10.1常见的脉冲产生电路
一节几种常用脉冲波形产生和整形电路
锯齿波产生电路
锯齿波产生电路通常由一个运算放大器和两个电容组成。输入信号通过一个电容加到运算放大器的反 相输入端,输出信号通过另一个电容反馈到运算放大器的同相输入端。通过调整电容的充放电时间, 可以获得不同频率和幅度的锯齿波。
多谐振荡器
总结词
多谐振荡器是一种能够产生方波或近似方波的脉冲整 形电路,其输出频率和占空比可以通过电路参数进行 调整。
详细描述
多谐振荡器由两个反相器串联而成,每个反相器都有 一个电容和电阻并联。当输入信号为高电平时,多谐 振荡器的输出信号为低电平;当输入信号为低电平时 ,多谐振荡器的输出信号为高电平。由于电容的作用 ,多谐振荡器的输出信号频率和占空比可以通过调整 电阻和电容的值来改变。多谐振荡器在数字电路、通 信系统和控制系统中有着广泛的应用。
脉冲幅度解调(PAD)
定义
脉冲幅度解调是将脉冲幅度调制信号还原为原始模拟信号 的过程。通过检测脉冲的幅度并将其转换为相应的模拟信 号值。
工作原理
在PAD中,输入的PAM信号被检测并转换为相应的模拟信 号。通过比较每个脉冲的幅度与预设阈值,可以还原出原 始的模拟信号波形。
应用
PAD广泛应用于数字通信、雷达、测距等领域的接收端, 用于将传输的PAM信号还原为原始的模拟信号。
应用
PFM电路广泛应用于通信、测量和控制等领域。例如,在无线电广播中,PFM用于将音频信号传输到听 众的收音机中。
脉冲频率解调(DFM)
01
定义
脉冲频率解调是一种将已调制的脉冲信号还原为原始信号的过程。在
DFM中,通过测量脉冲信号的频率来恢复原始信号。
脉冲电路的产生和整形电路
2
3.几种常见的脉冲波形
常见的波形有矩形波、锯齿波、钟形波、尖峰波、阶梯波等。
3
如何获得矩形脉冲信号? (1)利用整形电路对不符合要求的脉冲信号 进行整形;
(2)利用脉冲振荡器直接产生脉冲信号;
矩形脉冲的特性: 为了定量描述矩形脉冲的特性通常给出几个主要参数。
2)暂稳态: ui负脉冲到来时刻,因ui<VCC/3为0, uc 仍为0, ∴ uo由0变为1,放电管T截止,VCC经R对C充电,电路进入暂稳态。
3)暂稳态自动恢复到稳态:当uc充电到2VCC/3为1时, ui负脉冲已消 失ui =1, ∴输出uo=0,T导通,C放电,电路自动恢复到稳态。
VCC
ui
0 twH twL
t
电路
工作波形
接通VCC后,VCC经R1和R2对C充电。当uc上升到2VCC/3时,uo=0, T导通,C通过R2和T放电,uc下降。当uc下降到VCC/3时,uo又由0 变为1,T截止,VCC又经R1和R2对C充电。如此重复上述过程,在 输出端uo产生了连续的矩形脉冲。
2.电路组成、工作原理
振荡后,电路没有稳态,只有两个暂稳态在作交替变化, 是无稳态电路。
属于脉冲产生电路。
二.电路组成、工作原理
1、方法
①先构成施密特触发器; ②加R2在VI和VO之间,VI 和地之间接C;
2.电路组成、工作原理
VCC
uc
R1
84
2VCC/3
7
3
uo
VCC/3
R2
6 555
0
t
uc
2
5
uo
C
1
0.01μF
脉冲发生电路
32VCC 31VCC
R2C ln2
数字逻辑电路电子教案 西北大学信息学院
电路的振荡周期为:
T TH T L (R1 2R2)C ln2
输出脉冲的占空比:
q TH R1 R2 T R1 2R2
上式说明,多谐振荡器的占空比在R1R2值确定以后, 占空比固定不变,且大于50%,为了得到占空比可调且 小于50%的多谐振荡器,修改电路如下:
输出脉冲的占空比:
q
R1 R1 R2
调节电位器,只必变输出脉冲的占空比,而脉冲周期不变。
数字逻辑电路电子教案 西北大学信息学院
利用上述参数指标,基本上可以将一个矩形脉冲的特 性表示清楚。在有些特定应用还用到一些特殊的参数,如 周期和幅度的稳定性等。
数字逻辑电路电子教案 西北大学信息学院
555定时器
555定时器是数模混合的中规模集成电路,能方便地 构成单稳态、多谐振荡器和施密特触发器,所以广泛应用 在脉冲波形的整形与产生电路中。以CB555为例介绍。
综上所述,可画出触发信号作用下C 和0 的波形图。
数字逻辑电路电子教案 西北大学信息学院
若忽略TD的饱和压降,则 C 从0上升到2VCC/3的时间,
即 的输0 出脉宽tH计算公式为:
tH
RC ln C () C (0) C () C (tH )
RC ln VCC 0 VCC 2VCC
触发器清0触发器清0td导通电容c通过r2和td放电路进入第二暂稳态此时上升至2vcc3时电容c通过r和t放电电t导通下降下降电1021??cc??数字逻辑电路电子教案西北大学信息学院c0?o?当下降至1vcc3时触发器又置1平电容c充电电路又进入第一暂稳态
脉冲信号产生电路设计
脉冲信号产生电路设计脉冲信号产生电路是一种常见的电路设计,可以用于产生特定频率和周期的脉冲信号。
本文将介绍脉冲信号产生电路的基本原理、设计流程和实现方法。
一、脉冲信号产生电路的基本原理脉冲信号产生电路的基本原理是利用RC电路的充放电过程来产生脉冲信号。
当电容器充电到一定电压时,电容器会自动放电,这种过程可以产生一个脉冲信号。
通过调整电容器的电容值和电阻的阻值,可以控制脉冲信号的频率和周期。
二、脉冲信号产生电路的设计流程1. 确定脉冲信号的频率和周期:根据实际需求,确定脉冲信号的频率和周期。
2. 选择电容器和电阻:根据脉冲信号的频率和周期,选择合适的电容器和电阻。
3. 计算电容器和电阻的阻值:根据电容器和电阻的选择,计算出它们的阻值。
4. 组装电路:根据计算结果,组装电路。
5. 测试电路:连接电路后,进行测试,检查脉冲信号的频率和周期是否符合要求。
6. 调整电容器或电阻的阻值:如果脉冲信号的频率和周期不符合要求,可以通过调整电容器或电阻的阻值来实现。
三、脉冲信号产生电路的实现方法1. 555定时器电路:555定时器电路是一种常见的脉冲信号产生电路,可以产生稳定的脉冲信号。
它的优点是稳定可靠,适用于大部分应用场合。
2. 门电路:门电路也可以用于产生脉冲信号。
通过组合不同的门电路,可以实现不同的脉冲信号。
3. 基于微控制器的脉冲信号产生电路:基于微控制器的脉冲信号产生电路可以实现更加复杂的脉冲信号,适用于需要实现多种信号的应用场合。
四、总结脉冲信号产生电路是一种常见的电路设计,可以用于产生特定频率和周期的脉冲信号。
通过选择合适的电容器和电阻,以及调整电容器或电阻的阻值,可以实现不同频率和周期的脉冲信号。
在实现脉冲信号产生电路时,可以选择不同的实现方法,根据实际需求选择最适合的方法。
脉冲发生电路原理
脉冲发生电路原理
脉冲发生电路是一种能够产生脉冲信号的电路。
它由一系列的元件组成,通过这些元件的相互作用,可以生成周期性或非周期性的脉冲信号。
脉冲发生电路的基本原理是利用元件之间的相互耦合和反馈作用。
其中,反馈回路起到了关键的作用,通过引入反馈信号,可以使电路产生周期性的振荡现象。
在脉冲发生电路中,最常见的元件是电容和电感。
通过对电容充电和放电,可以使电路产生周期性的脉冲信号。
当电容充电到一定电压时,电容上的电压会突变,从而产生脉冲信号。
而电感则可以使电流发生突变,从而产生脉冲信号。
脉冲发生电路还可以利用晶体管或集成电路来实现。
晶体管可以作为开关,控制电容或电感的充电和放电过程,从而产生脉冲信号。
而集成电路则可以包含多个功能模块,实现更加复杂的脉冲发生功能。
脉冲发生电路的应用非常广泛。
在通信领域中,脉冲发生电路可以用于产生调制信号和解调信号。
在计算机领域中,脉冲发生电路可以用于时钟信号的产生和同步控制。
此外,脉冲发生电路还可用于科学研究、医疗设备等领域。
总的来说,脉冲发生电路通过元件之间的相互作用和反馈回路的设计,可以有效产生脉冲信号。
它具有广泛的应用,为各种电子设备提供了重要的功能。
常见脉冲产生电路的认识
tw
t
【观察与思考】上述实验说明什么问题?
【实 验 结 论 】单稳态触发器只有在外加触
发信号的作用下,电路能从稳态翻转到暂态 !
《电子技术基础与技能(通信类)》电子教案
环节2:认知单稳态触发器及其应用
【知识链接二】单稳态触发器及应用
1.单稳态触发器: 只有一个稳定状态的触发器。
2.单稳态触发器特点: 没有外加触发信号作用时,电路始终处于稳
《电子技术基础与技能(通信类)》电子教案
环节2:认知单稳态触发器及其应用 【演示实验】
≥1 C ui2 ≥1
uo1
ui
G1
R
uo G2
+VCC
或非门构成的微分型单稳态触发器
《电子技术基础与技能(通信类)》电子教案
环节2:认知单稳态触发器及其应用
u i1
【实验现象】
u o1
t
u i2
t
tre
uo
t
《电子技术基础与技能(通信类)》电子教案
环节3:认知施密特触发器及应用
【知识链接三】施密特触发器及应用
1.施密特触发器的特点 : (1)属于电平触发,对于缓慢变化的信号仍
然适用 。 (2)具有回差特性
2.施密特触发器的应用 : (1)波形变换作用
演示实验内容即为波形变换作用。
《电子技术基础与技能(通信类)》电子教案
《电子技术基础与技能(通信类)》电子教案
环节1:认知多谐振荡器及应用
【知识链接一】多谐振荡器及应用
1. 产生矩形波的方法:(1)利用多谐振荡器 直接产生所需的矩形脉冲波;(2)利用整形 电路,将已有的脉冲波形进行整形、变换得 到所需要的矩形脉冲波。
脉冲波形产生及整形
• §10.4 多谐振荡器 • §10.5 555定时器及其应用
§10.2 施密特触发器
主要用途:把边沿变化缓慢的信号波形变换为边沿陡峭的矩形波。
特点: ⑴电路有两种稳定状态。两种稳定状态的维持和转换完全取决于外加触发信号。 ⑵电压传输特性特殊,电路有两个阈值电压(正向阈值电压VT+和负向阈值电压VT-)。 ⑶状态翻转时有正反馈过程,从而输出边沿陡峭的矩形脉冲。
图 脉冲定时
• §10.1 概述
第十章 脉冲波形的产生和整形
• §10.2 施密特触发器
• §10.3 单稳态触发器
• §10.4 多谐振荡器 • §10.5 555定时器及其应用
§10.4 多谐振荡器 1.多谐振荡器没有稳定状态,只有两个暂稳态 2.通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,无需外触发。 3.输出周期性的矩形脉冲信号,由于含有丰富的谐波分量,故称作多谐振荡器。
在对称式多谐振荡器的基础上,串接一块石英晶体,就可以构成一个石英晶体振荡器电路。 该电路将产生稳定度极高的矩形脉冲,其振荡频率由石英晶体的串联谐振频率fo决定。
图 石英晶体振荡器电路
• §10.1 概述
第十章 脉冲波形的产生和整形
• §10.2 施密特触发器
• §10.3 单稳态触发器
• §10.4 多谐振荡器 • §10.5 555定时器及其应用
施密特触发器的应用 一. 用于波形变换
将变化缓慢的波形变换成矩形波(如将三角波或正弦波变换成同周期的矩形波)。
二. 用于脉冲整形
在数字系统中,矩形脉冲经传输后往往发生波形畸变,或者边沿产生振荡等。通过施密特触发 器整形,可以获得比较理想的矩形脉冲波形。
波形畸变
脉冲信号产生电路设计
脉冲信号产生电路设计脉冲信号产生电路是一种电路设计,它可以产生一系列的脉冲信号,这些信号可以用于各种不同的应用,例如数字电路、通信系统、计算机等等。
在本文中,我们将介绍脉冲信号产生电路的基本原理、设计方法和应用。
脉冲信号产生电路的基本原理是利用电容和电阻的充放电过程来产生脉冲信号。
当电容充电时,电压会逐渐增加,当电压达到一定值时,电容会开始放电,电压会逐渐降低。
这个过程可以用一个简单的RC电路来实现。
当电容充电时,电压会逐渐增加,当电压达到一定值时,电容会开始放电,电压会逐渐降低。
这个过程可以用一个简单的RC电路来实现。
在脉冲信号产生电路中,我们可以通过改变电容和电阻的数值来控制脉冲信号的频率和幅度。
例如,如果我们想要产生一个高频率的脉冲信号,我们可以选择一个小的电容和一个大的电阻。
相反,如果我们想要产生一个低频率的脉冲信号,我们可以选择一个大的电容和一个小的电阻。
脉冲信号产生电路的设计方法有很多种,其中最常见的是使用555定时器。
555定时器是一种集成电路,它可以产生各种不同的脉冲信号。
它的工作原理是利用电容和电阻的充放电过程来产生脉冲信号。
通过改变电容和电阻的数值,我们可以控制脉冲信号的频率和幅度。
脉冲信号产生电路在各种不同的应用中都有广泛的应用。
例如,在数字电路中,脉冲信号可以用来控制逻辑门的开关。
在通信系统中,脉冲信号可以用来传输数字信号。
在计算机中,脉冲信号可以用来控制各种不同的设备,例如打印机、硬盘驱动器等等。
脉冲信号产生电路是一种非常有用的电路设计,它可以产生各种不同的脉冲信号,这些信号可以用于各种不同的应用。
通过掌握脉冲信号产生电路的基本原理和设计方法,我们可以设计出各种不同的脉冲信号产生电路,以满足不同的应用需求。
脉冲信号产生电路
数电实验实验报告实验名称脉冲信号产生电路实验目的1.熟悉555集成时基电路的构造、工作原理及特点2.掌握用时基电路设计脉冲信号产生电路的方法3.掌握影响脉冲波形参数的定时元件数值的计算方法4.熟悉使用示波器测量信号周期和脉宽的方法实验仪器设备通用试验箱、数字示波器、万用表、555、电阻、电容、连接线元器件555、电阻、电容实验原理1.555定时器的工作原理:(1)内部组成电路:(2)555定时器的功能表2.555定时器组成多谐振荡器(1)555定时器组成多谐振荡器连线图(2)工作原理:电路没有稳态,只有两个暂稳态,电路不需要外加触发信号,利用电源通过电阻R A、R B向电容C充电,以及通过放电三极管T放电,便产生振荡。
输出信号的时间参数T=T1+T2,其中T1=0.7(R A+R B)C(正脉冲宽度)、T2=0.7R B C(负脉冲宽度),则T=0.7(R A+2R B)C且555要求RA、RB均应大于或等于1KΩ,但应小于或等于3.3MΩ(3)芯片引脚图实验内容设计一个自激多谐振荡器电路,用数字示波器观测Uc与Uo的波形,测定振荡频率;改变RA、RB、C的值,再观测波形及频率的变化。
实验数据记录及处理实验数据:R A R B C UCUT(测量) T(实际) f 47Ω100Ω10nF 1.04v 2.16v 1.840ms 1.729ms543.5HZ100Ω47kΩ10nF 1.00V 757.6V 1.520ms 1.358ms 657.9HZ 实验结论Vo呈方波当电容充电时,V0输出高电平当电容放电时,V0输出低电平当RA:RB增大时,占空比也随之增大频率与RA、RB、C都成反比-----精心整理,希望对您有所帮助!。
脉冲信号产生电路设计
脉冲信号产生电路设计
脉冲信号产生电路是一种能够产生具有特定频率和占空比的脉冲信号的电路。
它可以应用于许多领域,如通信、计算机、控制等。
下面是一个基本的脉冲信号产生电路设计:
1. 选择适当的元器件:在设计脉冲信号产生电路之前,需要选择适当的元器件。
其中最重要的是集成电路和电容器。
2. 选择适当的集成电路:在这个设计中,我们将使用555定时器作为主要集成电路。
它是一种非常常用的定时器,具有广泛应用。
3. 连接元件:将555定时器与其他元件连接起来。
在这个设计中,我们需要连接一个电容器和若干个电阻。
4. 设置频率和占空比:根据实际需求设置脉冲信号的频率和占空比。
这可以通过调整电容器和电阻来实现。
5. 调试:完成连接后,需要对整个系统进行调试。
对于初学者来说,可能需要一些时间来找到最佳设置。
总之,脉冲信号产生电路设计需要考虑很多因素,并且需要进行仔细
的调试才能达到最佳效果。
如果您需要更深入的了解,可以参考相关电路设计书籍或咨询专业人士。
脉冲产生电路和定时
在工业自动化领域,脉冲产生电路可用于实现精确的定时控制。例如,在生产线自动化控 制系统中,通过定时产生脉冲信号来控制机械臂、传送带等设备的运行,实现生产过程的 自动化和智能化。
位置控制
脉冲产生电路还可应用于电机驱动和位置控制系统中。通过产生PWM(脉宽调制)信号或 SPWM(正弦脉宽调制)信号,实现对电机速度和位置的精确控制,提高工业设备的运动精 度和稳定性。
脉冲产生电路和定时
• 脉冲产生电路基本原理 • 常见类型脉冲产生电路介绍 • 定时功能在脉冲产生电路中应用 • 脉冲产生电路性能指标评价 • 实验操作与数据分析方法论述 • 应用领域拓展与前景展望
目录
01
脉冲产生电路基本原理
脉冲信号定义及特性
脉冲信号是一种非连续性的电压或电流信号,表现为在时间上短暂而突发的变化。 特性包括:幅度、宽度、周期、频率、上升时间和下降时间等。
脉冲信号在电子设备和系统中广泛应用,如数字电路、通信系统和控制系统等。
脉冲产生电路组成要素
01
02
03
04
电源
为电路提供所需的电能。
振荡器
产生周期性变化的信号,是脉 冲信号产生的核心部件。
放大器
将振荡器产生的微弱信号放大 到足够的幅度,以驱动后续电
路。
控制电路
对振荡器和放大器的工作状态 进行控制和调节,以确保脉冲
搭建过程建脉冲产生电路。 3. 接通电源,调整电路参数,使电路正常工作。
2. 使用连接线将示波器与电路的输出端连接。 4. 通过示波器观测并记录脉冲信号。
数据采集、处理技巧分享
01
数据采集
02
使用示波器的自动测量功能,快速准确地获取脉冲信号的 幅度、频率、周期等关键参数。
10脉冲电路课件
0.01 F
•由于有触发器,输出端 边沿好。
V T+:正向阈值电压或上限阈值电压 VT- :负向阈值电压或下限阈值电压
V= VT+ - VT- : 回差
若改变VCO值VT+,VT-的值将改变。
υI
υO
电压传 输特性
5
(二)施密特触发器的应用(见464页)
1.波形变换
2.脉冲整形
波形变换
3.脉冲鉴幅
q T1 R1 R2 T R1 2R2
R1=48K
•过大则漏电流大 •过小则电阻太大
R2=R1=48K 二者均可使周期不准
21
22
在O1t2=时V刻DD:,O2 =0,
I1 =VTH-VDD。
在暂稳态1:
C放电 I1 I1 三要素为:
I1(0)=VTH-VDD,I1 ( )=VDD,
放=RFC。
在t3时刻I1 =VTH,又发生
连锁反应,进入暂稳态2:
I1
O1
O2
--
+ +
i放
t1 t2 t3
VDD 0
在暂稳态2,C充电的三要素为:
I 1(0)=VTH+VDD,
I1 ( )=0 充=RFC 回前页
23
(2)周期计算:
T=T1+T2
将前面的三要素代入下面的公式,即可求出T1和T2:
【题6.31】 延迟时间:
t RCln 12 0 12 8
=11S
振荡频率:代入
公式得9.66KHz.
27
16.利用555定时器CB555构成施密特触发器,电源电 压为6伏特,电压控制端悬空,问,其VT+,VT-分为 () A. VT+=4V ,VT-=2V B. VT+=3V ,VT-=1V C. VT+=6V ,VT-=3V D. VT+=6V ,VT-=4V
脉冲形成电路的原理
脉冲形成电路的原理脉冲形成电路是一种电子电路,用于产生特定时间间隔短暂的脉冲信号。
脉冲信号是一种周期性变化,并且具有较短的占空比和脉冲宽度的方波信号。
脉冲形成电路广泛应用于计数器、定时器、数字逻辑电路和通信系统等领域。
脉冲形成电路的实质是通过集成电路或离散电子元器件构成的,它具有可靠性高、稳定性好和工作频率范围广等特点。
脉冲形成电路可以分为单稳态触发器、多谐振荡器、时间基准电源和计数分频器四个部分,下面将逐个介绍它们的原理。
1. 单稳态触发器单稳态触发器是一种能够在输入脉冲发生时产生一个有限的输出脉冲的电路。
它的原理是利用触发器的输入端和输出端之间的正反馈作用,当输入脉冲出现时,触发器的状态会发生改变,从而产生一个有限宽度的输出脉冲。
常见的单稳态触发器包括555定时器和触发器。
555定时器由几个二极管、电阻和电容器组成。
其工作原理是当输入脉冲出现时,555定时器会将电容器充电并存储能量,当电容器达到预设阈值时,输出端会发出一个有限宽度的脉冲信号。
2. 多谐振荡器多谐振荡器是一种能够产生不同频率的脉冲信号的电路。
其原理是利用振荡电路中的放大和反馈作用,通过调节电容器和电阻的数值来改变输出信号的频率。
多谐振荡器广泛应用于通信系统、计数器和计时器等场合。
常见的多谐振荡器包括多谐振荡器和斯奈德振荡器。
多谐振荡器利用集成电路中的反馈电路和滤波网络来控制输出信号的频率。
斯奈德振荡器则是通过改变电容器和电感的数值来改变输出信号的频率。
3. 时间基准电源时间基准电源是一种用于提供稳定的脉冲信号的电源。
它的原理是利用标准晶体振荡器和频率合成电路来产生精确稳定的信号。
时间基准电源通常用于通信系统、频率计、GPS和时间同步等领域。
时间基准电源的核心是标准晶体振荡器和频率合成电路。
标准晶体振荡器能够产生非常稳定的频率信号,而频率合成电路则能够根据需要合成不同频率的脉冲信号。
4. 计数分频器计数分频器是一种能够将输入脉冲信号分频并输出特定频率的电路。
10.1常见的脉冲产生电路
10.1 常见的脉冲产生电路
10.1.1 脉冲的概念及其波形 一.脉冲的概念 脉冲技术是电子技术的重要组成部分,应用广泛。
脉冲:瞬间突然变化、作用时间极短的电压或电
流称为脉冲信号,简称为脉冲。
二.常见的几种脉冲波形
三、 矩形脉冲信号的参数
脉冲技术最常用的波形是矩形波、方波。 理想的矩形波上升沿、下降沿陡直;顶部平坦。
• 实际的矩形波波形。
(1)脉冲幅度Vm ——脉冲 电压变化的最大值。 (2)上升时间tr ——脉冲从幅 度的10%处上升到幅度的90% 处所需时间。 (3)下降时间tf ——脉冲从幅度的90%处下降到幅度的 10%处所需的时间。 (4)脉冲宽度tw —— 定义为前沿和后沿幅度为 50%处 的宽度。 (5)脉冲周期T —— 对周期性脉冲,相邻两脉冲波对 应点间相隔的时间。周期的倒数为脉冲的频率f,即
1 f T
2.矩形波的分解
矩形波可由基波和多次谐 波叠加而成;基波的频率与矩 形波相同,谐波的频率为基波 的整数倍; 表达式:
v A sin 0t A A sin 3 0t sin 5 0t 3 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 f T
2.矩形波的分解
矩形波可由基波和多次谐 波叠加而成;基波的频率与矩 形波相同,谐波的频率为基波 的整数倍; 表达式:
v A sin 0t A A sin 3 0t sin 5 0t 3 5
• 实际的矩形波波形。
(1)脉冲幅度Vm ——脉冲 电压变化的最大值。 (2)上升时间tr ——脉冲从幅 度的10%处上升到幅度的90% 处所需时间。 (3)下降时间tf ——脉冲从幅度的90%处下降到幅度的 10%处所需的时间。 (4)脉冲宽度tw —— 定义为前沿和后沿幅度为 50%处 的宽度。 (5)脉冲周期T —— 对周期性脉冲,相邻两脉冲波对 应点间相隔的时间。周期的倒数为脉冲的频率f,即
第10章 脉冲波形的产生与变换
10.1 常见的脉冲产生电路
10.1.1 脉冲的概念及其波形 一.脉冲的概念 脉冲技术是电子技术的重要组成部分,应用广泛。
脉冲:瞬间突然变化、作用时间极短的电压或电
流称为脉冲信号,简称为脉冲。
二.常见的几种脉冲波形
三、 矩形脉冲信பைடு நூலகம்的参数
脉冲技术最常用的波形是矩形波、方波。 理想的矩形波上升沿、下降沿陡直;顶部平坦。