材料强度与断裂第一章
材料的性能第一章材料的性能
同的标准。称为标尺A、标尺B、标尺C。洛氏硬度实验是现
今所有使用的几种普通压痕硬度实验的一种。三种标尺的初
始压力均为98.07N(10Kgf),最后根据压痕深度计算硬度值。
标尺A使用的是球锥菱形压头,然后加压至588.4N(60Kgf);
标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,
(3)布氏硬度适合于测试成品材料的硬度,维氏硬度可测试整体材料的硬 度;
(4)塑性材料零件可用屈服强度作为设计指标,脆性材料应用抗拉强度作 为设计指标。
第一章 材料的性能
使用性能:材料在使用过程
中所表现的性能。包括力学
神 舟
性能、物理性能和化学性能。
一 号
工艺性能:材料在加工过程
飞 船
中所表现的性能。包括铸造、
锻压、焊接、热处理和切削
性能等。
材料在外力的作用下将发生形状和尺寸变化,称 为变形。
外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。
钢球压头与 金刚石压头
HRB用于测量低硬度材料, 如 有色金属和退火、正火钢等。
HRC用于测量中等硬度材料, 如调质钢、淬火钢等。
洛氏硬度的优点:操作简便, 压痕小,适用范围广。
缺点:测量结果分散度大。
洛氏硬度压痕
洛氏硬度(HR)测试当被测样品过小或者布氏硬度(HB) 大于450时,就改用洛氏硬度计量。试验方法是用一个顶角 为120度的金刚石圆锥体或直径为1.59mm/3.18mm的钢球, 在一定载荷下压入被测材料表面,由压痕深度求出材料的硬 度。根据实验材料硬度的不同,可分为三种不同标度来表示:
A<Z 时,有颈缩,为塑性材料表征
第一章 材料在静载下的力学行为3(4.1金属的断裂)
沿晶断裂的断口形貌呈冰糖状,有时也称“萘状断 口”,上左图为18CrNiWA钢的冰糖状断口。 如晶粒很细小,则肉眼无法辨认出冰糖状形貌,此 时断口一般呈晶粒状,颜色较纤维状断口明亮,但 比纯脆性断口要灰暗些。 穿晶断裂和沿晶断裂有时可以混合发生。
剪切断裂与解理断裂
(1)剪切断裂是金属材料在切应力作用下沿滑 移面分离而造成的滑移面分离断裂,其中又 分滑断(纯剪切断裂)和微孔聚集型断裂。
(2)解理断裂
解理断裂是金属材料在一定条件下(如低温),当外 加正应力达到一定数值后,以极快速率沿一定晶体 学平面产生的穿晶断裂,因与大理石断裂类似,故 称此种晶体学平面为解理面。 一般在体心立方、密排六方金属中发生,而面心立 方金属只在特殊情况下才发生。 解理面一般是低指数晶面或裸露后表面能最低的晶 面。 解理断裂总是脆性断裂,但有时在解理断裂前也显 示一定的塑性变形,所以解理断裂与脆性断裂不是 同义词,解理断裂指断裂机理而言,脆性断裂则指 断裂的宏观性态。
1.甄纳-斯特罗位错塞积理论
在滑移面上的切应力作用下, 刃型位错在晶界前受阻并互 相靠近形成位错塞积,如果 塞积头处的应力集中不能为 塑性变形所松弛,当切应力 达到某一临界值时,塞积头 处的最大拉应力能够等于材 料理论断裂强度而形成高nb、 长为r的楔形裂纹。
解理裂纹的形成,并不意味着裂纹将迅速扩 展而导致金属材料完全断裂。 柯垂耳用能量分析法推导出解理裂纹扩展的 临界条件为
放射区的形成过程
纤维区中裂纹扩展是很慢的,当其达到临界尺寸后 就快速扩展而形成放射区。 放射区有放射线花样特征。放射线平行于裂纹扩展 方向而垂直于裂纹前端(每一瞬间)的轮廓线,并逆 指向裂纹源。 撕裂时塑性变形量越大,则放射线越粗。对于几乎 不产生塑性变形的极脆材料,放射线消失。 温度降低或材料强度增加,由于塑性降低,放射线 由粗变细乃至消失。
金属材料失效分析1-断裂
一、理论断裂强度σm
1、定义:如果一个完整的晶体,在拉应力作用下, 使材料沿某原子面发生分离,这时的σf就是理论断 裂强度。
31
2、断裂强度计算
假设原子间结合力随原子间距按正弦曲线变化,
周期为λ, 则:
a0
m
sin
2 x
其中: σm理论断裂强度
试 样形 状
21
四、断口三要素的应用
根据断口三要素可以判断裂纹源的位置及宏观裂纹扩展方向 裂纹源的确定: ①利用纤维区,通常情况裂源位于纤维区的中心部位,因此找到纤维
区的位置就找到了裂源的位置; ②利用放射区形貌特征,一般情况下,放射条纹的收敛处为裂源位置; ③根据剪切唇形貌特征来判断,通常情况下裂纹处无剪切唇形貌特征,
而裂源在材料表面上萌生。
22
裂纹扩展方向的确定: ①纤维区指向剪切唇 ②放射条纹的发散方向 ③板状样呈现人字纹(chevron pattern)
其反方向为 源扩展方向
23
§3、断裂过程
裂纹形成 裂纹扩展:亚稳扩展(亚临界扩展阶段)
失稳扩展
24
裂纹形成的位错理论 (裂纹形成模型或机制) 1、位错塞积理论—stroh理论 2、位错反应理论—cottrel理论 3、位错墙侧移理论 4、位错交滑移成核理论 5、同号刃位错聚集成核理论
亚稳扩展:裂纹自形成而扩展至临界长度的过程 特点:扩展速度慢,停止加载,裂纹停止扩展
裂纹总是沿需要需要消耗扩展功最小的路径,条 件不同,亚稳扩展方式、路径、速度也各不相同 失稳扩展:裂纹自临界长度扩展至断裂 特点:速度快,最大可达声速; 扩展功小,消耗的能量小; 危害性大,总是脆断
第一章 金属材料的力学性能
度
A、C标尺为100
B标尺为130
机 械 制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA
机
械
硬度值 A标尺
制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高
机
•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制
造
基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
机
械
制
造
基
础
§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,
材料的脆性断裂与强度
材料的脆性断裂与强度§2.1 脆性断裂现象⼀、弹、粘、塑性形变在第⼀章中已阐述的⼀些基本概念。
1.弹性形变正应⼒作⽤下产⽣弹性形变,剪彩应⼒作⽤下产⽣弹性畸变。
随着外⼒的移去,这两种形变都会完全恢复。
2.塑性形变是由于晶粒内部的位错滑移产⽣。
晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。
3.粘性形变⽆机材料中的晶界⾮晶相,以及玻璃、有机⾼分⼦材料则会产⽣另⼀种变形,称为粘性流动。
塑性形变和粘性形变是不可恢复的永久形变。
4.蠕变:当材料长期受载,尤其在⾼温环境中受载,塑性形变及粘性形变将随时间⽽具有不同的速率,这就是材料的蠕变。
蠕变的后当剪应⼒降低(或温度降低)时,此塑性形变及粘性流动减缓甚⾄终⽌。
蠕变的最终结果:①蠕变终⽌;②蠕变断裂。
⼆.脆性断裂⾏为断裂是材料的主要破坏形式。
韧性是材料抵抗断裂的能⼒。
材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。
1.脆性断裂脆性断裂是材料断裂前基本上不产⽣明显的宏观塑性变形,没有明显预兆,往往表现为突然发⽣的快速断裂过程,因⽽具有很⼤的危险性。
因此,防⽌脆断⼀直是⼈们研究的重点。
2.韧性断裂韧性断裂是材料断裂前及断裂过程中产⽣明显宏观塑性变形的断裂过程。
韧性断裂时⼀般裂纹扩展过程较慢,⽽且要消耗⼤量塑性变形能。
⼀些塑性较好的⾦属材料及⾼分⼦材料在室温下的静拉伸断裂具有典型的韧性断裂特征。
3.脆性断裂的原因在外⼒作⽤下,任意⼀个结构单元上主应⼒⾯的拉应⼒⾜够⼤时,尤其在那些⾼度应⼒集中的特征点(例如内部和表⾯的缺陷和裂纹)附近的单元上,所受到的局部拉应⼒为平均应⼒的数倍时,此过分集中的拉应⼒如果超过材料的临界拉应⼒值时,将会产⽣裂纹或缺陷的扩展,导致脆性断裂。
虽然与此同时,由于外⼒引起的平均剪应⼒尚⼩于临界值,不⾜以产⽣明显的塑性变形或粘性流动。
工程材料 第一章 材料的性能及应用意义
5. 硬度能较敏感地反映材料的成分与组织结构的变化,可用来检验原材料和 控制冷热加工质量。
2020/12/11
一、力学性能
§1.2 材料的使用性能
硬度测试方法:
1. 布氏硬度 GB231-1984 2. 洛氏硬度 GB230-1991 3. 维氏硬度 GB4342-1984
2)磨粒磨损:是指滑动摩擦时,在零件表面摩擦区内存在硬质磨粒, 使磨面发生局部塑性变形、磨料嵌入和被磨料切割等过程,以致磨面材 料逐步磨耗。
2020/12/11
一、力学性能
§1.2 材料的使用性能
粘着磨损示意图
2020/12/11
粘着磨损磨痕
一、力学性能
§1.2 材料的使用性能
磨粒磨损示意图
2020/12/11
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
2020/12/11
2020/12/11
§1.3 材料的工艺性能
金属材料零件的一般加工过程
2020/12/11
§1.3 材料的工艺性能
1. 铸造性能:包括流动性、收缩、疏松、成分偏析、铸造应力、冷热裂纹倾向。 2. 锻造性能:通常用材料的塑性和强度及形变强化能力来综合衡量。 3. 焊接性能:包括焊接接头产生缺陷的倾向性和焊接接头的使用可靠性。 4. 切削加工性能:一般用材料的切削的难易程度、切削后表面粗糙度和刀具寿 命等方面来衡量。 5. 热处理性能:包括淬透性、淬硬性、耐回火性、氧化与脱碳倾向及热处理变 形与开裂倾向。
材料力学中的断裂行为模拟
材料力学中的断裂行为模拟引言材料的断裂行为在工程实践中具有重要意义。
断裂行为模拟是材料力学领域中一项重要的研究任务,它可以通过数值模拟方法来预测材料在外力作用下的断裂行为。
本文将介绍几种常用的断裂行为模拟方法,并对其原理及应用进行探讨。
第一章:线性弹性断裂力学线性弹性断裂力学是最早也是最简单的断裂行为模拟方法之一。
该方法基于线弹性理论,假设材料的力学性能在整个断裂过程中都保持不变。
通过计算应力、应变和应力强度因子的分布,可以预测材料断裂的位置和破坏形态。
线性弹性断裂力学方法适用于一些低强度、脆性材料的断裂行为模拟,但在考虑材料的非线性本质和高应变速率时效果有限。
第二章:粘弹性断裂力学粘弹性断裂力学是一种结合了线性弹性力学和粘弹性力学的方法。
它考虑了材料在断裂前后的粘性行为,能够更准确地模拟材料断裂行为。
粘弹性断裂力学方法通过定义材料的破坏准则,结合应力、应变和变形率的分析,可以模拟材料破坏的位置和形态。
该方法适用于一些温度较低、高粘性材料的断裂行为模拟。
第三章:强度折减断裂力学强度折减断裂力学是一种基于强度折减准则的方法。
它考虑了材料在局部破坏后的强度减小,能够较好地模拟材料断裂行为。
强度折减断裂力学方法通过计算应力和应力强度因子的变化,来分析材料的断裂位置和形态。
该方法适用于一些中等强度、中高应变率的材料断裂行为模拟。
第四章:塑性断裂力学塑性断裂力学是一种结合了塑性力学和断裂力学的方法。
它考虑了材料在塑性变形后的断裂行为,能够更全面地模拟材料断裂行为。
塑性断裂力学方法通过计算应力和应力强度因子的变化,结合材料的塑性变形分析,来预测材料的断裂位置和形态。
该方法适用于一些高强度、高应变率的材料断裂行为模拟。
结论断裂行为模拟是材料力学领域中的一项重要研究任务。
不同的材料和不同的工况要求使用不同的断裂行为模拟方法。
线性弹性断裂力学、粘弹性断裂力学、强度折减断裂力学和塑性断裂力学都是常用的断裂行为模拟方法。
大连理工大学精品课程-材料力学性能-第一章-金属断裂(2)
解理面(001) 扩展方向[110]
挛晶面(112) 挛晶方向[111]
27
图1-67 解理舌形成示意图
2020年7月26日 第一章 单向静载下材料的力学性能 星期日 准解理
材料中弥散细小的第二
相影响裂纹的形成与扩展,
使裂纹难于严格按一定晶体
学平面扩展,断裂路径不再 与晶粒位向有关,主要与细 小碳化物质点有关。其微观 特征似解理河流但又非真正 28 解理,故称准解理。
24
图1-64 河流通过大角度 晶界时的扇形花样
2020年7月26日 第一章 单向静载下材料的力学性能 星期日
当解理裂纹通过扭转晶界时,因晶界两侧晶
体以边界为公共面转动一个角度,使两侧解理裂
纹存在位向差,故裂纹不能直接越过晶界而必须
重新成核,裂纹将沿若干组
新的相互平行的解理面扩展
而使台阶激增,形成为数众
1
m
E s
a0
2
s——表面能;
a0——原子面间距; E——弹性模量
1
1
形成裂纹的力学条件为: (f
i )
d
2
Es 2
2r a0
可得: f i 2Er s
da0
f——形成裂纹所需
的切应力;
7
2020年7月26日 第一章 单向静载下材料的力学性能 星期日 (二)、解理裂纹的扩展 以上所述主要涉及解理裂纹的形成,并不意味 着由此形成的裂纹将迅速扩展而导致材料断裂。解 理断裂过程包括以下三个阶段:塑性变形形成裂 纹;裂纹在同一晶粒内初期长大;裂纹越过晶界向 相邻晶粒扩展。
多的 “河流”,这与通过大角
度晶界的情况类似。
25
图1-65 河流花样通过扭转晶界
第一章金属力学性能与工艺性能
σ
s
:屈服强度
b:最大应力点 “缩颈” σb :抗拉强度
3.断裂点(k)
强度指标:
1.弹性极限ζe :是指材料由弹性过 渡到弹-塑性变形的最大应力。 2.屈服强度ζs :是指材料产生明显 塑性变形时的应力。 需要注意的是,对于高碳钢等一 些相对脆性的金属材料往往没有 明显的屈服平台,规定产生0.2% 残余应变时所对应的应力值作为 其屈服极限,称为条件屈服强度, 记作ζ0.2。 3.抗拉强度ζb :是指材料拉伸时所 能承受的最大应力。
σ-应力;F-轴向拉力; S-试样原始横截面积
ε =ΔL/L0=(L1-L0)/L0
ε-应变; L0-试样标距; L1-试样拉伸 后长度
应力-应变关系曲线特点(σ-ε曲线)
1.弹性变形阶段(oe) 2.塑性变形阶段(eb) 3.断裂点(k)
应力-应变关系曲线特点(σ-ε曲线)
1.弹性变形阶段(oe)
塑性指标:一般用伸长率(δ)或断面收缩率(Ψ)来反
映材料塑性的好坏。
1.伸长率: δ =(L1-L0)/L0
2.断面收缩率: Ψ=(S0-S1)/S0
三、硬度:
定义:硬度反映了材料表面抵抗其他硬物 压入的能力。 意义:硬度能较敏感地反映材料的成分与 组织结构的变化,与强度、耐磨性以及工艺 性能往往存在一定对应关系,故可用来检验 原材料和控制冷热加工质量。
测量方法:静载压入法
根据压头和载荷的不同,主要有布氏硬度(HB)、 洛氏硬度(HR)和维氏硬度 (HV) 等。
布氏硬度:1900年瑞典工程师布利涅尔
(Brinell)提出
将一定直径的淬火钢球或硬质合金球,在规定载荷下压入被 测金属的表面,并保持一定时间,然后卸除载荷,以金属表面球 形压痕单位面积上所承受载荷的大小来表示被测金属材料的硬度。
第一章工程材料的力学性能
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
材料强度与断裂第一章
(1)三叉晶界
三叉晶界是三个或三个以上相邻 的晶粒之间形成的交叉“线”, 由于纳米材料界面包含大量的体 积百分数,三叉晶界的数量也是 很高的。随着纳米晶粒直径的减 小,三叉晶界数量增值比界面体 积百分数的增值快得多。根据 Palumbo等人的计算,当晶粒直 径由100nm减小到2nm时三叉晶 界体积增值速度比界面增的减小,晶界数量增加,从而使得界面 能量增加,这时界面原子的动性大,这就增加了纳米晶 体材料的延展性(软化现象)。 (3)临界尺寸 Gleiter等人认为,在一个给定的温度下纳米材料存在一 个临界的尺寸,低于这个尺寸,界面粘滞性增强,这就 引起了材料的软化;高于临界尺寸,材料硬化。他们把 这个临界尺寸成为“等粘合晶粒尺寸”(Equicohesive Grain Size)。 总之,上述看法都不够成熟,尚未形成比较系统的理 论,对这一问题的解决在实验上尚须做大量的工作。
如果用硬度表示,关系式为:
H H0 Kd
1 2
Hall-Petch关系式适用于各种微米级粗晶材 料,不仅适用于金属,也适用于陶瓷材料
从上个世纪80年代末到本世纪初,对多种纳米材料的 硬度和晶粒尺寸的关系进行了研究。归纳起来有三种 不同的规律: 1. 正Hall-Petch关系( K 0 )。蒸发凝聚、原位加压纳 米 TiO2 ,用机械合金化(高能球磨)制备的纳米Fe和
次滑移面( 111) :
-
a a a [011] [121] [112] 2 6 6
在主次滑移面交线 [110]上有位错反应
-
- a 所以, 6 [211]
、 、 错(Lomer-Cottrell位错)。
a [121] 6
组成了面角位
第一章 金属材料的力学性能
Fb σb= S0
四、塑性的衡量(塑性指标):伸长率 δ和断面收缩率 Ψ 塑性的衡量(塑性指标):伸长率 和断面收缩率 ):
1)伸长率( δ ) )伸长率( 伸长率是指试样拉断 后标距增长量与原始 标距的百分比,即: 标距的百分比,
lk-l0 δ=
×100%
l0
lk——试样拉断后的标距 试样拉断后的标距,mm; 试样拉断后的标距 l0——试样的原始标距 。 试样的原始标距,mm。 试样的原始标距
第一章 金属材料及热处理基础知识
应用于各种工程领域中的材料,如在机械工业中,建筑及桥 应用于各种工程领域中的材料,如在机械工业中,建筑及桥 于各种工程领域中的材料 等等, 统称为工程材料。 梁中,等等,——统称为工程材料。 统称为工程材料 其中用来制造各种机电产品的材料 用来制造各种机电产品的材料, 称为机械工程材料 其中用来制造各种机电产品的材料,——称为机械工程材料 称为机械工程材料. 主要包括: 主要包括: 1)金属材料:钢,铸铁,铜及铜合金,等等。 铸铁,铜及铜合金,等等。 )金属材料: 2)非金属材料:塑料,橡胶,工业陶瓷,等等。 )非金属材料:塑料,橡胶,工业陶瓷,等等。 3)复合材料:由两种或两种以上性质不同的材料复合而成的 )复合材料: 多相材料。 多相材料。 金属材料是制造机器的最主要材料。 金属材料是制造机器的最主要材料。 是制造机器的最主要材料 1、金属材料按含金属元素数量的多少分为: 、金属材料按含金属元素数量的多少分为: 1)纯金属 一种金属 一种金属). )纯金属(一种金属 2)合金(以一种金属为基 其他金属或非金属) 其他金属或非金属) )合金(以一种金属为基+其他金属或非金属
刚度、强度、 第一节 刚度、强度、塑性
刚度、强度、弹性和塑性是根据拉伸试验测定出 塑性是根据拉伸试验 刚度、强度、弹性和塑性是根据拉伸试验测定出 来的。 来的。 一、拉伸试验与拉伸曲线 1、拉伸试样 试验前在试棒上打出标距 试验前在试棒上打出标距 按国标规定标准拉伸试样可分为: 按国标规定标准拉伸试样可分为: 板形试样: 1) 板形试样:原材料为板材或带材 圆形试样:长试样L 短试样L 2) 圆形试样:长试样L0=10d0,短试样L0=5d0 其中: 为试样标距, 其中:L0为试样标距,d0为试样直径
断裂力学基础
断裂力学基础目 录第一章 绪论第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础第一章 绪 论ssss2a2bss2a?一、引例][s s ≤⎪⎭⎫ ⎝⎛+=b a 21maxs s Inglis(1913)用分子论观点计算出绝大部分固体材料的强度103MPa ,而实际断裂强度100MPa ?——材料缺陷第一章 绪论第一章 绪论 二、工程中的断裂事故1.1860~1870英国铁路事故死200人/年;2.1938年3月14日比利时费廉尔大桥断成三节,1947~1950比利时又有14座大桥脆性破坏; 3.美国二次大战期间2500艘自由轮,700艘严重破坏,其中145艘断成两段,10艘在平静海面发生。
同时期大量的战机事故——广泛采用焊接工艺和高强度材料; 4.1954年1月10日英国大型喷气民航客机彗星号坠落,同时期共三架坠落;二、工程中的断裂事故5.1958美国北极星号导弹固体燃料发动机壳体爆炸; 6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁;8.近年来桥梁、房屋、锅炉和压力容器、汽车等第一章 绪论二、工程中的断裂事故 第一章 绪论 二、工程中的断裂事故9.2007年11月2日美国F15 空中解体;第一章 绪论三、断裂力学发展简史1.1913年,C. E. Inglis(英格列斯)将裂纹(缺陷)简化为椭圆形切口,用线弹性方法研究了含椭圆孔无限大板受均匀拉伸问题——按应力集中观点解释了材料实际强度远低于理论强度是由于固体材料存在缺陷的缘故。
2.1921 年,A. A. Griffith(格里非斯)用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则,成为线弹性断裂力学的核心之一—能量释放率准则。
第一章 绪论 三、断裂力学发展简史3.1955~1957年,G. R. Irwin(欧文)通过对裂尖附近应力场的研究,提出了新的断裂参量—应力强度因子,并建立断裂判据,成为线弹性断裂力学的另一核心—应力强度因子断裂准则。
工程材料的力学性能
练习题二
某工厂买回一批材料(要求: бs≥230MPa;бb≥410MPa;δ5≥23%; ψ≥50%).做短试样(l0=5d0;d 0=10mm)拉伸试验,结果如下: Fs=19KN,Fb=34.5KN;l1=63.1mm; d1=6.3mm;问买回的材料合格吗?
时间。如:120HBS10/1000/30表示直径为10mm的钢球 在1000kgf(9.807kN)载荷作用下保持30s测得的布氏 硬度值为120。
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头 还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度。
2.洛氏硬度:
延伸率 延伸率与试样尺寸有关;δ5、δ10 (L0=5d,10d)
思考:同一材料δ5 > δ10?
断面收缩率
> 时,无颈缩,为脆性材料表征;
拉
< 时,有颈缩,为塑性材料表征。
伸 试
样
的
颈
缩
现
象
断裂后
练习题一
拉力试样的原标距长度为50mm,直径为10mm,经拉力试 验后,将已断裂的试样对接起来测量,若最后的标距长度为 71mm,颈缩区的最小直径为4.9mm,试求该材料的伸长率 和断面收缩率的值?
介质)下,承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时所表现出 的力学特征。
指标 : 弹性 、刚度、强度、塑性 、 硬度、冲击韧
性 、断裂韧度和疲劳强度等。
第一章 材料的力学性能
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
哈工大断裂力学讲义第一章
GⅠ
KⅠ2 E
E E
E
1
E
2
平面应力 平面应变
同理
GⅡ
KⅡ2 E
GⅢ
1
E
KⅢ2
32
4G 2
22
v KⅠ a x (2k 2)
4G 2
31
a
在闭合时,应力在 a那段所做旳功为
B 0
yvdx
GⅠ
B Ba
a
0 yvdx
1 a
a 0
KⅠ KⅠ
2 x 4G
a
2
x
(2k
2)dx
4k 1 4G
KⅠ2
平面应力
k
3 1
,
GⅠ
KⅠ2 E
平面应变
k 3 4
GⅠ
1 2
E
KⅠ2
13
撕开型裂纹(Ⅲ型):在平行于裂纹面 而与裂纹前沿线方向平行旳剪应力 作用下,裂纹沿裂纹面撕开扩展.
二.裂纹尖端附近旳应力场.位移场
1.Ⅰ型裂纹 问题旳描述:无限大板,有一长为 2a 旳穿透裂纹,在无限
远处受双向拉应力 旳作用.拟定裂纹尖端附近旳应力
场和位移场.
14
1939年Westergaurd应力函数
3
Griffith研究了如图所示厚度为B旳薄平板。上、下端受 到均匀拉应力作用,将板拉长后,固定两端。由Inglis解得到 因为裂纹存在而释放旳弹性应变能为
U 1 2 a2 2B
E
U 1 a2 2B
E
平面应变 平面应力
4
另一方面,Griffith以为,裂纹扩展形成新旳表面, 需要吸收旳能量为
解析函数性质:任意解析函数旳实部和虚部都是解析旳.
材料强度学
其中E为弹性模 量;G为剪切弹性模 量,又称刚度模量; μ为泊松比。
E G= 2(1 + µ )
第三节 材料的力学性能
1)材料的应力-应变曲线 分为弹性变形、屈服、应变(形变)强化、 颈缩和断裂等阶段。
2)弹性变形 物理机制:原子系统在外力作用下离开其平衡位置 达到新的平衡状态的过程,因此,对弹性变形的讨论, 必须从原子间的结合力模型开始。 假定有两个原子,原子之间存在长程的吸引力和 短程的排斥力,作用力P随原子间距的变化关系如下:
3)平面应力
对薄板,由于板很薄,可以认为在薄板内部所有 = σ z 0, = τ zx 0, = τ zy 0 。这样就只剩下平行于 各点处都有 σ 、σ 、σ xoy面的三个应力分量 ,而且这三个应力 分量都只是x和y的函数,不随z而变化。
x y xy
应该指出,在平面应力问题中,虽然沿z方向的应 力 σ z = 0,但由于板很薄,前后板面为自由表面,不受任 何约束,因而沿z方向的应变并不等于零,即ε z ≠ 0 , 板将随着外力作用变厚或变薄,所以平面应力问题是 一个三向应变问题。
低碳钢的物理屈服点及屈服传播
(3)工程判据 (a)最大正应力理论(第一强度理论) 最大的正应力σ1达到了材料单向拉伸时的屈服强 度σs或断裂应力σb 。 (b)最大线应变理论(第二强度理论) 材料的最大拉伸应变ε1达到材料单向拉伸时的屈 服应变ε0或断裂应变 。
1 ε1 = ε 0 = = [σ 1 − µ (σ 2 + σ 3 )] E E σ0 = σ 1 − µ (σ 2 + σ 3 )
1)应力分量 (1)体 力:重力、电磁力等。 (2)面 力:风力、接触力、液体压力等。 (3)正应力和切应力: 物体内部单元体六个面上的应力,共有九个应力 σ x , σ y , σ z )和六个切应力分 分量:三个正应力分量( 量(τ xy ,τ yx ,τ yz ,τ zy ,τ zx ,τ xz )。这九个应力分量代表了一点 的应力状态。 = τ xy τ = τ= τ xz , 所 根据切应力互等定理,有 yx ,τ yz zy ,τ zx 以九个应力分量中,实际上只有六个是独立的, 即 σ x , σ y , σ z ,τ xy ,τ yz ,τ zx 。
第一章工程材料的分类与性能指标
如果材料的屈服强度很低而断裂韧度很高,即
使材料中存在裂纹,则在外载荷作用下,材料先发
ห้องสมุดไป่ตู้
生塑性变形,使进一步的破坏为韧性断裂,例如:
中、小截面的中、低强度材料就属于这种情况。这
时断裂韧度就不适合作为材料断裂抗力的主要指标。
当模具的截面尺寸很大或模具材料的强度很高
时,发生裂纹失稳扩展快速断裂的倾向性增加。截 面尺寸大,可能包含的裂纹缺陷就多,而且易造成 硬性的平面应变状态,材料的韧性不能发挥作用, 裂纹前端的应力场强度大,材料的强度高,其塑性 和韧性往往较低,较小的裂纹尺寸即可导致快速断 裂。因此,在这种情况下,为防止低应力脆性断裂, 应该对材料的断裂韧度值提出一定的要求。
(3)疲劳抗力指标 疲劳曲线和疲劳极限:
疲劳曲线
疲劳曲线是疲劳应力与 疲劳寿命(-N)的关系 曲线,也称维勒曲线。
疲劳曲线与疲劳极限 (-1)的测定参阅 国家标准GB4337-84。 (旋转弯曲疲劳实验, 正弦波对称循环条件 下)
对于σb ≤1300MPa的中低强度钢和铸铁材料-N曲线出现水平部分。
疲劳断裂的特点:
· 失效抗力低,应力水平低于材料的抗拉强度, 甚至低于屈服强度。
不论是脆性材料还是韧性材料,均表现为突然 脆性断裂,断口处无明显的宏观塑性变形。
对材料表面及内部缺陷高度敏感。(零件表面 应力集中部位、加工和使用过程中造成的表面损伤、 材料本身的冶金缺陷等均易成为疲劳源。尤其是表 面存在较大拉应力时,疲劳裂纹多萌生于表面应力 集中处。)
无裂纹材料的断裂抗力
一般中、小截面尺寸的中、低强度材料,可
以认为是均匀连续的,没有宏观裂纹存在(即使有
微小裂纹,对断裂过程也不产生重要影响)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 位错强化
金属晶体中的位错是由相变和塑性变形引入的,位错的密度愈高, 金属抵抗塑性变形的能力就愈大。其他因素固定时,金属的流变应 力
和位错密度
i b 2
1 Baily-Hirsch式: 之间的关系服从
所以
l l - i b
1 2
表示位错密度引起流变应力增量。
②置换式固溶强化:
置换式溶质原子在基体晶格中造成的畸变大都是球面对称的, 强化效能要比间隙式原子小(约小两个数量级)。这种强化效应称 为弱硬化。
柯氏气团: 碳、氮等溶质原子在基体中和位错产生弹性交互作用,当它 们进入刃型近旁受张区中,可以抵消张应力产生的体积膨胀,使 应变能降低,这是一个自发的过程,这种位错线近旁的原子配列 称为柯氏气团 Snock气团: 碳、氮等溶质原子还会和螺型位错的切应力场发生交互作用 。根据Snock气团推导出的碳、氮间隙原子强化效应:
第二节 微观强化机理分类
金属材料的强化主要由下列几类强化所决定: ①位错强化, ②固溶强化, ③晶界强化, ④沉淀强化, ⑤弥散强化, ⑥Spinodal分解强化, ⑦ 有序化强化, ⑧相变强化
例如退火态的单晶体纯Fe的屈服强度为30MPa;Fe中固溶有C、Mn、 N等元素并制成多晶体,即普通的低C钢,屈服强度为100~200MPa。 假如通过冷加工变形引入位错并在一定的温度下时效,使碳化物和氮 化物在钢中沉淀,则强度还可以进一步提高。 强化机理的复合作用,使纯Fe单晶体的强度提高了7倍以上。
第四节 固溶强化
固溶强化就是利用点缺陷对金属基体进行强化,它分成两类:间隙式 固溶强化和置换式固溶强化。
①间隙式固溶强化:
碳、氮等溶质原子嵌入 -Fe 晶格的八面体间隙中,晶格产生 不对称正方性畸变造成强化效应。铁基体的屈服强度随着间隙原子 含量的增加而变大,强化增量和碳原子含量的平方根呈直线关系。
第Ⅱ阶段位错强化理论主要由以下几种:
1、根据Seeger理论,随着主滑移面上的平行位错密度增大,次滑 移面上的位错密度也同时增加。在主滑移面和次滑移面上(fcc的 主次滑移面都是{111}面),全位错扩展成两个不全位错。
主滑移面(111):
a a - a -[101] [112] [211] 2 6 6
目前,对于纳米结构材料的反常Hall-Petch关系 从以下几个方面进行了解释:
三叉晶界处原子扩散快、动性好,三叉晶界 实际上就是旋错,旋错的运动就会导致界面区的 软化,对无晶体材料来说,这种软化现象就使纳 米晶体材料的整体的延展性增加,用这样的分析 很容易解释纳米晶体材料具有的反Hall-Petch关 系,以及K值变化。
式中 (ss )CN 是由碳、氮原子引起的屈服强度的增量,Ci 是溶质原 b 是柏氏矢量,a0 是基体金属的晶格常数。 子的原子浓度,
置换式固溶元素的弱硬化作用可使得基体的强度平缓增加,同时基 体的韧性、塑性并不受到损害,这一点非常重要。
Mott-Nabarro利用溶质原子造成的应力场进行强化增量的计算,得 出强化增量和置换式溶质原子含量之间的关系式: Cs 101 A
奥氏体的固溶强化
碳原子在面心立方晶格中造成的畸变呈球面对称,所以碳在奥氏体中的间隙 强化作用属于弱硬化。
置换式原子在奥氏体中的强化作用比碳原子更小,但是置换式原子会影响奥 氏体的层错能。 奥氏体的层错能低,位错容易扩展。层错和溶质原子的交互作用使溶质原子 偏聚在层错附加,形成铃木气团,铃木气团同样可以钉扎位错造成奥氏体强 化。
硬化的三个阶段中,位错的引入和位错间的交互作用,在 方式上可以是各不相同的,但是随着变形量增加,位错密 度和缺陷在数量上总是增加的。工程上利用位错密度大小 来决定金属晶体的强度,这是位错理论的重大成就之一。 位错强化本身对金属材料的强度的贡献是很大的,但是它 的重要性远不是到此为止。位错的运动也是造成固溶强化 、晶界强化和第二相沉淀及弥散强化的主要原因。
( ss )sub 2 A Cs
式中 A 是常数,当溶质浓度 Cs=0.1 时,A=1 ; Cs 103 时, A=2; ε 称为错配度,是表示溶质原子半径和溶剂原子半径差别的 参数。若r0 为溶剂原子半径,则溶质原子的半径为 r0 (1 ) 。
4 3
③置换式强化和间隙式强化的复合作用 间隙式原子在基体金属中的溶解度极限很小,常温下碳 在 -Fe 中的溶解量只能是0.006%,但是,碳在 -Fe 中 的溶解度很大,所以可把Fe加热到 - F e 状态使碳大量 溶入,然后淬火成马氏体。 置换式原子引起的强化相对于碳的强化作用可认为是很 小的,不过某些置换元素如钼、钒、铌等在马氏体中和 碳共存时,在回火过程中会沉淀出来造成强化。
如果用硬度表示,关系式为:
H H0 Kd
1 2
Hall-Petch关系式适用于各种微米级粗晶材 料,不仅适用于金属,也适用于陶瓷材料
从上个世纪80年代末到本世纪初,对多种纳米材料的 硬度和晶粒尺寸的关系进行了研究。归纳起来有三种 不同的规律: 1. 正Hall-Petch关系( K 0 )。蒸发凝聚、原位加压纳 米 TiO2 ,用机械合金化(高能球磨)制备的纳米Fe和
(2)界面的作用 随纳米晶粒直径的减小,晶界数量增加,从而使得界面 能量增加,这时界面原子的动性大,这就增加了纳米晶 体材料的延展性(软化现象)。 (3)临界尺寸 Gleiter等人认为,在一个给定的温度下纳米材料存在一 个临界的尺寸,低于这个尺寸,界面粘滞性增强,这就 引起了材料的软化;高于临界尺寸,材料硬化。他们把 这个临界尺寸成为“等粘合晶粒尺寸”(Equicohesive Grain Size)。 总之,上述看法都不够成熟,尚未形成比较系统的理 论,对这一问题的解决在实验上尚须做大量的工作。
固溶强化是钢铁材料主要强化手段之一,基本内容归纳为两点: (1)间隙式固溶强化对于铁素体基体(包括马氏体)的强化效能最大,但对 于韧性、塑性的消弱也很显著。 (2)置换式固溶强化对铁素体的强化作用虽然比较小,但却不消弱基体的塑 性、韧性。
第五节 晶界强化
晶界是位错运动的最大障碍之一。一个晶粒中的滑移带 不能穿越晶界传播到相邻的晶粒中去,要绕相邻的晶粒 产生滑移必须启动它本身的位错源。 Hall-Petch根据这个观点总结出下屈服点与晶粒大小的 关系: 1 i Kyd 2
Nb3Sn 等纳米结构材料服从于正Hall-Petch关系式。
2.反Hall-Petch关系( K 0 )。蒸发凝聚原位加压制成 的纳米Pd(Palladium 钯)晶体以及非晶晶化法制备的 Ni-P纳米晶体服从于反Hall-Petch关系。 3.正-反混合Hall-Petch关系.蒸发凝聚原位加压制成的 纳米晶Cu。
材料强度与断裂
合肥工业大学材料学院 刘 宁
序
断裂问题的研究从来Griffith时代算起至今已有 90余年的历史,上世纪70年代初断裂力学传入 我国,从国内外发展的趋势来看,以连续介质为 基础来研究断裂是不够的,宏观与微观相结合的 研究方法重新受到人们的关注。因此,本门课程 的设置便应运而生。目的在于培养硕士生了解和 掌握材料断裂微观过程,在断裂物理的思想基础 上把它们系统化,促进宏观与微观断裂问题研究 的结合,以加强从事材料宏观与微观力学性质研 究的硕士生分析问题和解决问题能力的培养。
二是在有缺陷的金属晶体中设法阻止位错的运动,如 细化晶粒、引入相界、位错切割等
早在二十世纪二十年代人们就利用简单立方晶体的模型 进行近似计算,认为金属晶体的理论剪切强度约在 μ/30-μ/10之间(μ为切变模量)。二十世纪五十年代制 造出的铁晶须,它的屈服强度σY已接近α-Fe的理论屈服 强度。细晶须中只含有一至数条位错线,受力时位错很 容易逸出表面,此后变形过程中晶须内事实上不存在位 错线,晶体必须通过均匀的形成位错圈才能变形,均匀 形成位错圈的应力远高于位错的晶格阻力,使晶体的屈 服强度接近理论屈服强度。晶须的直径变粗,内部位错 不容易清除,屈服时只要克服位错的晶格阻力,使强度 下降。位错的晶格阻力可以近似看作派-纳(PeierlsNabarro)力。
加工硬化的第Ⅰ阶段,只有一个分切应力最大的主滑移系开动, 加工硬化斜率 比较小,位错滑移的距离很大,滑移阻力很小 ,因此第一阶段又称为易滑移阶段。 在第二阶段(滑移),两个滑移系同时开动,此时加工硬化进入 直线硬化阶段,这个阶段的硬化曲线斜率 ,数值上接近常数 ,位错的强化作用最大。
第六节 沉淀和弥散强化
第二相质点沉淀时,沉淀相在基体中造成应力场,应力 场和运动位错之间的交互作用使基体强化。
假设在第二相质点应力场的作用下,位错线的曲率半径 为ρ ,使位错线运动的切应力增量为 p, p 将由ρ 和第二相质点的间距大小 λ 来决定。 (a) 当ρ >>λ 时,λ 很小,局部应力场不足以使位错线 沿着第二相质点弯曲, 可以根据 Mott-Nabarro公式 p 计算: 4
(1)三叉晶界
三叉晶界是三个或三个以上相邻 的晶粒之间形成的交叉“线”, 由于纳米材料界面包含大量的体 积百分数,三叉晶界的数量也是 很高的。随着纳米晶粒直径的减 小,三叉晶界数量增值比界面体 积百分数的增值快得多。根据 Palumbo等人的计算,当晶粒直 径由100nm减小到2nm时三叉晶 界体积增值速度比界面增值高约 2个数量级。
次滑移面( 111) :
-
a a a [011] [121] [112] 2 6 6
在主次滑移面交线 [110]上有位错反应
-
- a 所以, 6 [211]
、 、 错(Lomer-Cottrell位错)。
a [121] 6