数学 锐角三角函数的专项 培优练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,
圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是
E 的切线;
(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG :
①当1
an 7
t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求
BG
CF
的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫
⎪⎝⎭
,2(5,0)F ;② BG CF 的最大值为12.
【解析】 【分析】
(1)连接DE ,证明∠EDO=90°即可;
(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得1
2
BG CF ≤,从而得解. 【详解】
(1)证明:连接DE ,则:
∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠
∵
EB ED =
∴EBD EDB ∠=∠
∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为
E 的切线.
(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆
∴
11
NF AF AN AB BC AC
== ∴设3AN x =,则114,5NF x AF x ==
∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10
31
x = ∴150531AF x ==
15043
33131
OF =-=
即143,031F ⎛⎫
⎪⎝⎭
如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆
∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241
tan 1037
F M x ACF CM x ∠===+ 解得:25
x =
∴252AF x ==
2325OF =+=
即2(5,0)F
②如图,作GM BC ⊥于点M , ∵BC 是直径
∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆
∴
8BG MG MG
CF BC == ∵MG ≤半径4=
∴
41
882BG MG CF =≤= ∴BG CF
的最大值为12.
【点睛】
本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1
2
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:BF
PE
=,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE
的
值.(用含α的式子表示)
【答案】(1)证明见解析(2)
1
2
BF
PE
=(3)
1
tan
2
BF
PE
α
=
【解析】
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" ,∠BOC=∠BOG=90°.
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).
(2)BF1
PE2
=.证明如下:
如图,过P作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=900,∠BPN=∠OCB.
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.
∵∠BPE=
1
2
∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.
又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=1
2
BM . ∴BF=
12PE , 即
BF 1
PE 2
=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.
由(2)同理可得BF=1
2
BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .
∴
BM BN
PE PN
=. 在Rt △BNP 中,BN tan =PN α, ∴
BM =tan PE α,即2BF
=tan PE
α. ∴
BF 1
=tan PE 2
α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .
(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出
BF 1
PE 2
=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1
2
BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN
tan =PN
α即可求得
BF 1
=tan PE 2
α.
3.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;