数学建模期末考试2018A试的题目与答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
. 华南农业大学期末考试试卷(A卷)
2012-2013学年第二学期考试科目:数学建模
考试类型:(闭卷)考试考试时间:120 分钟
学号姓名年级专业
一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s =
(x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。
(1) 写出该问题的所有允许状态集合;(3分)
(2) 写出该问题的所有允许决策集合;(3分)
(3) 写出该问题的状态转移率。(3分)
(4) 利用图解法给出渡河方案. (3分)
解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分)
(2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分)
(3) s
k+1 = s
k
+ (-1) k d
k
(9分)
(4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。
或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分)
2
1、 二、(满分12分) 在举重比赛中.运动员在高度和体重方面差别很大.请就下
面两种假设.建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分
(2) 假定体重中有一部分是与成年人的尺寸无关.请给出一个改进模型。6
分
解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例.所以 y ∝I ∝S
设h 为个人身高.又横截面积正比于身高的平方.则S ∝ h
2
再体重正比于身高的三次方.则w ∝ h
3
(6分) (
2)
12分)
三、(满分14分) 某学校规定.运筹学专业的学生毕业时必须至少学习过
两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如下表所示。那么.毕业时学生最少可以学习这些课程中哪些课程?
记i=1.2.….9表示9门课程的编号。设i 表示第i 门课程选修.i 表示第i 门课程不选, 建立数学规划模型 (1) 写出问题的目标函数(4分) (2) 每人至少学习过两门数学课、三门运筹学课和两门计算机课,如何表示此约束条件? (5分)
(3) 某些课程有先修课要求, 如何表示此约束条件? (5分)
.
.
解
(1) 91
min i i Z x ==∑ (4分) (2) 123452x x x x x ++++≥
356893x x x x x ++++≥ (9分)
46792x x x x +++≥
(3) 2313,x x x x ≤≤
47x x ≤
5152,x x x x ≤≤
67x x ≤
9192,x x x x ≤≤
85x x ≤ (14分)
四、(满分10分) 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有
关.其中粘滞系数的量纲[μ]=11L MT -- 1
.用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为
[v ]=LM 0T -1
.
[ρ]=L -3
MT 0
.
[μ]=11
L MT -- [g ]=LM 0T -2
,其中L.M.T 是基本量纲. (3分) 量纲矩阵为
A=)
()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 .即
⎪⎩⎪
⎨⎧==+=+0
2y -y - y -0
y y 0y y -3y -y 431
324321 的基本解为y=(-3 ,-1 ,1 ,1) (7分) 由量纲PI 定理 得 g v μρπ1
3
--=. 3ρ
μλg
v =∴.其中λ是无量纲常数.
4 (10分)
五、(满分12分)设某种群t 时刻的数量为()x t ,初始数量为0x ,
(1) 写出种群数量的指数增长模型并求解;
(2) 设容许的资源环境最大数量为N , 写出种群数量的阻滞增长模型(logistic), 并求其平衡点.
解 (1) x rx = (3分)
0()rx x t x e = (6分)
(2) ()(1)x
x t rx N
=- (9分) (1)0,x
rx N
-
= 平衡点为0x = 和x N = (12分)
六、(满分10分)设在一个岛屿上栖居着食肉爬行动物和哺乳动物.又长着茂盛的植物。爬行动物以哺乳动物为食.哺乳动物又依赖植物生存.假设食肉爬行动物和哺乳动物独自生存时服从Logistic 变化规律.植物独自生存时其数量增长服从指数增长规律。现有研究发现.当哺乳动物吃食植物后.植物能释放某些化学物质对吃食的哺乳动物产生一定的毒害作用。通过适当的假设.建立这三者间的关系模型.
解:设植物、哺乳动物和食肉爬行动物的数量分别为x 1(t), x 2(t), x 3(t)
假设单位数量的植物所释放的化学物质对吃食植物后的哺乳动物的毒害作用率为k. (3分)
111122222213
2
3333323()
[()]()
x x r x x x x r k x x K x
x x r x K λλμλ⎧⎪
=-⎪⎪=--+--⎨⎪⎪=--+⎪⎩
(10分)
七、(满分15分))经过一番打探及亲身体验.你准备从三种车型(记为a,b,c)中选出一种购买.选择的标准主要有价格.耗油量大小.舒适程度和外表美观。经反复思考比较.构造了它们之间的成对比较矩阵
1
3781/31551/71/5131/81/51/31A ⎡⎤⎢⎥⎢
⎥=⎢⎥⎢⎥⎣⎦