数学 锐角三角函数的专项 培优练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,

圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是

E 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG :

①当1

an 7

t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求

BG

CF

的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫

⎪⎝⎭

,2(5,0)F ;② BG CF 的最大值为12.

【解析】 【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得1

2

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为

E 的切线.

(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆

11

NF AF AN AB BC AC

== ∴设3AN x =,则114,5NF x AF x ==

∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10

31

x = ∴150531AF x ==

15043

33131

OF =-=

即143,031F ⎛⎫

⎪⎝⎭

如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆

∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241

tan 1037

F M x ACF CM x ∠===+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M , ∵BC 是直径

∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆

8BG MG MG

CF BC == ∵MG ≤半径4=

41

882BG MG CF =≤= ∴BG CF

的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1

2

∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;

(2)通过观察、测量、猜想:BF

PE

=,并结合图2证明你的猜想;

(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)

【答案】(1)证明见解析(2)

1

2

BF

PE

=(3)

1

tan

2

BF

PE

α

=

【解析】

解:(1)证明:∵四边形ABCD是正方形,P与C重合,

∴OB="OP" ,∠BOC=∠BOG=90°.

∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).

(2)BF1

PE2

=.证明如下:

如图,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=900,∠BPN=∠OCB.

∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.

∴NB=NP.

∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.

∵∠BPE=

1

2

∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.

又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=1

2

BM . ∴BF=

12PE , 即

BF 1

PE 2

=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,

∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.

由(2)同理可得BF=1

2

BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .

BM BN

PE PN

=. 在Rt △BNP 中,BN tan =PN α, ∴

BM =tan PE α,即2BF

=tan PE

α. ∴

BF 1

=tan PE 2

α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .

(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出

BF 1

PE 2

=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1

2

BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN

tan =PN

α即可求得

BF 1

=tan PE 2

α.

3.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;

相关文档
最新文档