机械振动基础 第四章 多自由度系统

合集下载

多自由度系统振动

多自由度系统振动

= ……
φn(i )
(i ) xn
第 i 阶特征向量φ(i ) 中的一列元素,就是系统做第 i 阶主振动时 各个坐标上位移(或振幅)的相对比值
φ(i ) 描述了系统做第 i 阶主振动时具有的振动形态,称为第 i 阶
主振型,或第 i 阶模态 虽然各坐标上振幅的精确值并没有确定,但是所表现的系统振动 形态已确定 主振动仅取决于系统的 M 阵,K 阵等物理参数。
2 φ=0 或直接用 ( K − ω M )
令主振动:
⎡ x1 ⎤ ⎡φ1 ⎤ ⎢ x ⎥ = ⎢φ ⎥ sin(ωt + ϕ ) ⎢ 2⎥ ⎢ 2⎥ ⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎣φ3 ⎥ ⎦
得:
2006年5月4日 《振动力学》
⎡3k − mω 2 ⎢ ⎢ −k ⎢ 0 ⎣
−k 2 k − mω 2 −1
⎤ ⎡φ1 ⎤ ⎡0⎤ ⎥⎢ ⎥ ⎢ ⎥ ⎥ ⎢φ2 ⎥ = ⎢0⎥ 3k − mω 2 ⎥ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦ ⎦⎢ 0 −k
24
多自由度系统振动 / 多自由度系统的自由振动
⎡3k − mω 2 ⎢ ⎢ −k ⎢ 0 ⎣ −k 2k − mω 2 −1 ⎤ ⎡φ1 ⎤ ⎡0⎤ ⎥ ⎥ ⎢ ⎥ − k ⎥⎢ ⎢φ2 ⎥ = ⎢0⎥ 3k − mω 2 ⎥ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦ ⎦⎢ 0
m 令α = ω2 k
⎡3 − α ⎢ −1 ⎢ ⎢ ⎣ 0
− 2 −α −1
0 ⎤ ⎡φ1 ⎤ ⎡0⎤ ⎢φ ⎥ = ⎢0⎥ −1 ⎥ ⎥⎢ 2 ⎥ ⎢ ⎥ 3 −α ⎥ ⎦⎢ ⎣φ3 ⎥ ⎦ ⎢ ⎣0 ⎥ ⎦
令特征矩阵的行列式=0
2 ( 3 − α )( α − 5α + 4) = 0 特征方程:

第4章:多自由度系统的振动

第4章:多自由度系统的振动
k3 x2
F2 (t)
c3 x2
平衡条件: F1(t) k2 (x2 x1) c2 (x2 x1) k1x1 c1x1 m1x1
F2 (t) k2 (x2 x1) c2 (x2 x1) k3x2 c3x2 m2x2 (4.1.1)
矩阵形式:
m1
0
0 m2
x1 x2
k12
k21
k22 p2m2
m1m2
2 1
p2
2 2
p2
解出:
X1
(k22
m1m2
(
2 1
p2m2 )F1
p2
)
(
2 2
p2)
X2
k21F1
m1m2
(
2 1
p2
)
(
2 2
p2)
(4.1.31)
频响函数:
H11( p)
X1 F1
(k22 p2m2 )
m1m2
(
2 1
p2
)
(
2 2
p2)
(4.1.32)
齐次方程:
k11 2m11 k21 2m21
k12 k22
2m12 2m22
A1 A2
0 0
(4.1.9)
非零解条件 :
k11 2m11 k21 2m21
k12 2m12 k22 2m22
0
频率方程:
第4章 多自由度系统的振动
a4 b2 c 0
(4.1.10)
a m11m22 m122 , b k11m22 k22m11 2k12m12 , c k11k22 k122
A11 A21
sin(1t sin(1t
1) 1)

汽车振动基础第4章-多自由度

汽车振动基础第4章-多自由度

直接法
所谓直接法,就是直接应用动力学的基本定律或定理(列如牛 顿第二定律或达朗贝尔原理)建立系统运动微分方程的方法。以前建 立单自由度和二自由度振动系统的微分方程就是采用了这种方法。这 种方法的特点是:分析比较直观,简便,适用于比较简单的系统。
利用直受力分析
(2) 根据牛顿第二定律建立微分方程

运动方程推导
1 c2 x 2 (k1 k2 ) x1 k2 x2 P1 (t ) m1 x1 (c1 c2 ) x 2 c2 x 1 c3 x 3 (k2 k3 ) x2 k2 x1 k3 x3 P2 (t ) m2 x2 (c2 c3 ) x 3 c3 x 2 k3 x3 k3 x2 P3 (t ) m3 x3 c3 x
1 k
FK
②刚度矩阵的影响系数法 K kij

对于n 自由度的振动系统,刚度矩阵K为n*n矩阵,具有n*n 个元素 k ij,这些元素称为刚度影响系数。 刚度影响系数 k ij 的定义是使系统的第j个坐标产生单位位 移,而其它的坐标位移为零时,在第i个坐标上所施加的作用力 的大小。
2lm21 lm2 x
m2 m11 m1 4 m2 m21 m12 4
j2
x1 0
1 x 2
x2 1
2lm22 2lm3 x2 lm2 x
m2 m22 m3 4
m22
m3
m1
m2
m12
l
m2 x
l
2 m3 x

注意:1)总是假定 kij 的方向与坐标方向相同,通过静力
平衡方程求得其值的 符号即为 kij 的符号;

机械振动基础 第四章 多自由度系统

机械振动基础  第四章  多自由度系统

{x} {u} coswt
其中,{u}和w是待求的振型和固有频率。

{x} {u} coswt
} [ K ]{x} 0 [M ]{ x
2
代入方程
2 ( w [M ]{u} [ K ]{u}) coswt 0 得到
(w [M ] [ K ]){u} 0
kij w 2 mij 0
1 T } [ M ]{x } ET {x 2 1 T } [C ]{x } D {x 2 1 T U {x} [ K ]{x} 2
2D 2 ET cij mij i x j x i x j x
2U kij xi x j
2) 求偏导
2 ET 2 ET mij m ji xi x j x j xi 2D 2D cij c ji xi x j x j xi 2U 2U kij k ji xi x j x j xi
设有可逆线性变换[u],使得
{x} [u ]{y}
因而有
} [u]{y }, { } [u]{ } {x x y
称{x}为旧坐标系,{y}为新坐标系。
系统的动能、势能和能量耗散函数与坐标系选择无关, 也就是说,它们是坐标变换下的不变量, 因此有:
1 T 1 })T [ M ]([u ]{y }) ET {x} [ M ]{x} ([u ]{y 2 2 1 1 }T [u ]T [ M ][u ]{y } { y }T [ M 1 ]{y } {y 2 2
} [C ]{x } [ K ]{x} {F (t )} [M ]{ x
本章内容:
1) 多自由度系统振动的基本理论,多自由度系统的固有 频率和振型的理论;

第四章多自由度系统

第四章多自由度系统

j 1
j 1
js
js
r 1, 2, , n
(4.2 15)
因而有
n (kij
j1

lr
mij
)
u jr usr

lr mis
kis
js
i 1, 2, , n; r 1, 2, , n
(4.2 16)
对于某个确定的r,方程(4.2-16)是一个以 ujr/usr(j=1,2,…,s-1,s+1,…,n)为变量的n个非 齐次方程,取其中的n-1个方程求解,就得 到ujr/usr(j=1,2,…,s-1,s+1,…,n)的值,是使第s 个比值为1得到的,这些值是确定的。从而 得到
对于线性系统,系统的动能可表示为
T

1 2
n i 1
n
mijqi q j
j 1
(4.1 6)

T 1 qT M q
2
(4.1 7)
式中mij是广义质量。质量矩阵[M]是实对 称矩阵,通常是正定矩阵,只有当系统中 存在着无惯性自由度时,才会出现半正定
的情况。q为广义速度向量。
n
- f (t) f (t)
kij u j
j1
n
mij ui
j1
i 1, 2,..., n
(4.2-4) (4.2-5)
方程表明,时间函数和空间函数是可以分离 的,方程左边与下标i无关,方程右边与时间 无关。因此,其比值一定是一个常数。
f(t)是时间的实函数,比值一定是一个实数,
把势能函数在系统平衡位置近旁展为Taylor级 数,有
n U 1 n n 2U
U

《机械振动》张义民—第4章第1、2节ppt

《机械振动》张义民—第4章第1、2节ppt
第四章 两自由度系统的振动
◆当振动系统需要两个独立坐标描述其运动时, 那么这个系统就是两个自由度系统。
◆两自由度系统是最简单的多自由度系统。 ◆两自由度系统的振动微分方程一般由两个联立 的微分方程组成。 ◆两自由度系统有两个固有频率及固有振型。
◆在任意初始条件下的自由振动一般由这两个固 有振型叠加,只有在特殊的初始条件下系统才按某 一个固有频率作固有振动。
大象体积庞大,走起路来 更是别具一格,四只脚移动 时分别各自相差90度的位移 差。没有一只脚做的是相同 位移的移动。
◆四只脚动物可以看作是“四个振动体耦合在一起的 系统”吗?事实上,四个振动体组成的系统的基本运动 模式,确实与所提到的那四种走路方式一模一样。
◆可是动物们为什么会按照耦合振动体的方式来行走 呢?虽说现在关于这个问题还没有定论。生物学家们认 为,掌管运动的脑神经网(由数突连接起来的神经细胞) 看起来更接近“耦合振动体”一些。有推测认为,正是 脑神经网的动力学特性,使得动物走起路来才会表现出 振动体的特点。
1998年匈牙利的物理学家塔 马斯·维塞克在布达佩斯音乐学 院举行的一场音乐会上意外地发 现了同步化的现象。
演出相当成功,落幕后观众们热烈的掌声长达 3分钟之久,而维塞克博士便在这里发现了有趣 的东西。音乐会刚一结束,观众们雷鸣暴雨般的 掌声响起,然而过了一段时间之后,观众们的热 烈的掌声显然同步化了,变成了同一种节奏的拍 手。为了答谢观众们的热情,演奏者重新走上台 来谢幕,这时的掌声又突然之间失去了刚才的节 奏,雨点般疯狂地响起。在最后长达3分钟的鼓 掌声中,狂热的掌声和同步的掌声依次交替出现。
◆强迫简谐振动发生在激励频率,而这两个坐标 的振幅将在这两个固有频率下趋向最大值。共振时 的振型就是与固有频率相应的固有振型。

多自由度系统振动理论及应用

多自由度系统振动理论及应用
多自由度系统的作用力方程
对一些较简单的问题,用牛顿定律来建立振动微分方程是简便的.
图4-1所示为无阻尼三自由度弹簧质量系统,可参照二自由度系统的方
法,写出其微分方程:

下一页
返回
4.1
多自由度系统的振动微分方程

或更一般地写成

该式可简单地写成

式(4-2)称为用矩阵符号表示的作用力方程,它可以代表许多种运动方程
种心灵的孤独。
2. 与 个 别 人 难 以 相 处
一些学生能够与多数人保持良好的关系,但与个别人交往
不 良 。 因 此 ,常 会 影 响 情 绪 ,如 鲠 在 喉 。
上一页 下一页
返回
任 务 一了解自己与人交往的现状

3. 与 他 人 交 往 平 淡

一些学生虽然能与他人交往,但多属点头之交,没有关系
人际关系新起点
1
任 务 一 了解自己与人交往的现状
2
任 务 二 调整不良交际心态
任 务 一了解自己与人交往的现状







任 务 提 出 :了 解 自 己 与 人 交 往 的 现 状 。
任 务 目 标 :了 解 自 己 与 人 交 往 的 现 状 ,激 发 学 习 热 情 ,明 确 努
力方向。
喜欢独来独往。

(3) 嫉 妒 心 理 。 部 分 大 学 生 不 能 正 确 对 待 别 人 的 长 处 和 优
点,看到别人冒尖心里嫉妒,对比自己水平高的同学采取
讽 刺 、 挖 苦 、 打 击 、 嘲 笑 等 不 当 方 式 ,给 别 人 造 成 伤 害 ,严
重影响了同学之间的沟通。
上一页

第4章-多自由度系统振动(d)

第4章-多自由度系统振动(d)

ΦN


(1) ,
m p1
(2) ,
mp2
(3)

mp3
1
1 6m
2 1
3 0 3
2
2
2

正则模态和主模态之间的关系:
φ( i ) N

1 φ(i)
mpi
15
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
小结:模态的正交性,主质量和主刚度
若 i j 时, φ(i)T Mφ( j) 0
φ(i)T Kφ( j) 0
模态关于质量的正交性 模态关于刚度的正交性
当 i=j 时,
φ(i)T Mφ(i) mpi
φ(i)T Kφ(i) k pi
第 i 阶模态主质量 第 i 阶模态主刚度
第 i 阶固有频率:
i
k pi m pi
mpi φ(i)T Mφ(i)
第 i 阶模态主质量
k pi φ(i)T Kφ(i)
第 i 阶模态主刚度
正则模态:i 1~ n
φ(i) N
φ φ M (i)T
(i)
N
N
1
第 i 阶正则模态
主质量为1
2019年7月8日 《振动力学》
φ φ K (i)T
(i)
N
N
i2
固有频率的平方
9
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
多自由度系统振动 / 多自由度系统的自由振动/正交性,主质量和主刚度
模态矩阵: 1 1 1
Φ (1) , (2) , (3) 2 0 1
1 1 1

第四章多自由度系统

第四章多自由度系统

kq 2 q1 M 1 (t ) q M (t ) kq 2 kq 3 2 2
角振动与直线振动在数学描述上相同,在多自由度系统中也 将质量、刚度、位移、加速度以及力都理解为广义的。
例4-3 汽车振动的力学模型。 以D点的垂直位移 xD 及杆AB绕 点D的角位移为坐标,列出车体 作微小振动的运动微分方程。
1、多自由度的微分方程: 例4-1 试建立系统的运动微分方程。
两自由度系统; 解:
m1 1 k1 x1 k2 ( x1 x2 ) P (t ) x 1 m2 2 k2 ( x2 x1 ) k3 x2 P2 (t ) x
m11 (k1 k2 ) x1 k2 x2 P (t ) x 1 m2 2 k2 x1 (k 2 k3 ) x2 P2 (t ) x
x [ M ]{} [C ]{x} [ K ]{x} { f } {x(0)} {x0}, {x(0)} {x0}
1、[M],[C],[K]分别为系统的质量矩阵、阻尼矩阵和 刚度矩阵。 2、{x}为n维位移向量,它的分量是各个自由度的广义位 移,而{x}和{ }分别为速度向量和加速度向量,它们的 x 分量分别为各个自由度的广义速度和广义加速度。{f}是 广义外力向量,它的分量是各个自由度所受到的广义外 力。
x [ M ]{} [C ]{x} [ K ]{x} { f } {x(0)} {x0}, {x(0)} {x0}
1、运动微分方程建立的关键:求得[M], [C],[K]中的各个元素。 2、可使用定义法。 3、求解微分方程的过程就是使[M],[C], [K]对角化的过程,可求得固有频率及其 振型。
静力加载 K x P(t )

机械振动多自由度系统的运动方程

机械振动多自由度系统的运动方程


位移方程
x Mx
Mx x 0
与作用力方程比较 Kx Mx K是非奇异的,即K 1的逆矩阵存在
x K 1 (Mx)
K 1
多自由度系统
多自由度系统的运动微分方程--影响系数法
柔度矩阵与刚度矩阵之间的关系
K 1
即当刚度矩阵是非奇异时,刚度矩阵与柔度矩阵互为逆矩阵; 当刚度矩阵是奇异时,不存在逆矩阵即无柔度矩阵。
单自由度系统回顾
单自由度系统回顾
等效质量与等效刚度计算
• 等效质量--动能等效 • 等效刚度--势能等效
阻尼自由振动
• 三种阻尼类型(粘性,库伦,结构) • 阻尼比与临界阻尼,振动方程的解,初始条件下的响应 • 对数衰减率测定系统阻尼 • 粘性阻尼与库伦阻尼的衰减特征
多自由度系统
单自由度系统回顾
系统运动时,质量的惯性力使弹簧产生变形 x1 (m1x1 ) 11 (m2 x2 ) 12 (m3 x3 ) 13 x2 (m1x1 ) 21 (m2 x2 ) 22 (m3 x3 ) 23 x3 (m1x1 ) 31 (m2 x2 ) 32 (m3 x3 ) 33
多自由度系统
多自由度系统的运动微分方程--影响系数法
写成矩阵形式

x1

x2
x3

11 21 31
12 22 32
13 m1

23

0
33 0
0 m2 0
0 0 m3

x1 x2 x3
n
1
kn2

k1n

k2n

振动力学第四章多自由度系统的振动

振动力学第四章多自由度系统的振动
m 0 0 M 0 m 0 0 0 2m
2k K k 0
k 2k k
0 k k
2 将M和K代入频率方程 K p M 0
2k p 2 m k 0
k 2k p 2 m k
0 k k 2 p2m 0
4.1 固有频率 主振型
4.1.3位移方程的解
当运动微分方程是位移方程时,仍可设其解具有 代入位移方程 x 0 Mx
xi Ai sin( pt )
sin( pt )
i 1,2,3,n
p 2 MA A 0
LM
( M 1 I)A 0 2 p
例 题
(2k p 2 m)(k 2 p 2 m) k 2 adj B k ( k 2 p 2 m) 2 k
(2k p 2 m)(k 2 p 2 m) k ( 2 k p 2 m) k ( 2 k p 2 m) ( 2 k p 2 m) 2 k 2 k ( k 2 p 2 m) k2
1 I 2 p
特征矩阵
频率方程
M
1 I 0 2 p
求出n个固有频率,其相应的主振型也可从特征矩阵的伴随矩 阵adjL将pi值代入而求出.
4.1 固有频率 主振型
例 题
例 图是三自由度振动系统,设k1= k2= k3= k, m1= m2= m, m3= 2m,试求系统的固有频率和主振型。 解:选择x1、 x2、 x3坐标如图所示。则系统的质量矩阵和刚 度矩阵分别为
FT
11
l
FT
11
3l
1
11
3l 4T
由图中三角形的几何关系可解出
21 11

第4章多自由度系统的振动

第4章多自由度系统的振动
m1 m 2 m 3 m , l1 l 2 l 3 l
解:我们用Lagrange方程来建立振 动方程。
co s i sin j ) v1 l ( 1 1 1 1 v 2 l [(1 c o s 1 2 c o s 2 ) i s in s in ) j ] ( 1 1 2 2 v 3 l [(1 c o s 1 2 c o s 2 3 c o s 3 ) i s in s in s in ) j ] ( 1 1 2 2 3 3
qj 1
其余广义坐标的加速度为 0 ,为此而需要在各个广义坐标 方向上施加的广义力向量就是质量矩阵的第 j 列。
《振动力学》讲义 第4章 多自由度系统的振动 对于直梁,经常用几个位置的挠度作为广义坐标,来近似 描述直梁的振动。这时,采用影响系数法,建立梁的柔度矩 阵更方便的,因而需要用到简单边界条件下梁的挠度公式。 简支梁在横向集中力作用下的挠度公式为 P
第四章 多自由度系统的振动
大部分实际系统都是多自由度系统,其中的一类, 系统本身为近似的集中参数系统,可以简化为多自由度 系统,另一类是将分布参数系统通过一定的建模方法简 化得到的。本章只学习线性多自由度系统的分析方法和 基本规律,解决问题的基本方法是模态叠加法,就是将 n自由度系统分解成 n 个单自由度系统,每个单自由度 系统对应于原系统的一种特定的振动形态(即模态), 将各个单自由度系统的振动叠加便得到原系统的振动。 因此,本章的学习重点是要理解和掌握模态的求解和使 用。
系统的动能为
m1 1 1 2 2 2 1 m 2 y 2 m 3 y 3 ) { y1 , y 2 , y 3 } 0 T ( m1 y 2 2 0 0 m2 0 0 0 m3 y1 y2 y 3

机械振动第四章

机械振动第四章

第四章两自由度系统的振动当振动系统需要两个独立坐标描述其运动时,称为两自由度振动系统。

两自由度系统是最简单的多自由度系统,因此研究两自由度系统是分析和掌握多自由度系统的基础。

两自由度系统具有两个固有频率,两自由度系统以固有频率进行的振动与单自由度系统不同,它以固有频率进行的振动是指整个系统在运动过程中莫一位移形状,称为固有振型,因此两自由度具有两个与固有频率对应的两个固有振型。

在任意初始条件下的自由振动响应一般由两个固有振型的叠加得到。

受迫简谐振动的频率与激励频率相同。

两自由度系统的振动微分方程一般由两个联立的微分方程组成。

如果恰当地选取坐标,可使两个微分方程解除耦合,这种坐标称为主坐标或固有坐标。

用固有坐标建立的系统振动微分方程为两个独立的单自由度系统的微分方程。

4.1系统的自由振动如图所示的无阻尼两质量-弹簧系统,可沿光滑水平面滑动的两个质量与分别用弹簧与连至定点,并用弹簧相互连接。

三个弹簧的轴线沿同一水平线,质量与只限于沿着该直线进行往复运动。

这样与的任一瞬时的位置只需用坐标与就可以完全确定,因此该系统具有两个自由度。

图两自由度系统的振动取与的静平衡位置为坐标原点。

在振动过程中任一瞬时t,与的位置分别为与,作用于与的重力于光滑水平面的法向反力相平衡,在质量的水平方向作用有弹性恢复力和,质量的水平方向则受到和作用,方向如图所示。

取加速度和力的正方向与坐标正方向一致,根据牛顿运动定律有移项得方程()就是图所示的两自由度系统自由振动的微分方程,为二阶常系数线性齐次常微分方程组。

方程()可以使用矩阵形式来表示,写成由系数矩阵组成的常数矩阵m和k分别称为质量矩阵和刚度矩阵,向量x 称为位移向量。

因此设分别为刚度矩阵k中的元素,因而方程()可以写成方程()为系统自由振动的微分方程。

方程()是齐次的,如果和位方程()的一个解,那么与其相差一个因子的和也将是一个解。

通常感兴趣的是一种特殊形式的解,也就是和同步运动的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k1n 0 k 2n 0 k jn 1 0 knn
k1 j k2 j k jj knj
[K]的定义:外力{f}正好是刚度矩阵[K]的第 j 列。
1 T } [ M ]{x } ET {x 2 1 T } [C ]{x } D {x 2 1 T U {x} [ K ]{x} 2
2D 2 ET cij mij i x j x i x j x
2U kij xi x j
2) 求偏导
2 ET 2 ET mij m ji xi x j x j xi 2D 2D cij c ji xi x j x j xi 2U 2U kij k ji xi x j x j xi
第4章 多自由度系统
将具体的结构简化成:多个以各种方式相连接的离散 质量、弹性元件和阻尼元件组成的离散振动系统。 这种系统称为多自由度振动系统。描述它振动的运动 微分方程为常微分方程组。
1 F1 (t ) k1 x1 c1 x 1 k 2 ( x1 x2 ) c2 ( x 1 x 2 ) x m1 2 F2 (t ) k 2 ( x2 x1 ) c2 ( x 2 x 1 ) k3 x2 c3 x 2 x m2
2 ET mij i x j x
2 ET m44 m2 2 y2 2 ET M I m12 m21 Ay B y 4 L2 m13 m14 m23 m24 m34 0
由系统的质量矩阵、阻尼矩阵和刚度矩阵可以得到系统 的惯性力、阻尼力和弹性力:
得到,新坐标系{y}下的运动微分方程:
} [C][u]{y } [ K ][u]{y} { f } [M ][u]{ y
两边左乘[u]T ,根据:
[ M 1 ] [u ] [C ][u ]
T
得到:
[ K1 ] [u ]T [ K ][u ]
3) 得到矩阵
质量矩阵、阻尼矩阵和刚度矩阵均是对称矩阵。
针对本例:系统的动能为杆的平动 动能和转动动能与两个质量的动能 之和,设杆的质心在杆的中点,质 量为M。系统的动能为:
M ET 2 A y B I y B y A 1 1 y 2 2 1 m2 y 2 m1 y 2 2 2 L 2
T
1
坐标系{y}下的初始条件为:
{ y (0)} [ M1 ] [u ] [ M ]{x(0)}
T
1
(0)} [ M1 ]1[u ]T [ M ]{x (0)} {y
问题转化为坐标{y} 微分方程的定解
} [C1 ]{y } [ K1]{y} [u] { f } { p} [M1]{ y
[u]T坐标逆转换
{y}坐标系下 的微分方程解
§4.2 固有频率与振型
——系统的固有频率和振型一一对应。
系统求解的思路:
1) 设系统解为简谐振动: g (t ) A cos(wt )
(t ) [ K ]{u}g (t ) 0 2) 代入微分方程: [M ]{u}g
3) 得到广义特征值问题: ([K ] w 2[M ]){ u} 0
{ f } [K ]{e j } k11 k12 k21 k22 k kj2 j1 k k n1 n2 k1 j k2 j k jj knj k1n 0 k 2n 0 k jn 1 0 knn k1j k 2 j k jj knj
2 ET M I m11 2 2 A y 4 L 2 ET M I m22 2 2 B y 4 L m33 ET m1 2 1 y
2
2
2
坐标系 {x}={yA,yB,y1,y2}T
M 4 M [M ] 4 I L2 I 2 L 0 0 M I 2 4 L M I 2 4 L 0 0 0 0 m1 0 0 0 0 m2
刚度矩阵[K]的元素kij的意义 :
在静力学中,各自由度的位移{x}、系统的刚度矩阵[K]、 各自由度上所受到的外力关系为:
{ f } [ K ]{x}
—— 如系统第 j 个自由度沿其坐标正方向有一个单位位移, 其余各个自由度的位移保持为零,为保持系统这种变形状 态需要在各个自由度施加外力,其中在第 i 个自由度上施 加的外力就是kij。
{x} {u} coswt
其中,{u}和w是待求的振型和固有频率。

{x} {u} coswt
} [ K ]{x} 0 [M ]{ x
2
代入方程
2 ( w [M ]{u} [ K ]{u}) coswt 0 得到
(w [M ] [ K ]){u} 0
kij w 2 mij 0
k11=k2; k21=0;k3l=-k2;k41=0
坐标{x}={yA,yB,yl,y2}T
(2)求[K]的第二列:yB↑ k12=0, k22=k4, k32=0, k42=-k4
(3)求[K]的第三列。设yl ↑ k13=-k2, k23=0, k33=k2+k1, k43=0 (4)求[K]的第四列。设y2 ↑ k14=0, k24=-k4, k34=0, k44=k2+k4
n个自由度的振动系统的运动微分方程可以写为
} [C ]{x } [ K ]{x} { f } x [ M ]{ (0)} {x 0 } {x(0)} {x0}, {x
分别叫:[…]矩阵 {…}向量 一般 [M][C][K] 不会同时为对角矩阵,方程存在耦合。解 耦是在时域内求解方程的重要一环。
} { f m } [ M ]{ x } { fi } [C ]{x { f s } [ K ]{x}
它们的分量分别为施加于各个自由度上的惯性力、阻 尼力和弹性力。
求解方程:
} [C ]{x } [ K ]{x} { f } x [ M ]{ (0)} {x 0 } {x(0)} {x0}, {x
系统第j个自由度有一个正向单位位移,其余自由度位移 为零这种变形状态可以由向量{x}={ej}描述。 为使系统保持{ej}的变形状态,所加的外力为:
{ f } [K ]{e j } k11 k12 k21 k22 k kj2 j1 kn 1 kn 2
k1 j k2 j k jj knj
k2 0 [K ] k2 0 0 k4 0 k4
坐标{x}={yA,yB,yl,y2}T
k2 0 k1 k2 0 k4 0 k3 k 4 0
三种求[K]的方法:?? 牛顿法、求偏倒法(能量法)、定义法。
定义法和牛顿法比较麻烦,一般用能量法比较方便: 用求偏倒的方法写[M] [C] [K]矩阵: 1) 写系统的动 能、能量耗散 函数和势能
4) 得到特征方程或频率方程: (w 2 ) [ K ] w 2 [ M ] 0
5) 求得w1,w2并取w1w2 ;
6) 代回广义特征值问题,求得振型{u}。
无阻尼自由振动系统的运动微分方程为:
} [ K ]{x} 0 [M ]{ x
在特殊初始激励下,系统无阻尼自由振动是简谐振动,也 就是固有振动。形式为:
——求解一种方法是寻找一个新广义坐标系,使得系统 的质量矩阵、阻尼矩阵和刚度矩阵为对角矩阵。也就是 解耦。 ——新坐标系与原坐标系存在线性变换关系,因此,要 寻找一个可逆线性变换矩阵[u],将质量矩阵、阻尼矩 阵和刚度矩阵变换为对角矩阵。
——为此,我们讨论线性变换前后多自由度系统运动微 分方程的关系。
广义特征值问题
方程有非零解的充要条件是系数矩阵的行列式为零,即: 这就是频率方程。
这是以w2为未知数的n次代数方程,解之可得n个根,w1, w2 ,.. .. .. wn 。依次代入广义特征值问题方程可以得到n 个方程
[ M 1 ] [u ]T [ M ][u ] [C1 ] [u ]T [C ][u ] [ K1 ] [u ] [ K ][u ]
T
} [C ]{x } [ K ]{x} { f } x 将{x}=[u]{y}代入方程: [ M ]{ (0)} {x 0 } {x(0)} {x0}, {x
新旧坐标系下矩阵的关 系:
1 T 1 } [C ]{x } ([u ]{y })T [C ]([u ]{y }) D {x 2 2 1 1 }T [u ]T [C ][u ]{y } { y }T [C1 ]{y } {y 2 2
1 T 1 U {x} [ K ]{x} ([u ]{y})T [ K ]([u ]{y}) 2 2 1 1 T T { y} [u ] [ K ][u ]{y} { y}T [ K1 ]{y} 2 2
设有可逆线性变换[u],使得
{x} [u ]{y}
因而有
} [u]{y }, { } [u]{ } {x x y
称{x}为旧坐标系,{y}为新坐标系。
系统的动能、势能和能量耗散函数与坐标系选择无关, 也就是说,它们是坐标变换下的不变量, 因此有:
1 T 1 })T [ M ]([u ]{y }) ET {x} [ M ]{x} ([u ]{y 2 2 1 1 }T [u ]T [ M ][u ]{y } { y }T [ M 1 ]{y } {y 2 2
} [C1 ]{y } [ K1]{y} [u] { f } { p} [M1]{ y
T
其中:
{ p} [u] { f } 是新坐标{y}下的广义激励。
相关文档
最新文档