半导体物理习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理习题

————————————————————————————————作者: ————————————————————————————————日期:

第一章

1.试定性说明Ge、Si 的禁带宽度具有负温度系数的原因。

解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 2.试指出空穴的主要特征。

解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下:A、荷正电:q +;B、空穴浓度表示

为p (电子浓度表示为n );C 、n p E E -=;D、*

*n p m m -=。 3.简述Ge 、Si 和GaAS 的能带结构的主要特征。 解:(1) Ge、Si:

a )Eg (Si :0K) = 1.21eV ;Eg (Ge:0K) = 1.170eV; b)间接能隙结构c )禁带宽度E g 随温度增加而减小; (2) GaAs:

a)E g(300K )= 1.428eV,Eg (0K) = 1.522e V; b)直接能隙结构;

c)Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K;

4.试述有效质量的意义

解:有效质量概括了半导体的内部势场的作用,使得在解决半导体的电子自外力作用下的运动规律时,可以不涉及到半导体内部势场的作用,特别是*m 可以直接由实验测定,因而可以方便解决电子的运动规律。 5.设晶格常数为a 的一维晶格,导带极小值附近能量)(k E c 和价带极大值附近能量)(k E v 分别为:

0212022)(3)(m k k m k k E c -+= ,0

2

2021236)(m k m k k E v -=

0m 为电子惯性质量,nm a a

k 314.0,1==π。试求:

(1) 禁带宽度;

(2) 导带底电子有效质量; (3) 价带顶电子有效质量;

(4) 价带顶电子跃迁到导带底时准动量的变化。

解:(1)导带:由0)

(2320

1202=-+m k k m k 得:143k k =

又因为0382320202022

2>=+=m m m dk E d c 所以:在k k 43

=处,c E 取最小值 价带:060

2=-=m k

dk dE v 得:k =0

又因为060

2

2

2<-=m dk E d v 所以:0=k 处,v E 取最大值

因此:V 64.012)0()43

(0

2121e m k E k E E v c g ==-=

(2)04

32

2

2

*

8

3

1

m dk E d m

k k c C

n =

== (3)6

02

2

2*1

m dk E d m m

k V V

n -

=== (4)准动量的定义:k p = 所以:

6.晶格常数为0.25nm 的一维晶格,当外加m V 2

10,m V 2

10的电场时,试分别

计算电子自能带底运动到能带顶所需的世间。

解:根据:t

k

qE f ∆∆== 得qE k t -∆=∆

第二章

1.什么叫浅能级杂质?它们电离后有何特点?

解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。

2.什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。

解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提

供电子,这种杂质就叫施主。施主电离成为带正电离子(中心)的过程就叫施主电离。施主电离前不带电,电离后带正电。例如,在Si 中掺P,P为Ⅴ族元素,本征半导体Si 为Ⅳ族元素,P掺入Si 中后,P的最外层电子有四个与S i的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主电离。

n 型半导体的能带图如图所示:其费米能级位于 禁带上方

S N k k k p k k k 2510431095.704

3

)()(1

-==⨯=-=-=∆

s a t 137

1921027.810

106.1)

0(--⨯=⨯⨯--=∆π

s a t 82

1911027.810

106.1)

0(--⨯=⨯⨯--=∆π

3.什么是替位式杂质,它的形成特点是什么?

解:杂质进入半导体后杂质原子取代晶格原子而位于晶格点处,称为替位式杂质,特点是杂质原子大小与被取代晶格原子大小相似,价电子壳结构比较相近

4.位错有哪几种类型,他们的特点是具体什么?

解:位错分为刃位错和螺形位错。刃位错:位错线垂直于滑移矢量;螺形错位:位错线平行于滑移矢量。

5.掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n 型半导体和p型半导体。

例如,在常温情况下,本征Si 中的电子浓度和空穴浓度均为1.5╳1010c m-3。当在Si 中掺入1.0╳1016c m-3 后,半导体中的电子浓度将变为1.0╳1016cm -3

,而空穴浓度将近似为2.25╳104cm -3。半导体中的多数载流子是电子,而少数载流子是空穴。

6.锑化铟的禁带宽度eV E g 18.0=,相对介电常数17=r ε,电子的有效质量

0*015.0m m n =,0m 为电子的惯性质量,求:①施主杂质的电离能,②施主弱束

缚电子基态轨道半径。 解:根据类氢原子模型:

eV E m m q m E r n r n D 4

2

200*2204*101.717

6.130015.0)4(2-⨯=⨯===∆εεπε

nm m q r 053.002020==πε nm r m m q r n

r

n r 600*

0*202===εεπεε 第三章

1.对于某n 型半导体,试证明其费米能级在其本征半导体的费米能级之上。即E Fn >E F i。

证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。显然

i n n >n

2.试分别定性定量说明:

(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高; (2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。

解:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。 由公式:

i

n i n

F F F c c F c c E E T

k E E N T

k E E N >⎪⎪⎭

⎝⎛--⋅>⎪⎪⎭⎫ ⎝

⎛--⋅则即00exp exp

相关文档
最新文档