数学人教版初中一年级下册 1.2.1代入消元法
1.2.1 代入消元法同步练习(答案版)
1.2.1 代入消元法1.用代入法解方程组⎩⎨⎧x =2y ,①y -x =3.②下列说法正确的是( B ) A .直接把①代入②,消去yB .直接把①代入②,消去xC .直接把②代入①,消去yD .直接把②代入①,消去x2.用代入法解方程组⎩⎨⎧3x +4y =2,①2x -y =5.②比较合理的变形是( D ) A .由①,得x =2-4y 3 B .由①,得y =2-3x 4C .由②,得x =5+y 2D .由②,得y =2x -53.下列用代入法解方程组⎩⎨⎧2x +3y =8,①3x -5y =5②的过程中开始出现错误的一步是( C )(1)由①得x =8-3y 2③;(2)把③代入②,得3×8-3y 2-5y =5;(3)去分母,得24-9y -10y =5;(4)解得y =1,代入③得x =2.5.A .(1)B .(2)C .(3)D .(4)4.下列用代入法解方程组⎩⎨⎧3x -y =2,①3x =11-2y ②的步骤,其中最简单的是( D ) A .由①,得x =y +23,③ 把③代入②,得3×y +23=11-2yB .由①,得y =3x -2,③ 把③代入②,得3x =11-2(3x -2)C .由②,得y =11-3x 2,③ 把③代入①,得3x -11-3x 2=2D .把②代入①,得11-2y -y =2(把3x 看成一个整体)5.关于x 、y 的方程组⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的式子表示为( B ) A .y =2x +7 B .y =7-2xC .y =-2x -5D .y =2x -5【点拨】由x =3-m 得m =3-x ,把m =3-x 代入y =1+2m 中,得y =1+2(3-x)=7-2x.【答案】B6.【中考·荆门】已知有理数x 、y 满足方程组⎩⎨⎧3x -2y =1,x +y =2,则x 2-2y 2的值为( A )A .-1B .1C .3D .-3【点拨】⎩⎨⎧3x -2y =1,①x +y =2.② 将②变形为y =2-x ,③将③代入①,得3x -2(2-x )=1,解得x =1.把x =1代入③,得y =1.所以x 2-2y 2=12-2×12=1-2=-1.【答案】A7.已知⎩⎨⎧x =1,y =-2是方程组⎩⎨⎧ax +by =2,bx +ay =-1的解,则a +b 的值是( A )A .-1B .1C .-5D .5【点拨】将⎩⎨⎧x =1,y =-2代入⎩⎨⎧ax +by =2,bx +ay =-1,可得⎩⎨⎧a -2b =2,①b -2a =-1.②由①得a =2b +2,③ 将③代入②,得b -2(2b +2)=-1,解得b =-1,将b =-1代入③,得a =0,则a +b =0+(-1)=-1.【答案】A8.【中考·绍兴】同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( B )A .120 kmB .140 kmC .160 kmD .180 km【点拨】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图所示.设AB =x km ,AC =y km ,根据题意得⎩⎨⎧2x +2y =210×2,x -y +x =210,解得⎩⎨⎧x =140,y =70.∴乙在C 地时加注行驶70 km 的燃料,则AB 的最大长度是140 km.【答案】B9.若方程组⎩⎨⎧4x +3y =7,ax +(a -1)y =5的解x 和y 的值相等,则a 的值为( C ) A .1 B .2 C .3 D .410.如果|x -2y +1|+|x +y -5|=0,那么xy 的值是( D )A .2B .3C .5D .611.由二元一次方程组⎩⎨⎧2 020x +4y =11,2 020x =19-2y可得y 等于( A ) A .-4B .-43C .53D .5【点拨】把2 020x =19-2y 代入2 020x +4y =11,得19-2y +4y =11,解得y =-4.故选A.12. 由方程组⎩⎨⎧x +m =-4,y -3=m 可得出x 与y 之间的关系是__x +y =-1___ 13. 若x , y 满足⎩⎨⎧2x +y =10,x -y =2,则x + y =___6_____. 14. 已知关于x ,y 的方程组⎩⎨⎧mx +ny =7,2mx -3ny =4的解为⎩⎨⎧x =1,y =2,则m=_5_,n=___1___ 15. 已知单项式-3x m -1y 3与5x n y m +n 是同类项,m=__2__,n=____1____16. 解方程组:(1)⎩⎨⎧5x +2y =15,①8x +3y +1=0;②解:由①得y =15-5x 2,③把③代入②,得8x +3(15-5x )2+1=0,解得x =-47. 把x =-47代入③,得y =125.所以原方程组的解为⎩⎨⎧x =-47,y =125.(2)⎩⎨⎧x +2(x +2y )=4,①x +2y =2; ② 解:把②代入①,得x +2×2=4,解得x =0.把x =0代入②,得2y =2,解得y =1.所以原方程组的解是⎩⎨⎧x =0,y =1.(3)【中考·连云港】⎩⎨⎧2x +4y =5,x =1-y .解:⎩⎨⎧2x +4y =5, ①x =1-y , ② 把②代入①,得2(1-y )+4y =5,解得y =32.把y =32代入②,得x =-12. 所以原方程组的解为⎩⎪⎨⎪⎧x =-12,y =32.17.【中考·珠海】阅读材料:善于思考的小军在解方程组⎩⎨⎧2x +5y =3,①4x +11y =5②时,采用了一种“整体代换”的解法: 解:将方程②变形,得4x +10y +y =5,即2(2x +5y )+y =5.③把方程①代入③,得2×3+y =5,所以y =-1.把y =-1代入①,得x =4.所以方程组的解为⎩⎨⎧x =4,y =-1.请你模仿小军的“整体代换”法解方程组:⎩⎨⎧3x -2y =5,①9x -4y =19.②解:将方程②变形,得3(3x -2y )+2y =19,③把方程①代入③,得3×5+2y =19,所以y =2.把y =2代入方程①,得x =3.所以方程组的解为⎩⎨⎧x =3,y =2.18.先阅读材料,然后解答问题.解方程组:⎩⎨⎧x -y -1=0,①4(x -y )-y =5.②解:由①,得x -y =1,把x -y =1代入②,得4×1-y =5,解得y =-1.把y =-1代入①,得x =0.所以原方程组的解是⎩⎨⎧x =0,y =-1.这种解法称为“整体代入法” .你若留心观察,就会发现有很多方程组可以采用这种方法求解.请用上述方法解方程组:⎩⎨⎧3x +2y -2=5x ,①2(3x +2y )=2x +8.②解:由①,得3x +2y =5x +2,把3x +2y =5x +2代入②,得2×(5x +2)=2x +8,解得x =12.把x =12代入①,得y =32. 所以原方程组的解是⎩⎪⎨⎪⎧x =12,y =32.19. 【中考·枣庄】对于有理数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(-3)的值;(2)若x ⊗(-y )=2,(2y )⊗x =-1,求x +y 的值.【点拨】直接运用新定义的运算规则进行计算;(1)解:根据题中的新定义,得原式=2×4-3=5.【点拨】根据新定义的运算规则列出两个方程,可求出x ,y 的值,进而得到x +y 的值.(2):根据题中的新定义,得⎩⎨⎧2x -y =2,①x +4y =-1.②由①得y =2x -2,③ 将③代入②,得x +4(2x -2)=-1,解得x =79,将x =79代入③,得y =-49,故x +y =13.20. 【中考·日照】已知关于x 、y 的二元一次方程组⎩⎨⎧x +2y =3,3x +5y =m +2的解满足x +y =0,求m 的值.解:解关于x 、y 的方程组⎩⎨⎧x +2y =3,3x +5y =m +2,得⎩⎨⎧x =2m -11,y =-m +7.又因为x +y =0,所以(2m -11)+(-m +7)=0,解得m =4.21.小明在解方程组⎩⎨⎧ax +by =2,cx -3y =-2时,得到正确的解是⎩⎨⎧x =1,y =-1,小英同样解这个方程组,由于把c 抄错而得到的解是⎩⎨⎧x =2,y =-6,求方程组中a 、b 、c 的值. 解:因为⎩⎨⎧x =1,y =-1是原方程组的解, 所以⎩⎨⎧a -b =2,c +3=-2,解得c =-5. 由题意,可知⎩⎨⎧x =2,y =-6是方程ax +by =2的解, 即2a -6b =2.解方程组⎩⎨⎧a -b =2,2a -6b =2,得⎩⎪⎨⎪⎧a =52,b =12.综上可知,a =52,b =12,c =-5.。
消元法的基本步骤-概述说明以及解释
消元法的基本步骤-概述说明以及解释1.引言1.1 概述消元法是一种常用的数学求解方法,用于解决代数方程组或方程的问题。
通过使用代数运算,消元法能够将复杂的方程组转化为简单的形式,从而得到其解或者简化问题的求解过程。
消元法作为解决方程问题的经典方法,在数学和工程领域得到广泛应用。
本文将介绍消元法的基本步骤,包括定义、具体操作步骤以及应用领域。
通过了解消元法的原理和应用,读者可以更好地理解和运用这一方法来解决各类数学问题。
在接下来的章节中,我们将详细介绍消元法的定义和基本步骤。
首先,我们将通过对消元法的概述,了解其基本原理和工作方式。
接着,我们将介绍本文的结构和组织方式,以便读者能够更好地理解和阅读后续内容。
本文的目的是为读者提供一个清晰的消元法概述,并将其应用于实际问题中。
通过掌握消元法的基本步骤,读者将能够更加灵活地运用这一方法解决各种数学问题,并深入了解其在实际领域中的应用价值。
在下一章中,我们将详细介绍消元法的定义,包括其基本原理和使用方法。
请继续阅读下一章节,以了解更多有关消元法的知识。
1.2 文章结构文章结构部分的内容可以从以下几个方面进行阐述:1. 文章框架概述:在本节中,将对整篇文章的结构进行概括性的介绍,包括引言、正文和结论三个主要部分的内容以及各自的目的。
2. 引言部分:本部分主要用于引入文章的主题,并对消元法的基本概念进行简要阐述。
同时,说明为何对消元法进行研究和探讨的必要性。
3. 正文部分:本部分是文章的核心,详细讲解了消元法的基本步骤及其应用领域。
在对消元法的基本步骤进行阐述时,可以按照具体的操作流程进行分步骤的描述,并且可以配以图表进行说明,以便读者更好地理解和掌握。
在讲解消元法的应用领域时,可以列举一些常见或重要的实际案例并进行具体分析,说明消元法在不同领域的重要性和实用性。
4. 结论部分:本部分用于对全文进行总结和归纳。
首先,对消元法的重要性进行总结,强调其在实际问题求解中的作用和意义。
人教版数学下册知识点大全《初中一年级》
人教版初中一年级数学下册知识点大全相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
数学消元法种类
数学消元法种类1.引言1.1 概述概述部分的内容可以根据数学消元法的定义和背景进行描述。
可以提及其在数学领域中的重要性和应用,以及本文将要探讨的数学消元法种类。
以下是一个可能的概述内容:数学消元法是一种重要的数学方法,它在解决方程组、矩阵运算、线性代数等领域中具有广泛的应用。
通过应用不同的消元法,可以将复杂的数学问题简化为更易于解决的形式,从而更好地理解和解决问题。
本文将重点介绍数学消元法的种类。
消元法是一种基于变量消除的方法,通过逐步操作,将问题转化为更简单的形式。
这些方法通常涉及对系数矩阵进行初等变换,以减少未知数的数量或简化问题的结构。
然而,不同的消元法方法有着各自的特点和适用范围。
在接下来的章节中,我们将详细介绍两种常见的数学消元法。
第一种消元法将关注于要点1和要点2,通过某种特定的操作方式来完成变量的消除。
第二种消元法则着重介绍了另外两个要点,展示了一种不同的方法来解决数学问题。
通过理解和掌握这些不同的数学消元法,我们可以更有效地解决各种数学难题,并在实际应用中具有更广泛的运用价值。
在本文的最后一部分,将会对所介绍的数学消元法进行总结,并对未来可能的研究方向进行展望。
总之,数学消元法是一种重要的数学工具,它通过变量的消除或问题形式的简化,帮助我们深入理解和解决各种数学问题。
不同的消元法方法有着各自的特点和应用范围,本文将重点介绍两种常见的数学消元法,并提供对未来研究的展望。
文章结构部分的内容如下:1.2 文章结构本文共分为三个部分:引言、正文和结论。
引言部分将首先简要介绍数学消元法的概念和背景,为读者提供一个对该主题的整体认识。
随后,将介绍文章的结构和各个部分的内容。
正文部分是本文的主体部分,包括两个小节:第一种消元法和第二种消元法。
在每个小节中,将详细介绍各自的要点,以及对应的原理、方法和特点。
通过对这两种消元法的深入讲解,读者能够全面了解它们的应用场景和解题步骤,为进一步的学习和应用打下基础。
七年级数学下册 1.2.1 代入消元法导学案 湘教版(2021年整理)
2017春七年级数学下册1.2.1 代入消元法导学案(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春七年级数学下册1.2.1 代入消元法导学案(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春七年级数学下册1.2.1 代入消元法导学案(新版)湘教版的全部内容。
1。
2 二元一次方程组的解法1。
2.1 代入消元法1。
会用代入法解二元一次方程组.2。
初步体会解二元一次方程组的基本思想——“消元”.自学指导:阅读教材第6至8页,回答下列问题:自学反馈1.方程5x—3y=7,变形可得x=735y+,y=573x-。
2。
解方程组323 6.y xx y=-+=⎧⎨⎩,①②应消去y,把①代入②.3。
方程y=2x—3和方程3x+2y=1的公共解是11. xy==-⎧⎨⎩活动1 温故知新把x+y=20写成y=20—x,叫做用含x的式子表示y的形式。
写成x=20—y,叫做用含y的式子表示x的形式.试一试:1.用含x的代数式表示y:x+y=22 (y=22—x)2.用含y的代数式表示x:2x-7y=8 (x=872y +)活动2 提出问题,探究方法问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个队胜负场数分别是多少?方法一:可列一元一次方程来解解:设这个队胜了x场,则负了(22-x)场,由题意得2x+(22—x)=40。
(以下略)方法二:可列二元一次方程组来解解:设这个队胜了x 场,负了y 场,由题意得22240.x y x y +=+=⎧⎨⎩,(以下略) 这里所用的是将未知数的个数由多化少,逐一解决的想法--消元思想。
湘教版七年级数学下册1.2二元一次方程组的解法1.2.1代入消元法(1)教学设计
湘教版七年级数学下册1.2二元一次方程组的解法1.2.1代入消元法(1)教学设计一. 教材分析湘教版七年级数学下册1.2节主要介绍二元一次方程组的解法,其中1.2.1节是代入消元法。
这部分内容是在学生已经掌握了二元一次方程组的基础上进行讲解,通过代入消元法,让学生学会如何解决更复杂的二元一次方程组问题。
教材通过具体的例子引导学生理解并掌握代入消元法的步骤和原理。
二. 学情分析七年级的学生已经具备了一定的数学基础,对二元一次方程组有一定的了解。
但是,对于代入消元法这种解题方法,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的例子,让学生逐步理解和掌握代入消元法。
三. 教学目标1.让学生理解代入消元法的概念和原理。
2.让学生能够运用代入消元法解决实际的数学问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.代入消元法的步骤和原理。
2.如何将实际问题转化为代入消元法可以解决的问题。
五. 教学方法采用讲解法、示范法、练习法、讨论法等多种教学方法,通过具体的例子,引导学生理解并掌握代入消元法。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的数学问题,用于让学生进行练习和巩固。
七. 教学过程1.导入(5分钟)通过一个简单的二元一次方程组,引导学生思考如何解决更复杂的方程组问题。
2.呈现(15分钟)讲解代入消元法的步骤和原理,通过具体的例子,让学生理解并掌握代入消元法。
3.操练(15分钟)让学生分组合作,解决一些实际的数学问题,运用代入消元法进行解答。
4.巩固(10分钟)对学生在操练中遇到的问题进行讲解和解答,帮助学生巩固代入消元法的运用。
5.拓展(10分钟)引导学生思考如何将代入消元法应用到更复杂的问题中,让学生进行一些拓展练习。
6.小结(5分钟)对本节课的内容进行小结,让学生明确代入消元法的概念和运用。
7.家庭作业(5分钟)布置一些相关的家庭作业,让学生进一步巩固和掌握代入消元法。
代入消元法教案人教版 一等奖
代入消元法教案人教版第31篇一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法:引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备:电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、已知方程x-2y=8,用含x的式子表示y,则y =_________________,用含y的式子表示x,则x =________________(二)情境导课教师出示情境:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?学生根据情境,思考并练习。
初二数学:下册122代入消元法2导学案湘教版
1.2.2代入消元法(2) 一、预习与质疑(课前学习区)(一)预习内容:P8-P10(二)预习时间:10分钟(三)预习目标:1.会较熟练地运用代入法求二元一次方程组的解.2.了解代入法是消元的一种方法。
3.掌握解用代入法解二元一次方程组的一般步骤,提高学生观察、分析和解决问题的能力,理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心;4、培养学生合作交流,自主探索的良好习惯。
培养思维的灵活性,增强学好数学的信心。
(四)学习建议:1.教学重点:用代入法解二元一次方程组的消元过程。
2.教学难点:灵活消元使计算简便。
(五)预习检测:㈠.将下列方程中的y 用含有x 的代数式表示:(1)2x-y=-1 (2)x+2y-2=0㈡.阅读教材P 6-P 8,并关注以下问题。
1、完成P6“探究”的填空。
2、解二元一次方程组的基本思路是消去 (简称为 )。
3、解二元一次方程组时,把其中一个方程的 未知数用含有 未知数的代数式表示,然后把它代入到 方程中,得到一个 ,这种解方程组的方法叫 消元法,简称 。
㈢.自学检测1、在例2中,用含x 的代数式表示y 来解原方程组。
2、用代入法解方程组。
⎩⎨⎧=+=+7b a 311b 2a 5活动一:合作交流1、在例1中,为什么不把③式代入②式中?2、解方程组310 2330 m nm n-+=⎧⎨+-=⎩时先消去哪个未知数比较好?为什么?(六)生成问题:通过预习和做检测题你还有哪些疑惑请写在下面。
二、落实与整合(课中学习区)活动二:归纳总结1、解二元一次方程组的基本思路是什么?2.什么叫代入消元法?3.用代入法解方程要注意哪些方面?三、检测与反馈(课堂完成)解下列二元一次方程组。
1、310 2330 m nm n-+=⎧⎨+-=⎩2、⎪⎩⎪⎨⎧+==+1s 21t 6t s 23、⎩⎨⎧=-=-9-b 2a 56b 3a4、解方程组22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩,;四、课后互助区1.学案整理:整理“课中学习去”后,交给学习小组内的同学互检。
《消元——解二元一次方程组》教案
《消元-—解二元一次方程组》教案1第一课时★新课标要求(一)知识与技能1.知道代入法的概念.2.会用代入消元法解二元一次方程组.(二)过程与方法1.通过探索,了解解二元一次方程的“消元"思想,初步体会数学的化归思想.2.培养探索、自主、合作的意识,提高解题能力.(三)情感、态度与价值观1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.2.通过研究解决问题的方法,培养学生合作交流意识与探究精神.★教学重点用代入法解二元一次方程组,基本方法是消元化二元为一元.★教学难点用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.★教学方法1.关于检验方程组的解的问题.教学时要强调代入“原方程组”和“每一个”这两点.2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元".我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果.★教学过程一、引入新课教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题.大家可以得到两种方程﹙组﹚.设此篮球队胜场,负场.方法一:;方法二:方法一得到的方程是我们学过的一元一次方程.大家很容易解得.所以该篮球队胜18场,负场.二、进行新课1.代入消元法的概念方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系?学生活动:思考、讨论、发现二元一次方程组中第1个方程说明,将第2个方程的换为,这个方程就化为一元一次方程.教师活动:介绍消元思想,师生共同归纳代入消元法的概念.归纳:消元思想:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.学习用代入消元法解二元一次方程教师活动:把下列方程写成用含的式子表示的形式:(1);(2).学生活动:独立完成,回答结果.教师活动:出示例1,巡视,指导学生解答.例1:用代入法解方程组学生活动:解答例1,体验代入消元法解二元一次方程组,试着归纳用消元法解二元一次方程组的步骤.分析:方程①中的系数是1,用含有的式子表示,比较就简便.解:由①,得③把③代入②,得.(把③代入①可以吗?)解这个方程,得.把代入③,得.(把代入①或②可以吗?)所以这个方程组的解是教师归纳总结强调:(1)一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程”由于方程③是由方程①得到的,所以它只能代入方程②,而不能代入方程③.(2)个未知数的值后,把它代入方程①②③都能得到另一个未知数的值,其中代入方程③最简捷.教师活动:指导学生认真阅读教材P例2.要求学生阅读思考找出题目中所包含的等量关系,列出二元一次方程组,并解答.例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?学生活动:一生板演,余生自做.教师活动:针对学生的解答进行点评.分析:问题中包含两个条件:,大瓶所装消毒液+小瓶所装消毒液=总生产量.解:设这些消毒液应该分装大瓶和小瓶.根据大、小瓶数的比以及消毒液分装量与总生产量的数量关系,得由①,得把③代入②,得.解这个方程,得.把代入③,得.所以这个方程组的解是答:这些消毒液应该分装大瓶和小瓶.上面解方程组的过程可以用下面的框图表示:三、课堂总结这节课我们介绍了二元一次方程组的一种解法——-代入消元法.了解到解二元一次方程组的基本思想是“消元”,即把二元变成“一元”.在学习方法上,还要学会主动探索,从不同的角度来思考问题的学习方法,逐步理解数学的转化思想和整体代入思想.四、课后练习1.把下列方程改写成用含的式子表示的形式:(1);(2).2.用代入法解下列方程组:(1)(2)3.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛.了;篮、排球队各有多少支参赛?4.张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米.他骑车与步行各用多少时间?第二课时★新课标要求(一)知识与技能1.掌握用加减消元法解二元一次方程组的步骤.2.能运用加减法解二元一次方程组.3.培养学生的计算能力和应用数学解决实际问题的意识.(二)过程与方法经历探索用“消元”方法把二元一次方程组转化为一元一次方程,从而求方程组的解的过程,体会“消元”方法在解方程中的作用.(三)情感、态度与价值观1.进一步理解解二元一次组的消元思想,在化“未知为已知"的过程中,体验化归的数学美.2.根据方程组的特点,引导学生多角度思考问题,培养开拓创新意识.★教学重点进一步渗透消元思想,掌握用加减消元法解二元一次方程组的原理及一般步骤;能熟练运用加减法解二元一次方程组.★教学难点明确用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等★教学方法通过复习上节课利用代入法解二元一次方程组的方法及其解题思想,引入新课,让学生观察比较,从而发现只要将相同未知数前的系数化为绝对值相等的值,即可实施加减消元法.进一步让学生探究用代入法还是用加减法解方程组更简单,明确用加减法解题的优越性.通过反复的训练、归纳;再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.★教学过程一、创设问题情境,导入新课教师活动:请同学们考虑下列问题:1.用代入法解二元一次方程组的基本思想是什么?2.用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第1题,书面完成第2题,通过投影展示学生的不同解法.教师活动:对学生的解法给予肯定,激励.问:对于二元一次方程是不是还有其它解法,也可以消去一个未知数,达到消元的目的呢?二、进行新课1.对加减消元法的认识教师活动:第(2)题的两个方程中,未知数的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解.解:①+②,得.解得.把代入①,得.∴.∴学生活动:比较用这种方法得到的值是否与用代入法得到的相同.(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了,观察一下的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去?(相减) 学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)教师活动:归纳总结.两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称“加减法”.2.加减消元法解二元一次方程组提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)②在什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)教师活动:出示课本例3要求学生思考“不用代入法怎样解”?例3:用加减法解方程组学生活动:在教师的引导下总结怎样解未知数的系数不一定刚好相等,也不一定互为相反数的二元一次方程.﹙用最小公倍数将同一未知数系数转化为相等或相反的数,然后再把两个方程的左右两边分别相加或相减﹚一生板演,师生共评.解:①×3,得②×2,得③+④,得,.把代入①,得,,.所以这个方程组的解是教师活动:出示投影片加减消元法解二元一次方程组的基本思想是什么?(两方程中同一未知数的系数不相等也不相反,所以不能通过直接加减来消元.为消元需要在方程两边乘适当的数,使某个未知数在两方程中的系数相等或相反.)用加减消元法解二元一次方程组的一般步骤是什么?学生活动:分组讨论、总结,解决以上问题.教师活动:和学生一道分析讨论结果,投影出示加减消元的基本思想和解二元一次方程组的一般步骤.学生活动:阅读例4.师生共同分析列出方程组.然后交由学生解方程组.例4:2台大收割机和5台小收割机均工作2小时共收割小麦3。
湘教版数学七年级下册1.2.1《代入消元法》教学设计
湘教版数学七年级下册1.2.1《代入消元法》教学设计一. 教材分析《代入消元法》是湘教版数学七年级下册1.2.1的内容,主要介绍了代入消元法在解二元一次方程组中的应用。
本节内容是在学生已经掌握了二元一次方程组的基础知识,以及加减消元法的基础上进行讲解的,目的是让学生掌握代入消元法,进一步理解方程组的解法。
二. 学情分析学生在学习本节内容前,已经掌握了二元一次方程组的基础知识,以及加减消元法。
但由于代入消元法是一种新的解题方法,学生可能对其理解和运用存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.让学生掌握代入消元法的原理和步骤。
2.培养学生运用代入消元法解决实际问题的能力。
3.提高学生对数学知识的兴趣和自信心。
四. 教学重难点1.代入消元法的原理和步骤。
2.如何运用代入消元法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生思考和探索。
2.使用实例讲解,让学生直观地理解代入消元法的应用。
3.学生进行小组讨论和交流,提高学生的合作能力。
4.通过练习题巩固所学知识,及时发现和解决学生的问题。
六. 教学准备1.教学课件:制作代入消元法的原理和步骤的课件。
2.实例:准备一些实际的二元一次方程组,用于讲解和练习。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入二元一次方程组的概念,引导学生回顾已学的加减消元法。
然后,提出代入消元法的问题,激发学生的兴趣。
2.呈现(10分钟)讲解代入消元法的原理和步骤,结合实例进行演示,让学生直观地理解代入消元法的应用。
3.操练(10分钟)学生进行小组讨论,让学生互相交流和分享对代入消元法的理解。
然后,让学生独立解决一些实际的二元一次方程组,体会代入消元法的运用。
4.巩固(10分钟)让学生完成一些练习题,巩固所学知识。
在学生解题过程中,及时发现和解决学生的问题。
5.拓展(10分钟)引导学生思考:代入消元法在解决其他类型的方程组中的应用。
人教版初中数学消元-解二元一次方程组精选课时练习(含答案)2
y
1
x 2
26.
y
7 2
参考答案
答案第 1页,总 3页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
x 9 27. 2
y 4
x 10
x 6
28.(1)
y
10
(2)
y
4
x 1
29.
y
1
x 2
x 3
30.(1)
y
2
,(2)
y
2
.
x 5
x 3
31.(1)是
y
B.①×(﹣3)+②×2,消去 x
C.①×2﹣②×3,消去 y
D.①×3﹣②×2,消去 x
2.关于 x,y
的方程组
a1x+b1y=c1 a2x+b2y=c2
的解是
x y
= =
4 1
,则关于
x,y
的方程组
a1 a2
x-1 x-1
+b1 +b2
-y -y
=c1 =c2
的解是( )
A.
x y
= =
3 1
B.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ ”.
(2)请选择一种你喜欢的方法,完成解答.
2x 3y 7
37.解方程组:
x
3
y
8
.
5x 3y n 38.已知关于 x,y 的二元一次方程组 3x 2 y 2n 1 的解适合方程 x+y=6,求 n 的
值.
试卷第 4页,总 6页
x
x
y
y
3.2
3.2
的解为(
)
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
(湘教版)七年级数学下册:1.2.1《代入消元法》教案
(湘教版)七年级数学下册:1.2.1《代入消元法》教案一. 教材分析《代入消元法》是湘教版七年级数学下册的一个重要内容,主要介绍了代入消元法的概念、方法和应用。
通过学习本节课,学生能够掌握代入消元法的原理,能够运用代入消元法解决一些简单的方程组问题。
二. 学情分析学生在学习本节课之前,已经学习了方程和方程组的基本概念,具备了一定的数学基础。
但是,对于代入消元法的理解和运用还需要进一步引导和培养。
因此,在教学过程中,教师需要关注学生的学习情况,根据学生的实际水平进行有针对性的教学。
三. 教学目标1.了解代入消元法的概念和原理。
2.掌握代入消元法的步骤和应用。
3.能够运用代入消元法解决一些简单的方程组问题。
四. 教学重难点1.代入消元法的概念和原理的理解。
2.代入消元法的步骤和应用的掌握。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习代入消元法。
2.使用多媒体辅助教学,通过动画和例子来形象地展示代入消元法的原理和应用。
3.学生进行小组讨论和合作,促进学生之间的交流和学习。
六. 教学准备1.多媒体教学设备。
2.教学课件和教案。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题引入代入消元法的学习,引发学生的兴趣和思考。
2.呈现(10分钟)使用多媒体课件,呈现代入消元法的定义和原理,通过动画和例子进行解释和展示,帮助学生理解和掌握。
3.操练(10分钟)学生分组进行讨论和合作,解决一些简单的方程组问题,教师进行指导和解答学生的疑问。
4.巩固(10分钟)学生独立完成一些练习题,教师进行批改和讲解,巩固学生对代入消元法的掌握。
5.拓展(10分钟)学生进行一些拓展练习,教师进行指导和解答学生的疑问,提高学生的解题能力。
6.小结(5分钟)教师进行小结,回顾本节课的学习内容,强调代入消元法的重点和难点。
7.家庭作业(5分钟)布置一些相关的家庭作业,让学生进一步巩固和运用代入消元法。
实际问题与二元一次方程组教案
实际问题与二元一次方程组教案实际问题与二元一次方程组教案(通用6篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么教案应该怎么写才合适呢?以下是店铺为大家收集的实际问题与二元一次方程组教案(通用6篇),欢迎阅读,希望大家能够喜欢。
实际问题与二元一次方程组教案篇1教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系课前自主学习1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量(2)同类量的单位要()(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()新课探究看一看问题:1.题中有哪些已知量?哪些未知量?2.题中等量关系有哪些?3.如何解这个应用题?本题的等量关系是(1)()(2)()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。
(“有”或“没有”)练一练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?小结用方程组解应用题的一般步骤是什么?实际问题与二元一次方程组教案篇2教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1、“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
1.2.1二元一次方程组的解法《代入消元法》ppt课件
二元一次方程组的解法
-----代入消元法
动脑筋 想一想
1、用含x的代数式表示y: x + y = 22
2、用含y的代数式表示x:
x - 7y = 8
说一说
现在我们来解决上节课中1月份天然气费水费 多少元的问题?并且知道x=40,y=20是这个方程 组的一个解,是如何得到的呢?
① ②
.
解析
y = 2x , 2 x + 3 y = 8
将①代入②得 x = 1. 把x=1代入① 得 y = 2. x =1 , 所以原方程组的解为
y =2 .
2x - 3 y = 0 , 5x -7 y = 1 .
① ②
解 从①得, x = 2 y
把③代入 ② ,得
3 5 y - 7 y =1. 2 15 y -14 y =1 , y = 2.
3
③
把y=2代入③ ,得 x = 3 因此原方程组的一个解是
例1 解方程组:
5x - y = -9 , y = - 3 x+1 .
① ②
5x - y = -9 , y = - 3 x+ 1 .
① ②
解 把②代入 ①,得 5x-(-3x+1)=-9. 解得 x = -1 把x=-1代入② ,得 y=4 每位同学把x=-1, 因此原方程组的一个解是
① ②
解: 从①得,
y=3x+1
③
把③代入② ,得 2x+3(3x+1)-3=0 x =0 把x=0代入③ ,得 y=1 因此原方程组的一个解是
人教版初中一年级数学下册知识点大全
人教版初中一年级数学下册知识点大全相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把两个含有相同未知数的二元一次方程联 合起来,就叫做二元一次方程组。 x+y=60
x-y=20
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
若设鸡有x只,兔有y只,你能列出方程组吗?
x+y=35 2x+4y=94
观察
x+y=35 2x+4y=94
① ②
方程①和②中的 x 都表示鸡方程
(3)求解
求出一个未知数的值
(4)代入
求出另一个未知数的值
(5)写解:写出方程组的解
课后作业
1.课本:P12 习题1.2 第1题 2.练习册:完成练习册 P3-4
祝同学们学习进步!
x
=
-1
,
y
=
4.
变形代入
先将其中一个方 程变形,得到一
个新的方程,再 将新方程代入没 有变形的方程中。
解二元一次方程组的基本思路是:
消去一个未知数(简称消元),得到一个一元 一次方程,然后解这个一元一次方程.
消去一个未知数的方法是:
把其中一个方程的某一个未知数用含有另一个 未知数的代数式表示,然后把它代入到另一个方程 中,便得到一个一元一次方程。
本节内容
1.2 二元一次方程组的解法
——1.2.1 代入消元法
学习目标
1.了解解二元一次方程组的基本思路是消元; 2.掌握用代入法解二元一次方程组的步骤; 3.熟练运用代入法解简单的二元一次方程组.
什么是二元一次方程?
方程含有两个未知数(二元),并且含 未知数的项的次数都是1。X+Y=60、X-Y=20
变形
代入求一 未知数值
再代入求另 一未知数值 写解
举手抢答!
1.方程-x+4y=-15用含y的代数式表示x为( C ) A.-x=4y-15 B.x=-15+4y C. x=4y+15 D.x=-4y+15
2.将y=-2x-4代入3x-y=5可得( B )
A.3x-(2x+4)=5 B. 3x-(-2x-4)=5
能力提升
2、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值.
解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ②
由①得:y = 2 – 3x ③ 把③代入得:
5x + 2(2 – 3x)- 2 = 0
5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4
消去一个未知数(简称为消元) ,得 到一个一元一次方程。
注意:一般选择未知数的系数较为简单的方程加以变形!
例1
5x
-
y
=
-9
,
3x+
y
=
1
.
解 由②式得
y= -3x+1.
① ②
③
把③代入①式,
得 5x-(-3x+1)=-9. 解得 x = -1
把x = -1代入③式,得y=4.
因此原方程组的解是
C.3x+2x-4=5
D. 3x-2x+4=5
2x+5y=21 ①
3.用代入法解方程组 x +3y=8 ② 较为简便的方法是( B ) A.先把①变形
B.先把②变形
C.可先把①变形,也可先把②变形
D.把①、②同时变形
能力提升
1、若方程5x
1 m-2n+4y
1
3n-m
=
9是关于x、y的二元一次方程,
因此方程②中的 x, y 分别与方程①中的x,y相同.于是
由①式得:
y = 35-x ③
于是可以把③代入②式,得:
2x+4 (35-x)=94 ④
解方程④,得 x =__2_3____ 把X的值代入③式,得y = ___1_2____
因此原方程组的解是
x
=23
y
=12
同桌同学讨论,解二元一次方程组的基本 思路是什么?
把x = 2 代入③,得: y= 2 - 3×2 y= -4
∴ x=2 y = -4
即x 的值是2,y 的值是-4.
-x = -2 x=2
课堂小结 :
1.运用代入消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 代入消元: 二元
一元
主要步骤: (1)变形
得到一个新的二元一次方程
(2)代入
这种解方程组的方法叫做代入消元法,简称代入法。
用代入法解方程组:
例2 解方程组
①
2x 3y 0
解
5x 7 y
由①式得 x
13
y
③
②
2
把③代入②式,得 5 3 y 7 y 1
2
15y 14y 2
解得 y = 2
把y=2代入③,得 x =3
因此原方程组的解是
x
y
3 2
用代入法解二元 一次方程组的 一般步骤:
求m 、n 的值.
解:由题意知, m - 2n = 1 ① 3n – m = 1 ②
由①得:m = 1 +2n ③
把③代入②得:
3n –(1 + 2n)= 1 3n – 1 – 2n = 1 3n-2n = 1+1 n=2
把n =2 代入③,得:
m = 1 +2n
1 22 5
m =5 n=2
即m 的值是5,n 的值是2.