多元线性回归例题与解析
第三章(多元线性回归模型)3-2答案
3.2 多元线性回归模型的估计一、判断题1.满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( T )二 、单项选择题1、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。
ˆβ是 (A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量2.已知含有截距项的四元线性回归模型估计的残差平方和为∑=800e 2i ,样本容量为25,则其随机误差项i u 的方差的普通最小二乘估计为 (A )。
A 、40B 、32C 、38.095D 、36.364 三 、多项选择题1、对于二元样本回归模型12233ˆˆˆˆi i i iY X X e βββ=+++,下列各式成立的有(ABC ) A 、0e i =∑ B 、0X e i 2i =∑C 、0X e i 3i =∑D 、0Y e i i =∑E 、0X X i3i 2=∑四、计算题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为10.360.0940.1310.210i i i i edu sibs medu fedu =-++ R 2=0.214式中,edu 为劳动力受教育年数,sibs 为劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。
问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年?解:(1)预期sibs 对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。
计量经济学课程第4章(多元回归分析)
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
多元线性回归例题第章作业(一)
多元线性回归例题第章作业(一)多元线性回归是一种统计学方法,通常用于分析建立多个变量之间的关系模型。
在实际数据分析中,多元线性回归是十分常见且实用的方法。
本文将以一道例题为例,介绍多元线性回归的基本原理及应用方法。
例题:某公司市场销售状况与广告投入的相关性分析。
根据公司过往的销售记录,有如下数据:市场销售(单位:万元):10,20,30,25,35广告投入(单位:万元):5,10,15,12,18解析:1. 确定预测模型在多元线性回归中,首先要确定 Y 与X1,X2,…,Xn 之间的函数关系,一般形式为:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,β1, β2,…, βn为自变量系数,β0为常数项,而ε 则表示随机误差。
2. 根据数据集,求解系数通过数据集计算出β0,β1, β2,…, βn的值,从而得到回归方程式,可以通过excel工具中多元线性回归的公式求解得到。
3. 结果解释根据计算结果,对于此例,得到回归方程式:Y = 7.5 + 2.5X1 + 1.5X2其中,X1表示广告投入,X2表示销售额,可以解读得到,每增加1万元广告投入,市场销售量会增加 2.5万元,同时,其拟合优度也很好,在本例中拟合优度高达 0.97。
4. 结论通过多元线性回归,我们可以得到两个变量之间的函数关系式及预测结果,从而为市场策略和决策提供理论依据。
本题中,我们能够得出有利于市场销售的投入策略,即增加广告投入可以带来市场销售量的增长,而这种关系随着投入的增加而呈现出逐渐缓和,也就是得出了“策略的上升边际递减性”这样一个结论。
总结:多元线性回归在实际数据分析中的应用非常广泛,并且能够解决多个自变量与因变量之间的复杂关系。
在研究某种现象或问题时,通过多元线性回归建立适当的模型,可以通过计算得到更加准确的结果,从而更科学更有效地解决问题。
多元回归模型例题
多元回归模型例题一、多元回归模型例题1. 啥是多元回归模型呢?多元回归模型就是一种统计分析方法啦。
比如说,我们想知道一个人的成绩和哪些因素有关,可能是学习时间、智商、家庭环境等多个因素。
这时候多元回归模型就可以闪亮登场啦。
就像有个魔法盒子,把这些因素都放进去,然后它就能告诉你这些因素和成绩之间的关系有多强呢。
2. 来个简单的例题假设我们要研究房子的价格。
我们觉得房子价格可能和房子的面积、房龄、离市中心的距离有关系。
我们收集了一堆数据,比如说有10套房子的数据。
房子A面积是100平米,房龄5年,离市中心10公里,价格是100万;房子B面积是80平米,房龄3年,离市中心8公里,价格是80万,以此类推。
然后我们就可以建立一个多元回归模型。
我们设房子价格为Y,面积为X1,房龄为X2,离市中心距离为X3。
那模型可能长这样:Y = a + b1X1+ b2X2 + b3X3。
这里的a呢就像是一个基础价格,b1、b2、b3就是每个因素对价格影响的系数。
3. 怎么求这些系数呢?我们可以用一些统计软件来做这件事,像SPSS就很方便。
把数据输进去,然后它就能帮我们算出这些系数啦。
比如说算出来 a =50,b1 = 0.8,b2 = -5,b3 = -3。
这就意味着什么呢?就是说面积每增加1平米,房子价格会增加0.8万;房龄每增加1年,价格会降低5万;离市中心距离每增加1公里,价格会降低3万。
4. 这个模型有啥用呢?这个模型可有用啦。
对于买家来说,可以根据这个模型来预测自己想买的房子大概值多少钱,看看卖家有没有坑自己。
对于卖家呢,可以知道自己房子的哪些方面可以改进来提高价格。
对于房地产开发商,也能根据这个模型来决定在什么地方盖房子,盖多大面积的房子比较赚钱。
5. 模型的局限性但是呢,这个模型也不是完美的。
比如说我们可能忽略了一些其他的重要因素,像房子周边有没有好的学校啊,小区的环境好不好啊。
而且我们收集的数据可能也有误差,毕竟现实生活中情况很复杂的。
案例2多元线性回归模型的计算过程及
多元线性回归模型的计算过程及案例分析计算过程(1) 根据n组观察样本的原始数据,12(,,,)t t t kt y x x x(1,2,,)t n = 写出如下矩阵:1112112212221211,1k k n nnkn y x x x y x x x Y X y x x x ⎛⎫⎛⎫⎪ ⎪⎪⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭(2) 计算1)X X X X -'''、(、X Y 。
(3) 计算参数向量B 的最小二乘法估计1ˆˆ:()BB X X X Y -''=。
(4) 计算应变量观测值向量Y 的拟合值向量ˆˆˆ:YY XB =。
(5) 计算残差平方和2t e ∑及残差的标准差ˆ:σˆσ=(6) 计算多重决定系数2R 和修正的多重系数2R ,作拟合检验。
2221;()tt e R y y =--∑∑222/(1)1;()/(1)tte n k Ry y n --=---∑∑(7)计算参数估计ˆ(0,1,2,,)j b j k =的标准差:ˆ();js b σ=其中jj c 是矩阵1)X X -'(中第j 行第j 列位置上的元素。
(8)计算检验统计量t 和F 的值,作回归参数及回归方程的显著性检验。
在原假设0:0(0,1,2,,)j H b j k == 下的t 统计量为ˆˆ/jt b σ= 在原假设001:0k H b b b === 下的F 统计量为22()1tty y n k F ke---=⋅∑∑。
(9)若模型未通过检验,则重新建立模型并重复上述步骤;若模型通过检验,且满足模型的古典假设,则可利用此模型进行结构分析或经济预测等实际应用案例分析某种商品的需求量(y,吨)、价格(1x ,元/千克)、和消费者收入(2x ,元)观测值如表所示:商品的需求量(y,吨)、价格(1x ,元/千克)、和消费者收入(2x ,元)观测值(1) 建立需求函数:01122t t t t y b b x b x u =+++; (2) 估计12b b 、的置信区间(置信度为95%); (3) 在5%显著水平上检验模型的有效性。
多元线性回归分析例题.doc
【多元线性回归分析例题】水泥疑固对年孜的热量与木泥中的成分的多元线性回归分析下列数据是水泥释放的热量与水泥中的成分的数据序号X|x->XY417266607&52129155274.331156820104.34113184787.6575263395.961155922109.27371176102.78131224472.59254182293.1102147426115.911140233483.8121166912113.3131068812109.4注释数据保存在ha Id. ma t文件中,ingredients为解释变量,heat为因变量.MATLAB数据处理与分析h MATLAB逐步回归法建模的交互式图形环境介绍【函数名称】st epwi se【函数功能】创 < 多元徭性回归分析的逐步回归廉建槌的交互式图形环疣.【调用格式】st epwi se( X. y)st epwi se( X. y, i nmodeI , pent er, pr emove)【参数说明】X 一p元线性樸型鮮释变量的n个观测值的nxp矩阵.y —p元筑性倏燮因变童的n个观删值的nxl向置.i nmodel 标量或向量(由X的列号构成J ,用来指明最初引入回归方程的鮮猝炙量(缺省设置为空丿.pent er —棋型松脸的显著性水平上喂值(缺不役11为O.O5丿.pr emcveb 一模型检验的显著性水平下限值(缺不设置为0.10丿.【案例中的应用】I oad hal dst epwi se( i ngr edi ent s, heat)【交互式图形界面的说明】窗口I Coef f i ci ent s wi t h Er r or Bar s绘岀各个解粹变量回归糸数的估计,圖点在示点估计值,横线表示置信区闷(冇色线段表示90%査信区间,黑色线段表示95%置信区间丿•窗口的右側给出回归糸数的点估计(Coeff).里著性检脸的t统计量的<i(t-stet)和显箸性觇半p <t(p-val).窗口U Model Hi story该窗口绘出的囿点表示禺次建核的模型标准差a的佶计.两个窗口中间输出的是当前模型的有关信息,包括:I nt er cept —栈燮對距(常数项丿的估计.RMSE —槿型标准弟(T的估计.R- squar e 可决糸数.Ad i - R- q n 提齐殆可池绕•站R- squar e 可决糸救.Adj・R- sq 校正的可决糸救.F —模型整体性检验的F统计量的值.p —槟型整体性松脸的显著性概札窗口I右侧的三个按钮:Next St ep 谥回归方程中按机关余数绝对值交小逐次列入解猝变量,如无解可狗入肘按钮不可用.Al I St eps 一直摟给出“只进不岀”方式建栈的最终结果(垃意,此对的回归方程未必是最优回归方程丿.Expor t ...-选择向Workspace传输的计算结果(有关变童老可由用户勺定义丿.2、MATLAB逐步回归冻建模的集成令令介绍【函数名称】st epwi set i t【函数功能】用還步回归空创建多元线性回归分析的最优回归方程..【调用格式】b = st epwi sef i t ( X, y)[b. se, pval ; i n mo del , stats, nextstep, hi story] = t epwi sef i t (...)[...]=stepwi sefit(X,y,' Paraml' ,val ue1,' Para m2' ,val ue2,...)【参数说明】输入参教.X与y的意义同出数stepwise.其它引用多数的用法请用doc命令调闻糸统犁助.输出多数b —僕型糸数.se —槌型糸救的标進祺農.pval —各个鮮释变量显著性松验的显著性覘率.i nmodel —各个解释jti•右.最终®归方租中地住的说明(1表示農方程中,0农示不再方程中丿・stats 一是一个构架数殂,包括:source :理.朕方法的说, 'stepwisefit'在示逐.步®7归出;source :建核方法的说朗,Mtepwisefit农示遵.步回归廉;dfe:最优回归方程的乗|余自由度;dfO:最优回归方程的回归勺由度;SStotal:最优回归方程的总偏差平方和;SSresid:最优回归方程的剩余平方和;fstat:最优冋归方程的P统计量的值;pval:最优回归方程的显著性概率;rmse:最优®归方程的标進谋差估计;B:模型糸数;SE:模型糸致的标准课差;TSTAT:毎金自变量显箸性检验的T统计量的值;PVAL:毎个自变量显著性检验的显著性概車;intercept:帝数项的A估计;等等.next st ep 对是否还有芻要引入他归方程的勺支童的说朗(0表示没有丿history —是一个构架数组,包括:rmse:务一步的棋型标;隹锲差越计;dfO:每一步引入方程的变量个教;in:记录了按和关纟救绝对值交小逐步引入回归方程的支童的次序.【案例中的应用】load hald;se,pval,inmodel,stats,nextstep,history]^stepwisefit(ingredients, heat, *penter*,・10)Initial columns 5eluded: noneStep 1.added column 4. p w0.000576232Step 2,added column 1. p=l.10528e-006Step 3.added column 2,p・0・0516873Step 4. removed column 4. p-0.205395 Final columns included: 1 2Columns 1 through 3•C oeff•f Std.Err.1•Status* [1.4683][0.1213]•Tn' [0.6623]【0.0459]•In1 [0.2500][0.1847]•Out* [■0.2365](0.1733]•Out1 Column 4•P'[2.6922e-007][5.0290e-008][ 0.2089][ 0.2054]b ■1.46830.66230・2500-0.2365se =0.12130.04590.18470.1733pval «0.00000.00000.20890.2054inmodel ■1 10 0stats -source:•stepwisefit'dfe:10dfC:2SStotal: 2.7158e*003SSresid:57.9045fst229.5037at:pval: 4 ・4066e-G09rmse: 2.4063xi:[13x2 double]y“[13x1 double]B|4xl double):SE[z lxl double]:TSTAT:I 4x1 double]PVAL(4x1 double):intercept:52.5773wasnar:113x1 logical) nextstep =history =rmse: 18.9639 2.7343 2.3087 2.4063)dfO: (1232]0.2089 in: (4x4 logical]。
多元线性回归模型习题及答案(word文档良心出品)
多元线性回归模型一、单项选择题1. 在由n -30的一组样本估计的、包含 3个解释变量的线性回归模型中,计算得多重决定 系数为0.8500,则调整后的多重决定系数为( D ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.83272. 下列样本模型中,哪一个模型通常是无效的( B ) A.C i(消费)=500+0.8 Ii (收入)B. Qd (商品需求)=10+0.8 I i (收入)+0.9 P (价格)C.Qi(商品供给)=20+0.75 P (价格)YI 0*6K °4D. Y (产出量)=0.65 Li (劳动)Ki (资本)3. 用一组有30个观测值的样本估计模型 % =6b i x i t b 2X 2t U t 后,在0.05的显著性水平上对bl 的显著性作t 检验,则b 1显著地不等于零的条件是其统计量 t 大于等于(C )A t 0.05 (30) B. t 0.025 (28) C . t 0.025 (27) D. F 0.025 (1,28) 4. 模型ln y t "nb 0P l nx —u t 中,b 的实际含义是(B ) A. x 关于y 的弹性B.y关于x 的弹性 C . x 关于y 的边际倾向D .y关于x 的边际倾向5、 在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在(C ) A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型 y t =b 0b 1x 1t b 2x 2t ................... b k x kt u t 中,检验 H 0 : b t = 0(i = 0,1,2,...k)时,所用的统计量 I" " i-服从(C )A.t (n-k+1) B.t (n-k-2) C.t (n-k-1)D.t (n-k+2)7.调整的判定系数^与多重判定系数二一“之间有如下关系( D )2n~1 2 2n~12C. R 2 =1(1 R 2) D. R 2=1(1— R 2)n —k —1n — k —1&关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。
多元线性回归模型练习题及标准答案
E.
b1 b2 0 3.回归变差(或回归平方和)是指(
BCD )
A. 被解释变量的实际值与平均值的离差平方和
B. 被解释变量的回归值与平均值的离差平方和
C. 被解释变量的总变差与剩余变差之差
D. 解释变量变动所引起的被解释变量的变差
E. 随机因素影响所引起的被解释变量的变差
4. 剩余变差是指( ACDE
3.设有模型 yt b0 b1x1t b2 x2t ut ,试在下列条件下:
① b1 b2 1 ② b1 b2 。分别求出 b1 , b2 的最小二乘估计量。
解答:当 b1 b2 1 时,模型变为 yt x2t b0 b1(x1t x2t ) ut ,可作为一元回归模型来
B. t0.025 (28)
C. t0.025 (27)
D. F0.025 (1,28)
3.线性回归模型 yt b0 b1x1t b2 x2t ...... bk xkt ut 中,检验
H0 : bt 0(i 0,1, 2,...k) 时,所用的统计量
A.t(n-k+1)
B.t(n-k-2)
2.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里
以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个
学年收集数据,得到两个可能的解释性方程:
方程 A:Yˆ 125.0 15.0X1 1.0X2 1.5X3
R 2 0.75
5
方程 B:Yˆ 123 .0 14.0X1 5.5X 2 3.7 X 4
n b1 n
(x1t x2t ) yt (x1t x2t )2 (
(x1t x2t ) yt (x1t x2t ))2
4.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、
多元线性回归模型计算分析题
多元线性回归模型计算分析题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为R2=0.214式中,为劳动力受教育年数,为劳动力家庭中兄弟姐妹的个数,与分别为母亲与父亲受到教育的年数。
问(1)sibs是否具有预期的影响?为什么?若与保持不变,为了使预测的受教育水平减少一年,需要增加多少?(2)请对的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年2、考虑以下方程(括号内为标准差):(0.080) (0.072) (0.658)其中:——年的每位雇员的工资——年的物价水平——年的失业率要求:(1)进行变量显著性检验;(2)对本模型的正确性进行讨论,是否应从方程中删除?为什么?3、以企业研发支出(R&D)占销售额的比重(单位:%)为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个容量为32的样本企业的估计结果如下:其中,括号中的数据为参数估计值的标准差。
(1)解释ln(X1)的参数。
如果X1增长10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)检验R&D强度不随销售额的变化而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、假设你以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析。
假设你看到如下的回归结果(括号内为标准差),但你不知道各解释变量分别代表什么。
(2.6) (6.3) (0.61) (5.9)试判定各解释变量分别代表什么,说明理由。
5、下表给出一二元模型的回归结果。
方差来源平方和(SS)自由度(d.f.)来自回归(ESS)65965—来自残差(RSS)_——总离差(TSS)6604214求:(1)样本容量是多少?RSS是多少?ESS和RSS的自由度各是多少?(2)和?(3)检验假设:解释变量总体上对无影响。
多元线性回归模型习题及答案
多元线性回归模型一、单项选择题1.在由n = 30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为(D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B )A. G (消费)=500+4(收入)B. Q d (商品需求)=10+4(收入)+ P (价格)C.Qs (商品供给)=20+ P (价格)D. 1 (产出量)=L 0'(劳动)£”(资本)3 .用一组有30个观测值的样本估计模型工=b 0 + b i x i t + b 2x 21 + u t 后,在的显著性水平上对b i 的显著性作t 检验,则b i 显著地不等于零的条件是其统计量t 大于等于(Ct (30) t (28) t (27) F (1,28)A. 0.05B. 0.025C. 0.025D. 0.025ln y = ln b + b In x + u , b ,,4 .模型 乙 0 i t t 中,i 的实际含义是(B )A. x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度 6 .线性回归模型y = b + bx + b x + ... + b x + u 中,检验H :b = 0(i = 0,1,2,...k ) 时,所用的统计量服从(1 C 2 22 k kt t 0 t (n-k+1) (n-k-2) (n-k-1) (n-k+2)7 . 调整的判定系数与多重判定系数之间有如下关系( D )— n — 1— n — 1 A. R 2 = ------------ R 2B. R 2 = 1 ------------- R 2n 一 k 一 1 n 一 k 一 1 n 一 1n 一 1 ~C. R 2 = 1 ----------- (1+ R 2)D, R 2 = 1 ----------- (1-R 2)n 一 k 一 1n 一 k 一 18 .关于经济计量模型进行预测出现误差的原因,正确的说法是(C )。
多元线性回归分析实例
由散点图可知:
X1水分与人们对水果的喜爱程度具有明显的线性相关性;
X2甜度对人们喜爱水果的影响程度相关性不明显
下面进行Y与x1、x2之间的线性拟合:
调整后的R方为0.932,趋近与1,模型对样本数据点拟合优度较高,其中喜爱程度的总变差中93.2%可以用水分和甜度的变化来解释。
变量被解释得比较好。
H0:β
=0 (水果甜度和人们对水果的喜爱程度无显著线性关系)
2
H1:β
≠0(水果甜度和人们对水果的喜爱程度有显著线性关系)
2
P值0.000,小于0.05,拒绝原假设,接受对立假设,即水果甜度和人们对水果的喜爱程度有显著线性关系
线性回归方程:
Y=4.395x1+4.326x2+37.955
方程的解释:
在水果甜度不变的前提下,水果水分每增加1个单位,人们对水果的喜爱程度增加4.395个单位
在水果水分不变的前提下,水果甜度每增加1个单位,人们对水果的喜爱程度增加4.326个单位
残差的正态性检验:
H0:该模型的误差项符合正态性检验
H1:该模型的误差项不符合正态性检验
K-S检验的P值为0.763,大于0.05,接受原假设,该模型符合正态性检验,说明误差项的正态性假设是合理的。
残差的方差齐性检验:
上述散点图水果水分与误差近似分布在一条水平的带状线中,那么就可以认为残差的齐性假设是合理的。
散点图水果甜度与误差近似分布在一条垂直的带状线中,可以认为残差的齐性假设是不合理的。
第三章 多元线性回归案例分析
多元回归现行回归习题分析【例3.2】中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制改革的深化和经济的快速增长,中国的财政收支状况发生很大变化,中央和地方的税收收入1978年为519.28亿元,到2002年已增长到17636.45亿元,25年间增长了33倍,平均每年增长%。
为了研究影响中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济模型。
影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。
(2)公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定的影响。
(3)物价水平。
我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。
(4)税收政策因素。
我国自1978年以来经历了两次大的税制改革,一次是1984-1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。
税制改革对税收会产生影响,特别是1985年税收陡增215.42%。
但是第二次税制改革对税收增长速度的影响不是非常大。
因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。
二、模型设定为了全面反映中国税收增长的全貌,选择包括中央和地方税收的“国家财政收入”中的“各项税收”(简称“税收收入”)作为被解释变量,以反映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于财税体制的改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑税制改革对税收增长的影响。
所以解释变量设定为可观测的“国内生产总值”、“财政支出”、“商品零售物价指数”等变量。
多元线性回归(习题答案)
第3章练习题参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)(1) 从经济意义上考察估计模型的合理性。
(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。
(3) 在5%显著性水平上,检验模型的整体显著性。
3.1参考解答:由模型估计结果可看出:旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。
平 均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。
取0.05α=,查表得0.025t (313) 2.048-=因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
取0.05α=,查表得0.05(1,)(2,28) 3.34F k n k F α--==由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。
3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数:3.2参考解答:由已知,偏回归系数21221222221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑274778.346280.0004250.9004796.00084855.096280.0004796.000⨯-⨯=⨯- 0.726594= 22111232221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑24250.90084855.09674778.3464796.00084855.096280.0004796.000⨯-⨯=⨯- 2.73628=12132ˆˆˆY X X βββ=-+ 367.6930.726594402.760 2.736288.0=-⨯-⨯ 53.1598=可决系数 213222ˆˆi i i iiy x y x R yββ+=∑∑∑0.72659474778.346 2.736284250.966042.269⨯+⨯=0.998832=修正的可决系数2211(1)n R R n k-=--- 1511(10.998832)153-=--- 0.998637=标准误差 由于 2∑i e =21RSSR TSS=- 即22(1)ieR TSS =-∑(10.998832)66042.269=-⨯ 77.1374= F 统计量2211n k R F k R -=--=1530.9988323110.998832---=5130.986标准误差22ˆie n kσ=-∑77.1374153=-6.4281=所以标准误差ˆ 2.5354σ=3.3参考解答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2)估计模型参数,结果为Dependent Variable: Y Method: Least Squares Date: 10/20/13 Time: 18:32 Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -50.01638 49.46026 -1.011244 0.3279 X 0.086450 0.029363 2.944186 0.0101 T52.370315.202167 10.067020.0000 R-squared0.951235 Mean dependent var 755.1222 Adjusted R-squared 0.944732 S.D. dependent var 258.7206 S.E. of regression60.82273 Akaike info criterion11.20482Sum squared resid 55491.07 Schwarz criterion 11.35321 Log likelihood -97.84334 Hannan-Quinn criter. 11.22528 F-statistic 146.2974 Durbin-Watson stat 2.605783 Prob(F-statistic)0.000000即 ˆ50.01640.086552.3703i i iY X T =-++ (49.46026)(0.02936) (5.20217)t= (-1.011244) (2.944186) (10.06702) R 2=0.951235 944732.02=R F=146.2974(3)检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,(户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α)可判断户主受教育年数对家庭书刊消费支出确实有显著影响;同理可以判断,家庭月平均收入对家庭书刊消费支出的影响也是显著的。
多元线性回归例题与解析
作业:在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。
x1 x2 x3 x4 x5 y9.200 2.732 1.471 0.332 1.138 1.1559.100 3.732 1.820 0.112 0.828 1.1468.600 4.882 1.872 0.383 2.131 1.84110.233 3.968 1.587 0.181 1.349 1.3565.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.1148.200 4.646 1.615 0.379 4.565 0.8988.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104(!)回归性方程显著性检验:由Analysis of variance 表可知,其r FP 的值0.0170小于0.05,则1y x与、2x3x4x、5x之间具有显著性相关性;由R-square的值为0.9356可知该方程的拟合度高,(2)参数显著性检验:a.由Parameter Estimates 表可知,对自变量x1。
t 检验值为t=1.06,Pr t >的值等于0.3479,大于0.05,故x1的系数为0,即x1未通过检验,去掉x1,再次运行程序。
b.结果表明所有变量的系数均通过检验,得到线性模型。
(3)拟合区间。
2350.75463 1.999640.33313 2.24781y x x x =--+故对y 有显著的线性贡献大小顺序为325x x x >>。
附件:data ex;input x1-x5 y@@;cards ; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.8988.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104 ;proc reg;model y=x1 x2 x3 x4 x5/cli;run;data ex;input x2-x5 y@@;cards;2.732 1.471 0.332 1.138 1.1553.732 1.820 0.112 0.828 1.1464.882 1.872 0.383 2.131 1.8413.968 1.587 0.181 1.349 1.3563.732 1.841 0.297 1.815 0.8634.236 1.873 0.063 1.352 0.9033.146 1.987 0.280 1.647 0.1144.646 1.615 0.379 4.565 0.8984.378 1.543 0.744 2.073 1.9303.864 1.599 0.342 2.423 1.104;proc reg;model y= x2 x3 x4 x5/cli;run;。
多元线性回归例题+第二章作业
指标,0-1之间,用百分比表示,
1997 131.2 460.3 25.7 31.91 36.81
通常以0.4为界,越低表示收入公平, 1998 159.9 491.4 27.3 33.35 36.84
越高表示贫富悬殊)。试以1992-
2003共12年的数据,建立刑事发案
1999 179.4 521.7 32.8 34.78 38.21
65
123
77
7 8 9
9.4
44
10.1
31
11.6
29
46 117 173
81 93 93
y1
Y
1 x1,1 X 1 x2,1
x1,2 x2,2
x1,3
x2,3
0
β
1
ε
10 12.6
58
112
例题:根据N=18次,随机试验测得纱线某指标y和因素x1,x2 ,x3数据如下表, 试建立指标y与因素(x1,x2 ,x3)的多元线性回归方程,讨论回归方程的 显著性,并在回归系数显著的基础上建立新的回归方程?
N 1 2 3
x1 0.4 0.4 3.1
x2
x3
y
33
158
64
23
163
60
19
37
71
N
总计 S总 ( y y)2 12389.6111 1
自由度 p=1
均方和
F比
S回/1=5957.0225
[S回/p]/[S剩/(N-p-1)] =14.8171
N-p-1=16 S剩/16=402.0368
多元线性回归模型(习题与解答)
(1) β1 + β 2 = 1
(2) β1 = β 2
分别求出 β1 和 β 2 的最小二乘估计量。
3-12.多元线性计量经济学模型
yi = β0 + β1x1i + β2 x2i + ⋅ ⋅ ⋅ + βk xki + μi
i = 1,2,…,n
(2.11.1)
的矩阵形式是什么?其中每个矩阵的含义是什么?熟练地写出用矩阵表示的该模型的普通
(2)证明:残差的最小二乘估计量相同,即: uˆi = uˆi′
(3)在何种情况下,模型Ⅱ的拟合优度 R22 会小于模型Ⅰ拟合优度 R12 。
3-17.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人 数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两 个可能的解释性方程:
)
+
ε
i
7) Yi = β 0 + β1 X 1i + β 2 X 2i 10 + ε i
3-3.多元线性回归模型与一元线性回归模型有哪些区别? 3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正 规方程组,能解出唯一的参数估计的条件是什么? 3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效 性的过程中,哪些基本假设起了作用? 3-6.请说明区间估计的含义。 (二)基本证明与问答类题型
(1)产出量的资本弹性和劳动弹性是等同的;
(2)存在不变规模收益,即α + β = 1 。
3-14.对模型 yi = β0 + β1x1i + β 2 x2i + L + β k xki + ui 应用 OLS 法,得到回归方程如下: yˆi = βˆ0 + βˆ1x1i + βˆ2 x2i + L + βˆk xki
回归因素试题解析及答案
回归因素试题解析及答案一、单项选择题1. 回归分析中,自变量X对因变量Y的影响程度是通过()来衡量的。
A. 相关系数B. 回归系数C. 标准差D. 方差答案:B2. 在简单线性回归模型中,回归系数β1表示()。
A. 自变量X每增加一个单位,因变量Y平均增加β1个单位B. 自变量X每增加一个单位,因变量Y平均减少β1个单位C. 自变量X每减少一个单位,因变量Y平均增加β1个单位D. 自变量X每减少一个单位,因变量Y平均减少β1个单位答案:A3. 多元线性回归模型中,如果某个自变量的系数不显著,可能的原因是()。
A. 该自变量与因变量无关B. 该自变量与其他自变量高度相关C. 样本量太小D. 所有上述情况都可能答案:D4. 回归分析中,残差平方和(SSE)是用来衡量()的。
A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D5. 回归分析中,决定系数(R²)的值范围是()。
A. 0到1之间B. 负无穷到正无穷之间C. 0到正无穷之间D. 负无穷到1之间答案:A二、多项选择题6. 在回归分析中,以下哪些因素可能导致自变量和因变量之间的相关性被高估()。
A. 样本选择偏差B. 测量误差C. 多重共线性D. 异方差性答案:A|B|C|D7. 多元回归分析中,以下哪些方法可以用来诊断多重共线性问题()。
A. 方差膨胀因子(VIF)B. 相关系数矩阵C. 标准化回归系数D. 残差图答案:A|B8. 以下哪些因素可能影响回归模型的稳定性()。
A. 异常值B. 杠杆值C. 模型设定误差D. 自变量的多重共线性答案:A|B|C|D9. 回归分析中,以下哪些指标可以用来衡量模型的拟合优度()。
A. R²B. 调整R²C. AICD. BIC答案:A|B|C|D10. 在回归分析中,以下哪些方法可以用来处理异方差性()。
A. 加权最小二乘法B. 稳健标准误C. 变换因变量D. 增加样本量答案:A|B|C三、判断题11. 回归系数的符号和大小完全决定了自变量对因变量的影响方向和强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业:
在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因
变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。
x1 x2 x3 x4 x5 y
9.200 2.732 1.471 0.332 1.138 1.155
9.100 3.732 1.820 0.112 0.828 1.146
8.600 4.882 1.872 0.383 2.131 1.841
10.233 3.968 1.587 0.181 1.349 1.356
5.600 3.732 1.841 0.297 1.815 0.863
5.367 4.236 1.873 0.063 1.352 0.903
6.133 3.146 1.987 0.280 1.647 0.114
8.200 4.646 1.615 0.379 4.565 0.898
8.800 4.378 1.543 0.744 2.073 1.930
7.600 3.864 1.599 0.342 2.423 1.104
(!)回归性方程显著性检验:
由Analysis of variance 表可知,其
r F
P 的值0.0170小于0.05,则1
y x
与、2
x3x4x、5x之间具有显著性相关性;由R-square的值为0.9356可知该方程的拟合度高,(2)参数显著性检验:
a.由Parameter Estimates 表可知,对自变量x1。
t 检验值为t=1.06,Pr t >的值等于
0.3479,大于0.05,故x1的系数为0,即x1未通过检验,去掉x1,再次运行程序。
b.结果表明所有变量的系数均通过检验,得到线性模型。
(3)拟合区间。
2350.75463 1.999640.33313 2.24781y x x x =--+
故对y 有显著的线性贡献大小顺序为
325
x x x >>。
附件:
data ex;
input x1-x5 y@@;
cards ; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898
8.800 4.378 1.543 0.744 2.073 1.930
7.600 3.864 1.599 0.342 2.423 1.104 ;
proc reg;
model y=x1 x2 x3 x4 x5/cli;
run;
data ex;
input x2-x5 y@@;
cards;
2.732 1.471 0.332 1.138 1.155
3.732 1.820 0.112 0.828 1.146
4.882 1.872 0.383 2.131 1.841
3.968 1.587 0.181 1.349 1.356
3.732 1.841 0.297 1.815 0.863
4.236 1.873 0.063 1.352 0.903
3.146 1.987 0.280 1.647 0.114
4.646 1.615 0.379 4.565 0.898
4.378 1.543 0.744 2.073 1.930
3.864 1.599 0.342 2.423 1.104
;
proc reg;
model y= x2 x3 x4 x5/cli;
run;。