = 2a * t其中,t为参数,a为抛物线的参数,控制抛物线的曲率。
3. 参数方程的特点抛物线的参数方程形式非常简洁,能够准确地描述抛物线的形状和位置。
通过改变参数a的取值,可以获得不同形状和大小的抛物线。
必修十三中的椭圆、抛物线和双曲线
必修十三中的椭圆、抛物 线和双曲线
汇报人:XX
目录
01 02 03 04 05 06
单击添加目录项 标题
椭圆、抛物线和 双曲线的定义和 性质
椭圆、抛物线和 双曲线的几何应 用
椭圆、抛物线和 双曲线的解析方 法
椭圆、抛物线和 双曲线的参数方 程和极坐标方程
椭圆、抛物线和 双曲线的离心率 和准线方程
参数方程:通过引入参数 来表示椭圆、抛物线和双 曲线的几何特征,参数的 变化可以描述曲线的形状
和大小。
极坐标方程:利用极坐标 系中Байду номын сангаас角度和距离来表示 椭圆、抛物线和双曲线的 几何特征,极坐标方程可 以描述曲线的位置和形状。
参数方程和极坐标方程的 应用:在物理学、工程学、 天文学等领域中,参数方 程和极坐标方程被广泛应 用于描述和分析各种曲线
抛物线:解析法在抛物线中的应用主要 体现在求抛物线的标准方程和焦点坐标 等方面,有助于更好地掌握抛物线的性 质和应用。
双曲线:解析法在双曲线中的应用主要体 现在求双曲线的标准方程和离心率等方面, 有助于更好地掌握双曲线的性质和应用。
综合应用:解析法在椭圆、抛物线和双 曲线中都有广泛的应用,通过解析法的 运用,可以更好地理解这些曲线的性质 和方程形式,从而更好地掌握其应用。
离心率:椭圆、抛物线和双曲线的离心率分别为$e = \frac{c}{a}$、$e = 1$和$e > 1$,其中$c$是焦点到中心的距离
03
椭圆、抛物线和双曲线的几 何应用
椭圆、抛物线和双曲线在实际问题中的应用
椭圆的应用:描述行星和 卫星的运动轨迹,以及地 球上自然现象如潮汐的周
期性变化。
抛物线的应用:设计卫星 通信系统,实现无线信号
椭圆双曲线抛物线
目录
• 椭圆 • 双曲线 • 抛物线 • 三者之间的联系与区别 • 应用场景
01
椭圆
定义与性质
性质
定义:椭圆是由平面内与两个定 点$F_1$和$F_2$的距离之和等于 常数(大于$F_1F_2$)的所有点 组成的图形。
椭圆上任意一点到两焦点的距离 之和为常数,且等于椭圆的长轴 长。
区别
椭圆的焦点在x轴上,准线在y轴上;双曲线的焦点在x 轴上,准线在y轴上;抛物线的焦点在顶点,准线在x 轴上。
05
应用场景
椭圆的应用场景
天文观测
椭圆常用于描述行星和卫星的运 行轨道,是研究天文学的重要工
具。
建筑设计
椭圆在建筑设计中常用于门窗、壁 炉和吊顶等造型设计,增添空间的 美感。
光学仪器
椭圆形状的透镜或反射镜常用于光 学仪器中,如望远镜和显微镜。
面积与周长
面积
对于给定的抛物线,其面积可以通过以 下公式计算:$S = frac{1}{2} times text{base} times text{height}$。
VS
周长
由于抛物线是连续的曲线,其周长没有精 确的公式来表示。但对于某些特殊的抛物 线形状,如半圆形或四分之一圆形,其周 长可以用相应的公式来计算。
焦点与准线
焦点
对于开口向右或向上的抛物线,焦点位于直线 $x = frac{p}{2}$ 或 $y = frac{p}{2}$ 上;对于开口向左或向下的 抛物线,焦点位于直线 $x = -frac{p}{2}$ 或 $y = -frac{p}{2}$ 上。
准线
对于开口向右或向上的抛物线,准线是 $x = -frac{p}{2}$ 或 $y = -frac{p}{2}$;对于开口向左或向下的抛物线, 准线是 $x = frac{p}{2}$ 或 $y = frac{p}{2}$。
椭圆,双曲线,抛物线性质
1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤b -a≤y≤a[1]2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a 或e=√1-b^2/a^25、离心率范围 0<e<16、离心率越大椭圆就越扁,越小则越接近于圆7.焦点(当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)切线法线定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB切椭圆C于点P,且A和B在直线上位于P 的两侧,则∠APF1=∠BPF2。
定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB为C在P点的法线,则AB平分∠F1PF2。
上述两定理的证明可以查看参考资料。
方程标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0)其中a>0,b>0。
a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。
即标准方程的统一形式。
椭圆的面积是πab。
椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1。
椭圆、双曲线、抛物线的统一定义以及动画演示
双曲线的定义 :
平面内与两定点F1、F2的距离的差的绝对 值是常数(小于|F1F2|)的点的轨迹叫做双 曲线.这两个定点F1、F2叫做双曲线的 焦点,两个焦点之间的距离叫做焦距.
说明:若动点M到两定点的距离之差的 绝对值为2a ,| F1 F2| = 2c 当c > a >0时,动点M的轨迹是双曲线; 当a = c>0时,动点M的轨迹是两条射线; 当 0 < c < a时,动点M无轨迹
关于椭圆、双曲线、抛物线你了解多少? 在我们的实际生活中有这些曲线吗? 它们分别给我们什么印象?
椭圆?
汽车贮油罐的横截面的外轮廓线 的形状像椭圆.
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
椭圆定点 F1 ,F2的距离之和 为常数(大于F1 F2 距离)的点的轨迹 叫椭圆,两个定点 叫椭圆的焦点,两 焦点的距离叫做椭 圆的焦距.
的点的轨迹叫做抛物线.
· N M
定点F叫做抛物线的焦点.
·F
定直线l 叫做抛物线的准线.
即:
若
︳MF ︳MN
︳ ︳ 1,
则 点M的
轨迹
是
抛物线
。
椭圆的定义:
平面内到两定点F1、F2的距离之和等于 常数(大于|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点,两焦点 间的距离叫做焦距.
说明: 若动点M到的距离之和为2a , | F1 F2| = 2c 则当a>c>0时,动点M的轨迹是椭圆; 当a = c>0时,动点M的轨迹是线段F1 F2 ; 当 0 < a < c时,动点M无轨迹
抛物线的定义 :
平面内到一个定点F和一条定直线L(F不在L 上)的距离相等的点轨迹叫做抛物线,定点F叫做 抛物线的焦点,定直线L叫做抛物线的准线.
椭圆双曲线与抛物线
椭圆双曲线与抛物线椭圆双曲线和抛物线是数学中常见的曲线形状,它们在几何、物理和工程学中有广泛的应用。
本文将分别介绍椭圆双曲线和抛物线的定义、特点以及一些实际应用。
一、椭圆双曲线椭圆双曲线是平面上一类特殊的闭合曲线,它由两个焦点和一个恒定的距离和焦点间的任意点的距离之和构成。
椭圆双曲线可以分为椭圆和双曲线两种情况。
1. 椭圆椭圆是一种有两个焦点的闭合曲线,它的定义是:平面上到两个固定点的距离之和等于一个常量。
椭圆具有以下特点:- 所有点到两个焦点的距离之和等于一个常量。
- 椭圆具有对称性,焦点为对称中心。
- 椭圆的离心率小于1,离心率为0时为一个圆。
椭圆在几何学和天体力学中有广泛的应用。
例如,行星绕太阳的轨道就呈现出椭圆形状,地球绕太阳的轨道也是一个椭圆。
2. 双曲线双曲线也是一类有两个焦点的闭合曲线,它的定义是:平面上到两个固定点的距离之差等于一个常量。
双曲线具有以下特点:- 所有点到两个焦点的距离之差等于一个常量。
- 双曲线具有对称性,焦点为对称中心。
- 双曲线的离心率大于1。
双曲线在物理学、电磁学和天体力学中有广泛的应用。
例如,光线在折射过程中呈现双曲线的形状,行星绕太阳的超级高速轨道也是一个双曲线。
二、抛物线抛物线是一种特殊的曲线形状,它由一个定点(焦点)和一个定直线(准线)上的所有点到焦点和准线的距离相等而构成。
抛物线具有以下特点:- 所有点到焦点和准线的距离相等。
- 抛物线具有对称性,焦点和准线在曲线上的对称点对称。
- 抛物线在平面上无限延伸。
抛物线在物理学、工程学和天文学中有广泛的应用。
例如,摩天大楼的外形常常设计成抛物线形状,抛物面反射器在卫星通讯中也起到重要作用。
总结:椭圆双曲线和抛物线都是重要的数学曲线,在几何、物理和工程学中有广泛的应用。
椭圆双曲线包括椭圆和双曲线两种形态,而抛物线则是一种特殊的曲线形状。
它们的定义、特点和应用在不同领域中都有一定差异,但都有着重要的实际意义。
椭圆、抛物线、双曲线的定义及性质
椭圆、抛物线、双曲线的定义及性质椭圆、抛物线、双曲线是高中数学中常见的三种二次曲线,它们的定义和性质对于我们理解数学和应用数学起着非常重要的作用。
本文将详细介绍这三种曲线的定义以及它们的一些重要性质。
一、椭圆的定义及性质椭圆是平面上到两个定点F1、F2距离之和为常数2a的所有点P的轨迹,这两个定点称为椭圆的焦点,椭圆的长轴为2a,短轴为2b,半径为c,满足 $a^2=b^2+c^2$。
椭圆的离心率$e=\frac{c}{a}$,离心率是描述椭圆扁平程度的一个参数,$0<e<1$,当离心率为0时,椭圆就退化成为一个圆。
椭圆具有如下性质:1.椭圆的中心在两个焦点的中垂线上;2.椭圆的两个焦点到圆心连线的夹角等于圆心到椭圆上任意一点P的切线与椭圆长轴之间的夹角;3.椭圆的周长和面积分别为 $C=4aE(e)$,$S=\pi a b$;其中$E(e)$为第二类完全椭圆积分。
二、抛物线的定义及性质抛物线是平面上到一个定点F到直线l距离等于点P到定点F 距离的所有点P的轨迹,这个定点F称为抛物线的焦点,直线l称为抛物线的准线。
抛物线具有如下性质:1.抛物线的焦点到抛物线顶点的距离等于抛物线定点F到准线距离的一半,称为抛物线的焦距;2.抛物线的汇聚点为无穷远处;3.对于平面上任意的一点P,直线FP与准线l的夹角等于点P 到抛物线顶点的切线与抛物线轴线的夹角相等。
三、双曲线的定义及性质双曲线是平面上到两个定点F1、F2距离之差为常数2a的所有点P的轨迹,这两个定点称为双曲线的焦点,而常数2a为双曲线的距离。
双曲线具有如下性质:1.双曲线的两个分支之间存在一对渐近线,渐近线与双曲线的距离趋近于无穷;2.双曲线的离心率$e=\frac{c}{a}>1$;3.双曲线没有汇聚点,但是有两个分支的顶点。
总之,椭圆、抛物线、双曲线是研究二次曲线非常重要的三种类型,它们都具有自己独特的定义及性质。
理解这些性质不仅有助于我们提高抽象思维和数学运用能力,还有助于我们在物理、工程、计算机等领域的具体应用中理解和解决实际问题。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
双曲线椭圆抛物线知识点总结
双曲线椭圆抛物线知识点总结椭圆标准 方程(焦点在x 轴))0(12222>>=+b a by a x (焦点在y 轴))0(12222>>=+b a bx a y 定义第一定义:平面内与两个定点1F ,2F 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
{}a MFMF M 221=+()212F F a >第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。
范 围 x a ≤ y b ≤x b ≤ y a ≤顶点坐标 )0,(a ± (0,)b ±),0(a ± (,0)b ±对 称 轴 x 轴,y 轴;长轴长为a 2,短轴长为b 2对称中心 原点(0,0)O焦点坐标1(,0)F c 2(,0)F c -1(0,)F c 2(0,)F c -焦点在长轴上,22c a b =-; 焦距:122F F c =离 心率a c e = (01e <<) ,ab a ac e 22222-==, e 越大椭圆越扁,e 越小椭圆越圆。
过椭圆上一点的切线12020=+byy a x x 利用导数 00221y y x xa b+= 利用导数双曲线双曲线标准方程(焦点在x 轴))0,0(12222>>=-b a b y a x 标准方程(焦点在y 轴))0,0(12222>>=-b a b x a y 定义第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。
这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
{}a MFMF M 221=-()212F F a <第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。
椭圆双曲线抛物线知识点
椭圆双曲线抛物线知识点椭圆、双曲线和抛物线是常见的曲线形状,它们在数学和物理中有广泛的应用。
本文将介绍椭圆、双曲线和抛物线的基本定义、性质、方程和常见应用。
一、椭圆(ellipse)椭圆是一个平面上的闭合曲线,该曲线的各点到两个定点(称为焦点)的距离之和是一个常数。
椭圆有两个焦点和两个短轴,两个短轴的中点称为椭圆的中心。
椭圆的长轴是通过焦点的直线,长轴的一半称为椭圆的半长轴,短轴的一半称为椭圆的半短轴。
椭圆的数学表达式为:x^2/a^2 + y^2/b^2 = 1其中a和b分别是椭圆半长轴和半短轴的长度。
椭圆的性质:1.椭圆是轴对称的,关于x轴和y轴都有对称性。
2.椭圆的离心率0<e<1,离心率越接近0,椭圆越圆。
3.椭圆的周长可以用椭圆的长轴和半短轴的长度计算。
椭圆的应用:1.椭圆的几何性质使它在图形设计和艺术中有广泛的应用。
2.椭圆的光学性质使它在透镜和镜面的设计中有应用。
3.椭圆在天体力学中用来描述行星的轨道。
4.椭圆在密码学中用来生成加密算法的公钥和私钥。
二、双曲线(hyperbola)双曲线是一个平面上的开放曲线,该曲线的各点到两个焦点的距离之差是一个常数。
双曲线有两个焦点和两个短轴,两个短轴的中点称为双曲线的中心。
双曲线的长轴是通过焦点的直线,长轴的一半称为双曲线的半长轴,短轴的一半称为双曲线的半短轴。
双曲线的数学表达式为:x^2/a^2 - y^2/b^2 = 1其中a和b分别是双曲线半长轴和半短轴的长度。
双曲线的性质:1.双曲线有两条渐进线,它们与双曲线的轴相切。
2.双曲线是非对称的,关于x轴和y轴没有对称性。
3.双曲线的离心率e>1,离心率越大,双曲线越扁。
4.双曲线的焦点和顶点与轴的关系可以用双曲线的方程来确定。
双曲线的应用:1.在物理学中,双曲线用来描述光学中的反射和折射现象。
2.在工程学中,双曲线用于设计天线的形状,以提高信号接收和发送的效果。
3.在经济学中,双曲线用来描述供求曲线和价格变动趋势。
抛物线椭圆双曲线定义
抛物线椭圆双曲线定义抛物线平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程右开口抛物线:y^2=2px左开口抛物线:y^2=-2px上开口抛物线:y=x^2/2p下开口抛物线:y=-x^2/2p3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)4.它的解析式求法:三点代入法5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.抛物线:y = ax* + bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x-h)* + k就是y等于a乘以(x-h)的平方+kh是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2pyx^2=-2py椭圆目录?定义?标准方程?公式?相关性质?历史定义椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。
椭圆抛物线双曲线公式大全
椭圆抛物线双曲线公式大全一、椭圆。
(一)椭圆的标准方程。
1. 焦点在x轴上。
设椭圆的标准方程为frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),其中a为长半轴长,b为短半轴长,c为半焦距,且c^2=a^2-b^2,焦点坐标为(± c,0)。
2. 焦点在y轴上。
方程为frac{y^2}{a^2}+frac{x^2}{b^2}=1(a > b>0),焦点坐标为(0,± c),同样c^2=a^2-b^2。
(二)椭圆的离心率。
e=(c)/(a)(0 < e<1),离心率反映了椭圆的扁平程度。
(三)椭圆的参数方程。
<=ft{begin{array}{l}x = acosθ y=bsinθend{array}right.(θ为参数)二、抛物线。
(一)抛物线的标准方程。
1. 焦点在x轴正半轴上。
方程为y^2=2px(p>0),焦点坐标为((p)/(2),0),准线方程为x =-(p)/(2)。
2. 焦点在x轴负半轴上。
y^2=-2px(p > 0),焦点(-(p)/(2),0),准线x=(p)/(2)。
3. 焦点在y轴正半轴上。
x^2=2py(p>0),焦点(0,(p)/(2)),准线y =-(p)/(2)。
4. 焦点在y轴负半轴上。
x^2=-2py(p>0),焦点(0,-(p)/(2)),准线y=(p)/(2)。
(二)抛物线的离心率。
e = 1三、双曲线。
(一)双曲线的标准方程。
1. 焦点在x轴上。
方程为frac{x^2}{a^2}-frac{y^2}{b^2}=1(a>0,b>0),其中a为实半轴长,b为虚半轴长,c为半焦距,且c^2=a^2+b^2,焦点坐标为(± c,0)。
2. 焦点在y轴上。
frac{y^2}{a^2}-frac{x^2}{b^2} = 1(a>0,b>0),焦点坐标为(0,± c),c^2=a^2+b^2。
高中数学椭圆双曲线抛物线的标准方程与几何性质知识点
高中数学椭圆双曲线抛物线的标准方程与几何性质知识点高中数学椭圆双曲线抛物线的标准方程与几何性质知识点知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的高中数学椭圆双曲线抛物线的标准方程与几何性质知识点,希望对你有所帮助。
椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义:1、到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2、到两定点F1,F2的距离之差的绝对值为定值2a(0|F1F2|)的点的轨迹3、与定点和直线的距离之比为定值e的点的'轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程(0,b0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b|x| 3 a,y Rx30中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P数学椭圆知识点双曲线⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0抛物线标准方程y2=2pxy2=—2p_2=2pyx2=—2py直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=—b/aX1_X2=c/a注:韦达定理判别式b2—4ac=0注:方程有两个相等的实根b2—4ac>0注:方程有两个不等的实根b2—4ac<0注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a—1=1—2sin2a半角公式sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos (A+B)—cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB【高中数学椭圆双曲线抛物线的标准方程与几何性质知识点】。
8.12椭圆、双曲线、抛物线的统一定义
8.7椭圆、双曲线、抛物线的统一定义1.椭圆、双曲线、抛物线的统一定义是在平面上,若动点 M 与一个定点F 及M 到一条定直线(定点 M 不在定直线上)距离之比等于常数 f ,当0<e <i 时,点M 的轨迹是椭圆;当 e >i 时,点M 的轨迹为双 曲线;当e = 1时,点M 的轨迹为抛物线.2 22 .椭圆 笃+当=1(a Ab>0)上点 M ( x 0,y 0)的左焦点半径+ ,右焦点半径a bx 2y2MF ?] =a —ex o ,椭圆手 p =1(a >b >0)上点P ( X o , y o )的下焦点半径 PF 』=a + ey °,上焦点 a b半径PF 2 =a-ey o .希望注意双曲线的焦半径与椭圆的焦半径的区别.2 2X y3•双曲线— 牙=1上一点P ( X o ,y o )的焦半径公式a b(1) x o >o , PF l=ex )+a , PF^ex^ - a ;(2) X o <o , PF 1 = —(ex o + a), PF 2 — —(ex o — a).4 .抛物线y 2二2px(p o)和抛物线x 2二2py(p o)的焦半径公式:如图所示,已知椭圆C 的焦点是3,o ), F 2C 3,0),点F 1到相应的准线的距离为 过F 2点且倾斜角为锐角的直线 l 与椭圆C 交于A 、B 两点,使得,F 2B =3F 2A .(1)求椭圆C 的方程;(2)求直线l 的方程.PFPFy o •卫2、-3 3例2 已知双曲线b2x2- a2y2=a2b2的离心率的取值范围为e (1 • 2, •::),左、右焦点分别为F2,左准线为丨,能否在双曲线的左支上找到一点P,使得PF1是P到丨的距离d与PF2的等比中项?例3 如图所示.有一张长为8,宽为4的矩形纸片ABCD ,按图示的方法进行折叠,使每次折叠后点B都落在AD边上.此时将B记为B'(注:图中FE为折痕.点F也可落在边CD 上).过B'作B '// CD交EF于点T .求点T的轨迹方程.已知线段AB的两个端点在椭圆2 2—-红=1上滑动,且25 1632AB = m(——c m £10),5M为AB的中点,求M到y轴的最大距离.I1例6一动点到定直线 X = 3的距离是它到定点 F ( 4,0)的距离的-,求这个动点的轨迹方程.28.12椭圆、双曲线、抛物线的统一定义证:2 2例5 已知AB 是双曲线 冷一仝=1(a .o,b .0)过右焦点a 2b 21 AF ,1 BF ,为定值,并求出该定值.1-已知双曲线A m 2x 2=1(m >°)的一个顶点到它的一条渐近线的距离为5,则m=C . 3最小值为4MF +5MA 的最小值为最大值为 _________________解答题2.已知点P 是抛物线y 2 = 2x 上的一个动点,则点P 到点(0,2)的距离与 P 到该抛物线准线的距离之和的3.已知抛物线y 2= 2px (p>0),过焦点且斜率为 坐标为2,则该抛物线的准线方程为1的直线交抛物线于 A 、 B 两点,若线段 AB 的中点的纵A . x = 1 C . x = 2 D . x =- 24.过原点的直线B . x =- 12 2I 与双曲线x -73 =- 1交于两点,则直线l 的斜率的取值范围是4 3一亜一 2,-m ,-舟U 于,+o25. 设P 是双曲线x 2-= 1的右支上的动点,F 为双曲线的右焦点,已知 3A ( 3,1),则 |FA|+ |PF|的最小值为 ________ . 6. 如图,抛物线顶点在原点,圆 x 2+ y 2- 4x = 0的圆心恰是抛物线的焦点.(1) ______________________ 抛物线的方程为 ; (2) 一直线的斜率等于 2,且C 、D 四点,贝U |AB|+ |CD| = ________ .2 2x V7.已知椭圆的方程是 — 1(a 5),它的两个焦点分别为F 、F ,且F 1 F 2 =8,弦 AB 过 F ],则△ AB F 2的周长为 ___________________________&若点A 的坐标为(3, 2), F 为抛物线y 2 =2x 的焦点,点P 是抛物线上一动点,则 PA+|PF 取得最 小值时点P 的坐标是 ________________________________ .9.已知点F 为双曲线2 2x y 169=1的右焦点, M 是双曲线右支上一动点,定点 A 的坐标是(5, 1),则10. P ( x, y )是椭圆2 2X . y a 2b 2= 1(a b 0)上任意一点, F 1> F 2是它的左、右焦点,则PF 1 PF 2 的一oo,,C .2 2y x11 •如图所示,M ,N 是椭圆C l :22=1(a b ■ 0)的一条弦,A (1, -2)a b是MN 的中点,以A 为焦点,以椭圆 C 2的下准线丨为相应准线的双曲线 C 2与直 线MN 交于点B (- l ,- 4),设曲线 G, C 2的离心率分别为 e ,,e 2 •(1) 试求e 1的值,并用a 表示双曲线的离心率 e 2 ; (2) 当e )e 2 =1时,求MB 的值.2 2x y2 212 •如图,点P(0,-1)是椭圆2=1(a b 0)的一个顶点,G 的长轴是圆C 2:x y =4的直a b(1) 求椭圆G 的方程;(2) 求 ABD 面积取最大值时直线|1的方程.径• 11 ,1 2是过点P 且互相垂直的两条直线,其中h 交圆C 2于两点,12交椭圆G 于另一点D(第12题图)。
椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。
4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。
(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。
二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。
椭圆双曲线抛物线公式汇总 椭圆双曲线抛物线公式
椭圆双曲线抛物线公式汇总椭圆双曲线抛物线公式双曲线的标准公式为: X /a - Y /b = 1(a>0,b>0) 而反比例函数的标准型是xy = c (c ≠ 0) 但是反比例函数确实是双曲线函数经过旋转得到的因为xy = c的对称轴是y=x, y=-x 而X /a - Y /b = 1的对称轴是x轴,y轴所以应该旋转45度设旋转的角度为a (a≠0,顺时针) (a为双曲线渐进线的倾斜角) 则有X = xcosa ysina Y = - xsina ycosa 取a = π/4 则X - Y = (xcos(π/4) ysin(π/4)) -(xsin(π/4) - ycos(π/4)) = (√2/2 x √2/2 y) -(√2/2 x - √2/2 y) = 4 (√2/2 x) (√2/2 y) = 2xy. 而xy=c 所以X /(2c) - Y /(2c) = 1 (c>0) Y /(-2c) - X /(-2c) = 1 (c 由此证得,反比例函数其实就是双曲线函数椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。
如L = ∫[0,π/2]4a * sqrt(1-(e*cost) )dt≈2π√((a b )/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=±a /C椭圆的离心率公式e=c/a(e2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x= a /C)的距离,数值=b /c椭圆焦半径公式|PF1|=a ex0 |PF2|=a-ex0椭圆过右焦点的半径r=a-ex过左焦点的半径r=a ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b /a点与椭圆位置关系点M(x0,y0) 椭圆x /a y /b =1点在圆内: x0 /a y0 /b点在圆上: x0 /a y0 /b =1点在圆外: x0 /a y0 /b >1直线与椭圆位置关系y=kx m ①x /a y /b =1 ②由①②可推出x /a (kx m) /b =1相切△=0相离△相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)|AB|=d = √(1 k )|x1-x2| = √(1 k )(x1-x2) = √(1 1/k )|y1-y2| = √(1 1/k )(y1-y2)椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b /a椭圆的斜率公式过椭圆上x /a y /b 上一点(x,y)的切线斜率为b *X/a y 抛物线的标准方程右开口抛物线:y =2px左开口抛物线:y =-2px上开口抛物线:x =2py下开口抛物线:x =-2pyp为焦准距(p>0)[编辑本段]3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P [编辑本段]4.它的解析式求法:以焦点在X轴上为例知道P(x0,y0)令所求为y =2px则有y0 =2px0∴2p=y0 /x0∴抛物线为y =(y0 /x0)x [编辑本段]5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1常用不等关系结论:对于椭圆
)0(12
22
2>>=+
b a b
y
a x
(1)c a >,(2)b a >,(3)c a PF c a +≤≤-||,(4)a x a ≤≤-0,(5)b y b ≤≤-0
2 椭圆
222
2
1(0)x y a b a
b
+
=>>的参数方程是cos sin x a y b θθ
=⎧⎨
=⎩. 离心率c
e a ==,
准线到中心的距离为
2
a
c
,焦点到对应准线的距离(焦准距)2
b
p c
=。
过焦点且垂直于长轴的弦叫通经,其长度为:a
b
2
2
3椭圆
222
2
1(0)x y a b a
b
+
=>>焦半径公式及两焦半径与焦距构成三角形的面积:
2
1()a
PF e x a ex c
=+
=+,2
2(
)a
PF e x a ex c
=-=-;122
1||tan
2
F P F P F P F S c y b ∆∠==。
当到过短轴端点处时,21PF F ∠最大,2tan ||2
12
021PF F b y c S PF F ∠==∆
4椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部22
00221x y a b ⇔+<. (2)点00(,)P x y 在椭圆222
2
1(0)x y a b a
b
+
=>>的外部22
2
2
1x y a b ⇔
+
>.
5 椭圆的切线方程: (1) 椭圆
222
2
1(0)x y a b a
b
+=>>上一点00(,)P x y 处的切线方程是002
2
1x x y y a
b
+
=. (2)过椭圆222
2
1x y a
b
+=外一点00(,)P x y 所引两条切线的切点弦方程是
002
2
1x x y y a
b
+
=.
(3)椭圆222
21(0)x y a b a
b
+=>>与直线0Ax By C ++=相切的条件是2
2
2
2
2
A a
B b c +=.
双曲线知识框图
1双曲线的焦半径:对于双曲线12
22
2=-
b
y a
x
2 焦准距c
b
p 2
=
; 准线间距c
a 2
2=
; 通径长2
2b
a
⨯
;
3 过双曲线焦点最短的弦长是a 2(与两支相交)或a
b
2
2(与一支相交),哪个小取哪个
4 双曲线
222
2
1(0,0)x y a b a
b
-
=>>的离心率c e a
=
=2
a
c
,
焦点到对应准线的距离(焦准距)2
b
p c
=。
过焦点且垂直于实轴的弦叫通经,其长度为:a
b
2
2
5 双曲线的方程与渐近线方程的关系: (1)若双曲线方程为
12
22
2=-
b
y a
x ⇒渐近线方程:
222
2
0x y a
b
-
=⇔x a
b y ±=.
(2)若渐近线方程为x a
b y ±=⇔0=±b
y a x ⇒双曲线可设为λ=-
2
22
2b
y a
x .
(3)若双曲线与
12
22
2=-
b y
a x
有公共渐近线,可设为
λ=-
2
22
2b
y
a x
(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 。
6 双曲线的切线方程:
(1)双曲线
222
2
1(0,0)x y a b a
b
-=>>上一点00(,)P x y 处的切线方程是002
2
1x x y y a
b
-
=. (2)过双曲线222
2
1x y a
b
-
=外一点00(,)P x y 所引两条切线的切点弦方程是
002
2
1x x y y a
b
-=.
(3)双曲线222
2
1x y a
b
-
=与直线0Ax By C ++=相切的条件是22222
A a
B b c -=.
抛物线知识框图
1抛物线px y 22
=的焦半径公式: 抛
物
线
2
2(0)y p x p =>焦半径0
2
p
C F x =
+.过焦点弦长
p x x p x p x CD ++=+
++=21212
2
.
2.焦点弦: 对于px y 22
=,过焦点的弦),(),,(2211y x B y x A ,
,sin 22
21α
p p x x AB =
++= 2
21p y y -=, 4
2
21p
x x =
3 . 焦半径为直径的圆与y 轴相切, 焦点弦为直径的圆与准线相切.
直线与圆锥曲线的位置关系
1 (1)相交:
0∆>⇔直线与椭圆相交;
0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;
0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时, 直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。
故在求解有关弦长、对称问题时,务必别忘了检验0∆>!
(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;
(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。
2 直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。
如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点; 3过双曲线
2
22
2b
y
a x
-
=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:
①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;
②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;
③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线; ④P 为原点时不存在这样的直线;
4过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
5只设不解,整体代换,是解析几何减少运算量的一种重要方法,常归思路是设出交点的坐标,通过联立方程组,消元,得出关于或的一元二次方程,然后根据根与系数的关系,得出两根和与与两根积。
整体代入目标中。
若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则
]4))[(1(||1||212
212212
x x x x k x x k
AB -++=
-+=
若
12
,y y 分别为A
、B
的纵坐标,则
]4))[(11(||11||212
212
212
y y y y k
y y k
AB -++
=-+
=,
若弦AB 所在直线方程设为,m ky x +=则A B 12y -。
特别地,焦点弦(过焦点的弦):
焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
6 遇到中点弦问题常用“韦达定理”或“点差法”求解。
(1)在椭圆
12
22
2=+b y a
x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-02
02
y a x b ; (2)在双曲线
12
22
2=-
b
y a
x 中,以00(,)P x y 为中点的弦所在直线的斜率k=
202y a x b ;
(3)在抛物线)0(22>=p px y 中,以00(,)P x y 为中点的弦所在直线的斜率0
y p k =。