典型系统的时域响应和稳定性分析

合集下载

实验一系统响应及系统稳定性实验报告精修订

实验一系统响应及系统稳定性实验报告精修订

实验一系统响应及系统稳定性实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]一、实验目的(1)掌握求系统响应的方法(2)掌握时域离散系统的时域特性(3)分析、观察及检验系统的稳定性二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应。

已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零。

二、实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

程序代码xn=[ones(1,32)];hn=[0.2 0.2 0.2 0.2 0.2];yn=conv(hn,xn);n=0:length(yn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a)y(n)波形');xlabel('n');ylabel('y(n)')输出波形(2)给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形。

系统响应及系统稳定性

系统响应及系统稳定性

文电072-1班200790511115 张雪倩实验一:系统响应及系统稳定性实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入型号,可以由差分方程、单位脉冲响应或系统函数求出系统对该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变特性、因果性和稳定性。

重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应应满足绝对可和的条件。

系统的稳定性要求由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出都是有界输出,或者检查系统的单位脉冲响应应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。

系统的稳态输出是指当n时,系统的输出。

如果系统稳定,信号加人系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下的试验中均假设系统的初始状态为零。

实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子序列,用filter函数或conv 函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

(2)给定一个低通滤波器的差分方程为输入信号①分别求出的系统响应,并画出其波形。

②求出系统的单位脉冲响应,画出其波形。

在MA TLAB的M文件中编写程序并得到图形:a=[1,-0.9];b=[0.05,0.05];x1n=[ones(1,8),zeros(1,50)];x2n=[ones(1,128)];y1n=filter(b,a,x1n);figure(1);stem(y1n,'.');y2n=filter(b,a,x2n);figure(12);stem(y2n,'.');hn=impz(b,a,64);figure(13);stem(hn,'.');hn=impz(b,a,64);figure(1);stem(hn,'.');(3)给定系统的的单位脉冲响应为用线性卷积法求分别对系统的输出响应,并画出波形。

自动控制原理实验一 典型系统的时域响应和稳定性分析

自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中由图1-2,可以确地1-1中的参数。

T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

典型系统的时域响应和稳定性分析

典型系统的时域响应和稳定性分析

信息科学与工程学院本科生实验报告实验名称1.2 典型系统的时域响应和稳预定时间实验时间姓名学号授课教师实验台号专业班级.1.2 典型系统的时域响应和稳定性分析一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、原理简述1.典型的二阶系统稳定性分析(1) 理论分析:系统开环传递函数为:G(S) = ;开环增益 K= K1/To(2) 实验内容:先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟To=1s, T1=0.2s, K1=200/R系统闭环传递函数为:W(S) ==其中自然振荡角频率: = = 10 ;阻尼比:。

2. 典型的三阶系统稳定性分析(1)理论分析系统的开环传函为:G(S)H(S) = (其中K=500/R),系统的特征方程为:1+G(S)H(S) = 0 → +12+20S+20K = 0(2)实验内容实验前由 Routh 判断得 Routh 行列式为:1 2012 20K(-5K/3)+20 020K 0(-5/3)K+20>0为了保证系统稳定,第一列各值应为正数,所以有 20K>0得: 0<K<12 → R>41.7KΩ系统稳定K=12 → R=41.7KΩ系统临界稳定K>12 → R<41.7KΩ系统不稳定三、仪器设备PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

四、内容步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。

2. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图接线,将 1 中的方波信号接至输入端,取R=10KΩ。

自动控制原理实验 典型系统的时域响应和稳定性分析

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。

研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。

2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。

3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。

2.原则1简介。

典型二阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:开环增益2。

典型三阶系统的稳定性分析(1)结构框图:如图所示。

(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。

系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。

将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。

2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。

系统函数零极点时域特性和稳定性

系统函数零极点时域特性和稳定性

若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
j
h(t)
0
0t
1 s2
h(t)
tu(t)
ⅱ) pi<0(实一阶)
j
a
0
h(t)
0t
1 eatu(t) sa
自由响应 齐次解
零输入响应 齐次解的一部分
强迫响应 特解
零状态响应 齐次解的一部分+特解
2.Ki , Kk 均由 pi , pk共同作用,即 自由响应:形式只由H(s)决定,幅度相位由H(s), E(s)共同决定 强迫响应:形式只由E(s)决定,幅度相位由H(s), E(s)共同决定
3.固有频率(自由频率):系统行列式(系统特征方程)的根, 反映全部自由响应的形式
④∞处: 分母次数 > 分子次数则为零点,阶次为分母次数减分子次数 分母次数 < 分子次数则为极点,阶次为分子次数减分母次数
注意:零、极点个数相同
⑤零极点图中:×表示极点;○表示零点
[例1]: ①
H
(s)
s[(s 1)2 (s 1)2 (s2
1] 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶)
pi<0(实二阶)
j
a
0
h(t)
0t
(s
1 a)2
teatu(t)
起始增加,最终收敛
ⅲ) pi>0(实一阶)
j
h(t)

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。

实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。

2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。

3、分析系统特征方程的根,判断系统的稳定性。

4、探讨系统的性能指标,并初步探讨系统的优化方法。

实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。

3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。

根据根的位置,我们可以判断系统的稳定性。

由于系统的根都在左半平面,因此系统是稳定的。

4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。

在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。

结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。

在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。

典型系统的时域响应与稳定性分析

典型系统的时域响应与稳定性分析

典型系统的时域响应与稳定性分析1. 时域响应分析时域响应指的是系统在时间上的响应特性。

时间域分析主要是利用微分方程分析系统的时域响应。

对于一个线性时不变系统(LTI)来说,可以通过拉普拉斯变换来得到系统的微分方程和传递函数,然后通过求解微分方程或者使用传递函数的极点和零点分析系统的时域响应。

常见的系统时域响应包括阶跃响应、脉冲响应和正弦响应。

这里以阶跃响应为例:阶跃响应可以用系统的传递函数 H(s) 通过拉普拉斯逆变换来求得:h(t) = L^-1[H(s)]其中,L^-1表示拉普拉斯逆变换。

如果系统的传递函数可以表示为有理函数的形式,可以通过部分分式分解和拉普拉斯逆变换将传递函数分解为简单的分式形式,例如:H(s) = K / (s+a)(s+b)上述传递函数的分解形式可以根据不同的分母极点对系统的时域响应进行分析。

例如,对于第一种分解形式,系统的时域响应可以表示为:h(t) = K1e^(-at) - K2e^(-bt)其中,K1和K2是待定系数,可以根据初值条件求解。

根据这个时域响应可以得到系统的稳定性分析结论:当a和b的实部均小于零时,系统是稳定的;当a和b的实部均大于零时,系统是不稳定的;当a和b的实部均等于零时,系统是临界稳定的。

2. 稳定性分析稳定性分析是对系统的稳定性进行判断和评价的过程。

系统的稳定性取决于时域响应的长期行为,可以通过系统的极点和零点的位置来进行判断。

对于一个单输入单输出(SISO)的线性时不变系统(LTI),系统的稳定性可以根据系统的传递函数 H(s) 的极点位置进行判断。

如果所有的极点都位于s平面的左半平面,也就是实部都小于零,则系统是稳定的。

如果存在一个或多个极点位于s平面的右半平面,则系统是不稳定的。

如果极点都位于s平面的虚轴上,则系统是临界稳定的。

稳定性分析是控制系统设计过程中必不可少的一步,它能够帮助控制工程师预测系统的行为并避免不稳定的结果。

在实际应用中,稳定性分析可以应用于飞行控制系统、机器人控制系统、电力系统等领域,为实际系统的设计和控制提供基础支持。

自动控制原理实验 控制系统稳定性分析和时域响应分析

自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。

二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。

2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。

3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。

对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。

4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

电力电子技术中的电力电子系统的稳定性分析方法有哪些

电力电子技术中的电力电子系统的稳定性分析方法有哪些

电力电子技术中的电力电子系统的稳定性分析方法有哪些在电力电子领域中,电力电子系统的稳定性分析是非常重要的,它关乎到电力系统的可靠性和安全性。

电力电子系统的稳定性分析方法涉及到系统的动态特性和稳态特性分析,下面将介绍几种常用的稳定性分析方法。

一、频域法频域法是一种常见的稳定性分析方法,它通过对系统进行频率响应分析,来评估系统的稳定性。

频域法主要使用频率响应函数和Bode图进行分析。

通过绘制系统的频率响应曲线,可以得到系统的幅频特性和相频特性,从而判断系统的稳定性。

二、时域法时域法是另一种常用的稳定性分析方法,它是通过分析系统的时间响应来评估系统的稳定性。

时域法可以采用传递函数法、状态空间法或者直接采用微分方程法进行分析。

通过求解系统的微分方程,可以得到系统的时间响应曲线,从而判断系统的稳定性。

三、根轨迹法根轨迹法是一种图解法,它通过绘制系统传递函数的根轨迹图来判断系统的稳定性。

根轨迹图可以直观地展示系统极点的变化规律,通过观察根轨迹的形状和位置,可以评估系统的稳定性和动态特性。

四、Nyquist稳定性判据Nyquist稳定性判据是通过绘制系统的Nyquist图进行判断的一种方法。

通过绘制系统的频率响应曲线,可以得到Nyquist图。

根据Nyquist图的形状和位置,可以判断系统的稳定性。

对于闭环系统,如果Nyquist图的曲线不经过-1点,则系统是稳定的。

五、Lyapunov稳定性分析法Lyapunov稳定性分析法是一种通过构造Lyapunov函数来判断系统稳定性的方法。

通过构造适当的Lyapunov函数,可以证明系统是否稳定。

这种方法通常适用于非线性系统的稳定性分析。

综上所述,电力电子技术中的电力电子系统的稳定性分析方法包括频域法、时域法、根轨迹法、Nyquist稳定性判据和Lyapunov稳定性分析法等。

这些方法可以互相补充,通过不同的角度和方法来对电力电子系统的稳定性进行评估,从而确保电力系统的可靠性和安全性。

实验二典型系统的时域响应分析实验仿真报告答案分析解析

实验二典型系统的时域响应分析实验仿真报告答案分析解析

实验二典型系统的时域响应分析实验仿真报告答案分析解析Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】实验二典型系统的时域响应分析1. 实验目的1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。

2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。

3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。

4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。

2. 实验仪器PC计算机一台,MATLAB软件1套3. 实验内容1)一阶系统的响应(1) 一阶系统的单位阶跃响应在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s+1)]由拉氏反变换得h(t)=1-e^(-t/ (t>=0)由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4)e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4.3) 一阶系统的单位脉冲响应在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。

此处注意分析在SIMULINK 环境中可否得到该曲线图。

理论分析:C (s )=5/+2)=(5/2)/+1)可求的g(t)=^(-t/,是一个单调递减的函数。

两种环境下得到的曲线图不一致。

2)二阶系统的单位阶跃响应二阶系统的闭环传递函数标准形式为 其阶跃响应可以分以下情况解出①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=②当10<<ζ时,系统阶跃响应为 )sin(111)(2θωζζω+--=-t e t c d tn其中ζζθ/121-=-tg ,21ζωω-=n d③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)(④当1>ζ时,系统阶跃响应为 ⎪⎪⎭⎫ ⎝⎛---=21221121)(λλζωλλt t ne e t c 其中121---=ζζλ,122-+-=ζζλ (1)自然角频率1=n ω选取不同阻尼比=ζ0,,,,,,,用MATLAB 得到二阶系统阶跃响应曲线。

实验二用MATLAB建立传递函数模型

实验二用MATLAB建立传递函数模型

《自动控制原理》实验指导书北京科技大学自动化学院控制科学与工程系2013年4月目录实验一典型系统的时域响应和稳定性分析 (1)实验二用MATLAB建立传递函数模型 (5)实验三利用MATLAB进行时域分析 (13)实验四线性定常控制系统的稳定分析 (25)实验五利用MATLAB绘制系统根轨迹 (29)实验六线性系统的频域分析 (37)实验七基于MATLAB控制系统频域法串联校正设计 (51)附录1 MATLAB简介 (58)附录2 SIMULINK简介 (67)实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2) 对应的模拟电路图:如图1-2所示。

图1-2(3) 理论分析系统开环传递函数为:G(s)=?开环增益:K=?先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中由图1-2,可以确地1-1中的参数。

0?T =, 1?T =,1?K = ?K ⇒=系统闭环传递函数为:()?W s =其中自然振荡角频率:?n ω=;阻尼比:?ζ=。

2.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为:()()?G s H s =系统的特征方程为:1()()0G s H s +=。

(4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 S 2 S 1 S 0为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定K值的范围系统临界稳定K系统不稳定K值的范围四、实验步骤1)将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

典型环节的时域响应

典型环节的时域响应

典型环节的时域响应时域响应是指某个系统在时间上的反应状态,它是一个输出信号随着时间的变化过程。

在控制科学和工程领域中,时域响应常常被用来描述一个系统对于时间变化输入的反应情况。

对于控制系统而言,时域响应是其性能特征的一种体现,因为它可以用来评估系统的稳态响应、动态响应和稳定性等性能指标。

在控制系统传递函数的分析中,时域响应通常用来描述系统的闭环响应,也就是系统在反馈控制下的响应特性。

控制系统的时域响应包括以下几个典型环节:1. 单位阶跃响应单位阶跃响应是指系统在接受一个单位阶跃输入信号时的输出响应。

在实际控制系统中,由于这种信号形态具有跳变性质,可能会引起系统的过冲和震荡现象。

因此,单位阶跃响应是评估一个控制系统动态响应指标的重要参数之一。

单位脉冲响应是指系统在接受一个单位脉冲输入信号时的输出响应。

与单位阶跃响应相比,单位脉冲响应更加真实地反映了系统在瞬间输入信号刺激下的响应特性。

在控制系统设计和分析中,单位脉冲响应被广泛应用于传递函数的求解和系统参数的调整等方面。

3. 频率响应频率响应是指系统在接受周期性、正弦波形输入信号时的输出响应。

通常情况下,频率响应的特性会随着输入信号的频率变化而发生变化,这种响应形态常常被用于分析系统的共振和抑制特性。

在控制系统设计中,频率响应可以用来确定系统的频域传递函数,进行系统稳定性和补偿控制的分析。

4. 随机响应随机响应是指系统在受到随机输入信号时的输出响应。

由于随机输入信号具有不确定性和不规律性,因此随机响应的分析通常需要借助于统计学方法和随机过程理论。

在现代控制理论中,随机响应的研究已成为系统辨识、最优控制、自适应控制等各种控制策略的重要组成部分。

总之,掌握控制系统的时域响应特性对于实现系统优化和性能改进具有重要意义。

对于不同的控制问题和应用场合,我们需要根据实际情况选择合适的时域响应方法进行分析和设计,以提高系统的可靠性和稳定性。

实验一 离散时间系统的时域响应及稳定性

实验一 离散时间系统的时域响应及稳定性

实验一 离散时间系统的时域响应及稳定性1.1实验目的1)加深对离散线性移不变(LSI )系统时域特性的认识;2)掌握MATLAB 求解离散时间系统响应的基本方法;3)了解MATLAB 中求解系统响应的函数及其应用方法;4)分析、观察及检验离散时间系统的稳定性。

1.2实验涉及的MATLAB 函数dlsim功能:求解离散系统的响应。

调用格式:y =dlsim(b ,a ,x );求输入信号为x 时系统的响应。

说明:b 和a 分别表示系统函数H (z )中,由对应的分子项和分母项系数所构成的数组。

1.3实验原理1)离散LSI 系统时域响应的求解方法一个线性移不变离散系统可以用线性常系数差分方程表示,也可以用系统函数表示。

无论是差分方程还是系统函数,一旦式中的系数m b 和k a 的数据确定了,则系统的性质也就确定了。

因此,在程序编写时,往往只要将系数m b 和k a 列写成数组,然后调用相应的处理函数,就可以求出系统的响应。

对于离散LSI 系统的响应,MATLAB 提供了多种求解方法:(1) 用conv 子函数进行卷积积分,求任意输入的系统零状态响应。

(2) 用dlsim 子函数求任意输入的系统零状态响应。

(3) 用filter 和filtic 子函数求任意输入的系统完全响应。

本实验重点介绍(2)、(3)两种方法。

2)用dlsim 子函数求LSI 系统对任意输入的响应对于离散LSI 系统任意输入信号的响应,可以用MATLAB 提供的仿真dlsim 子函数来求解。

例1: 已知一个IIR 数字低通滤波器的系统函数公式为1231230.13210.39630.39630.1321()10.343190.604390.20407z z z H z z z z −−−−−−+++=−+− 输入两个正弦叠加的信号序列:1sin()sin(10)23n x n =+ 求该系统的响应。

MATLAB 程序如下:nx=0: 8*pi;x=sin(nx/2)+sin(10*nx)/3; %产生输入信号序列subplot(3, 1, 1); stem(nx, x);a=[1, -0.34319, 0.60439, -0.20407]; %输入系统函数的系数b=[0.1321, 0.3963, 0.3963, 0.1321];nh=0: 9;h=impz(b, a, nh); %求系统的单位冲激响应subplot(3, 1, 2); stem(nh, h);y=dlsim(b, a, x); %求系统的响应subplot(3, 1, 3); stem(y);从程序执行结果可见,输出响应y(n)中,原输入序列中的高频信号部分通过低通滤波器后已被滤除,仅剩下频率较低的sin(n/2)分量。

实验一典型环节的时域响应

实验一典型环节的时域响应

目录一、实验须知 0二、实验参考指南 (1)(一)模拟实验平台单元电路 (1)(二)虚拟仪器软件使用说明 (9)三、实验项目 (16)实验一典型环节的时域响应 (16)实验二典型系统的时域响应和稳定性分析 (22)实验三线性系统的根轨迹分析 (26)实验四线性系统的频率响应分析 (30)实验五线性系统的校正 (36)附录一对象整定的方法 (40)附录二模拟平台布局图 (41)一、实验须知1.实验中的设备、仪器、仪表都是国家财产,应该倍加爱护。

2.实验前一定做好预习,明确实验目的、内容,拟定好实验线路,操作步骤,并将这些内容写入预习报告,不写预习报告不准做实验。

3.实验准备就绪后,应该经指导老师检查无误后方可实验,不得擅自实验。

4.对于TD-ACC+系统来说,由于安装了高效开关电源,重新开启电源和上一次断开之间的时间应大于30s,因此不要过于频繁地开启设备电源。

若实验装置中有短路现象,系统电源将处于保护状态,并自动停止工作。

对于此种情况,应该立即将电源开关关闭,待短路故障排除后,重新开启电源开关就可。

5.实验中,同学之间应发扬团结、互助合作的集体主义思想,共同做好实验。

6.做完实验后,应将实验用的排线、锥线等收拾整齐,千万不要散乱地放在实验箱中,以免下次做实验引起短路。

做完实验后也应及时将箱盖合上,注意防尘,保持设备的整洁和完好。

7.实验结束后每位同学必须写出实验分析报告。

二、实验参考指南(一)模拟实验平台单元电路1.控制计算机扩展单元在做自动控制原理实验时,该单元不需要插控制计算机系统板,此时插座上各管脚没有实际意义,留作系统扩展用。

用户可根据需要选配i386EX 系统板或SST51 系统板,此时控制计算机单元的各信号线均具有实际意义,可支持基于80X86 的计算机控制技术或基于51 单片机的计算机控制技术实验教学,至于插座上的各管脚定义,在相应的系统板的用户手册中有详细的介绍。

2.信号源其原理见图2.1-1,图中画“○”的信号已以排针或锥孔引出,以下的各单元均如此。

自控原理实验指导书

自控原理实验指导书

实验一系统建模与转换一、实验目的1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成方法及整体传递函数的求取方法;5.了解在MATLAB环境下求取系统的输出时域表达式的方法。

二、实验内容1.自确定2个传递函数,实现传递函数的录入和求取串联、并联、反馈连接时等效的整体传递函数。

要求分别采用有理多项式模型和零极点增益模型两种传递函数形式。

2.进行2例有理多项式模型和零极点增益模型间的转换。

3.在Siumlink环境下实现如下系统的传递函数的求取。

各环节传递函数自定。

三、实验报告要求1.写明实验目的和实验原理。

实验原理中简要说明求取传递函数 的途径和采用的语句或函数。

2.在实验过程和结果中,要求按项目写清楚自定的传递函数、画 出系统方框图,从屏幕上复制程序和运行结果,复制系统的 Simulink 方框图,打印报告或打印粘贴在报告上。

不方便打印 的同学,要求手动从屏幕上抄写和绘制。

3.简要写出实验心得和问题或建议。

实验二 线性系统的时域分析一、实验目的1.研究线性系统在典型输入信号作用下的暂态响应; 2.熟悉线性系统的暂态性能指标;3.研究二阶系统重要参数阻尼比ξ对系统动态性能的影响; 4.熟悉在MATLAB 下判断系统稳定性的方法; 5.熟悉在MATLAB 下求取稳态误差的方法。

二、实验内容1〃研究一阶系统对阶跃输入、脉冲输入、斜坡输入、自定义输入的响应及性能指标。

设一阶系统系统具体参数:12.01)(+=s s G 。

2〃研究二阶系统对阶跃输入、脉冲输入、斜坡输入、自定义输入的响应及性能指标。

设:单位反馈系统的:)12.0(s )(+=s Ks G 。

K 参数变化及变化方案自定。

①典型二阶系统在阶跃输入下,阻尼比或自然振荡频率改变对某1项性能指标的影响。

时域分析法-线性系统的稳定性分析

时域分析法-线性系统的稳定性分析

线性系统的时域分析法>>线性系统的稳定性分析
特殊情况:
([劳处斯1理)阵办劳列法思中]阵:的某用其一很他行小项第的。一正若项数第系一数代次为替零零零(,的即而那其一)余项与系,其数然上不后项全据或为此下零计项。算的出
符号相反,计作一次符号变化。
[例]:s4 2s3 s2 2s 1 0
s4 1 1 1 s3 2 2 0
线性系统的时域分析法>>线性系统的稳定性分析
稳定的基本概念: 设系统处于某一起始的平衡状态。在外作用的影响下,离
开了该平衡状态。当外作用消失后,如果经过足够长的时间它 能回复到原来的起始平衡状态,则称这样的系统为稳定的系统 。 否则为不稳定的系统。
线性系统稳定的充要条件: 系统特征方程的根(即传递函数的极点)全为负实数或具
s(s 1)(2s 1)
系统特征方程为 2s3 3s2 (1 0.5K )s K 0
E (s)
E(s) R(s)
1 1 G1(s)G2 (s)H (s)
s(s
s(s 1)(2s 1) 1)(2s 1) K (0.5s
1)
R(s)
1 s2
E(s)
s(s
s(s 1)(2s 1) 1)(2s 1) K(0.5s
线性系统的时域分析法-线性系统的稳定性分析
线性系统稳定性分析
稳定的基本概念和线性系统稳定的充要条件
稳定是控制系统的重要性能,也是系统能够正常运行的首 要条件。控制系统在实际运行过程中,总会受到外界和内部一 些因素的扰动,例如负载和能源的波动、系统参数的变化、环 境条件的改变等。如果系统不稳定,就会在任何微小的扰动作 用下偏离原来的平衡状态,并随时间的推移而发散。因此,如 何分析系统的稳定性并提出保证系统稳定的措施,是自动控制 理论的基本任务之一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验名称典型系统的时域响应和稳定性分析
系专业班
姓名学号授课老师
预定时间实验时间实验台号
一、目的要求
1、研究二阶系统的特征量(ξ,ωn)对过渡过程的影响。

2、研究二阶系统的三种阻尼比下的响应曲线及系统的稳定性。

3、熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、原理简述
1、典型的二阶系统稳定性分析
系统开环传递函数为:,
开环增益:。

系统的闭环传递函数为:
其中自然震荡角频率:;阻尼比:。

2、典型的三阶系统稳定性分析
系统的开环传递函数为:(其中
),
系统的特征方程为:。

三、仪器设备
PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

四、线路视图
1、典型的二阶系统稳定性分析
结构框图:
模拟电路图:
2、典型的三阶系统稳定性分析
结构框图:
模拟电路图:
五、内容步骤
1、将信号源的“ST”端插针与“S”端插针用“短路块”短接,由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10S左右。

2、典型二阶系统瞬态性能指标的测试
⑴先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合在
实验中,。

⑵按模拟电路图接线,将1中的方波信号接至输入端,取R=10K;
⑶用示波器观察系统响应C(t),测量并记录超调Mp、峰值时间tp、调节时间ts。

⑷分别按R=50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标Mp、tp、ts,及系统的稳定性。

并将测量值和计算值进行比较
3、典型三阶系统的性能
⑴实验前有Routh判断得Routh行列式为:
所以,0<K<12 => R>41.7KΩ系统稳定
K=12 => R=41.7KΩ系统临界稳定
K>12 => R<41.7KΩ系统不稳定
⑵按模拟电路图接线,将1中的方波信号接至输入端,取R=30K。

⑶观察系统的响应曲线,并记录波形。

⑷减小开环增益,观察响应曲线,并将实验结果填入表中
六、数据处理
1、典型的二阶系统
R=10K波形:
R=50K波形:
R=160K波形:
R=200K波形:
数据表格:
参 数 项 目
R
(K
Ω) K ωn ζ
C (tp )
C (∞) Mp (%) tp (s) ts (s) 响应情况
理论值
测量值
理论值
测量值

论值
测量值
0<ζ<1 欠阻尼
10 20
10
1/4
1.3 1
44 42
0.32 0.37 1.6 1.4 衰



50
4
2√5
√5/4
1.2
1
12
11
0.83 0.86 1.6 1.6 ζ=1 临界 阻尼 160 5/4 2.5 1 无 1 无
无 1.9 2.1 单
调指数
ζ>1 过阻尼
200 1 √5 √5/2 无 1 无
无 2.9 3.5 单
调指数
2、典型三阶系统
R=30K 的波形:
R=41.7K的波形:
R=100K 的波形:
数据表格:
R(KΩ)开环增益K 稳定性
30.9 16.4 不稳定发散
40.1 11 临界稳定等幅震荡101.9 5 稳定衰减收敛
七、分析讨论
在二阶系统中系统出现衰减震荡响应,最终系统可以打造最终的稳定响应。

在临界阻尼与过阻尼的情况下,系统出现单调指数响应系统最终达不到理想的稳定情况。

在三阶系统中R<41.7k时系统不稳定发散,当R=41.7k系统临界稳定等幅振荡,R>41.7k系统稳定衰减收敛。

相关文档
最新文档