最优化理论与方法 试题2006
(精选)最优化方法复习题
《最优化方法》复习题第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2{}{}.:)(min :)(max n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。
√12 设{}kx 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{} ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成的集合是凸集。
《最优化方法》复习题.pdf
《最优化方法》复习题
一、简述题
1、怎样判断一个函数是否为凸函数.
(例如:判断函数212
2
212151022)(x x x x x x x f-=是否为凸函数)2、写出几种迭代的收敛条件.
3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M法及二阶段法).
见书本61页(利用单纯形表求解);
69页例题(利用大M法求解、二阶段法求解);4、简述牛顿法和拟牛顿法的
优缺点.简述共轭梯度法的基本思想.
写出Goldstein、Wolfe非精确一维线性搜索的公式。
5、叙述常用优化算法的迭代公式.
(1)0.618法的迭代公式:(1)(),
().k k k k k
k k k a b a a b aλτμτ=--??=-?
(2)Fibonacci法的迭代公式:111(),(1,2,,1)()
n k k
k k k n k n k k k k k n k F a b a F k n F a b a Fλμ-----? =-??
=-?
?=-??
L.(3)Newton一维搜索法的迭代公式:1
1k k k。
最优化理论试题及答案
最优化理论试题及答案一、单项选择题(每题2分,共20分)1. 最优化问题中,目标函数的极值点可能是()。
A. 最小值点B. 最大值点C. 鞍点D. 所有选项答案:D2. 线性规划问题中,目标函数和约束条件都是线性的,以下说法错误的是()。
A. 线性规划问题有最优解B. 线性规划问题的最优解可能在可行域的边界上C. 线性规划问题的最优解一定在可行域的边界上D. 线性规划问题的最优解可能在可行域的内部答案:D3. 以下哪个算法不是用于解决非线性规划问题的()。
A. 梯度下降法B. 牛顿法C. 单纯形法D. 共轭梯度法答案:C4. 在约束优化问题中,拉格朗日乘数法用于()。
A. 求解无约束问题B. 求解有约束问题C. 求解线性规划问题D. 求解整数规划问题答案:B5. 以下哪个条件不是KKT条件的一部分()。
A. 梯度为零B. 可行方向C. 对偶可行性D. 互补松弛性答案:B二、填空题(每题2分,共10分)1. 一个最优化问题的可行域是指满足所有_________的解的集合。
答案:约束条件2. 目标函数在点x*处取得极小值,当且仅当在该点处的_________为零。
答案:梯度3. 线性规划问题的标准形式通常包括_________和_________两部分。
答案:目标函数;约束条件4. 拉格朗日乘数法中,拉格朗日函数是原目标函数和_________的和。
答案:约束条件的线性组合5. 非线性规划问题中,牛顿法的迭代公式是x_{k+1} = x_{k} -H(x_{k})^{-1}_________。
答案:∇f(x_{k})三、简答题(每题5分,共20分)1. 简述什么是凸优化问题,并给出一个例子。
答案:凸优化问题是一类特殊的最优化问题,其中目标函数是凸函数,可行域是凸集。
例如,二次规划问题就是凸优化问题的一个例子。
2. 解释什么是局部最优解和全局最优解。
答案:局部最优解是指在目标函数的邻域内比所有其他点都更优的解,但不一定在整个可行域内最优。
最优化原理和方法(试题+答案)
《最优化原理与算法》试卷一、填空题(每空5分,共40分)1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。
3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 .4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 .5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。
2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f T i Ti T的解,求证:d 是f 在x 处的一个可行方向。
三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(min x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题1. ⎪⎪⎭⎫ ⎝⎛++++3421242121x x x x⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T )0,1,2(-,T )1,0,3(-(答案不唯一)。
研究生《最优化理论与方法》试题
理学院2010级研究生《最优化理论与方法》试题
1. (15分)设函数4:f R R →定义为
()
()()()()22441234231410510210f x x x x x x x x x =++-+-+- 证明:()*0
000T x =是f 的驻点(稳定点),并且*x 是f 在4R 上的严格全局
极小点。
2. (15分)叙述并证明满足wolfe 线搜索条件的下降算法的全局收敛性。
(提示:利用Zoutendijk 条件)
3. (20分)叙述修正的(Modified)Cholesky 分解算法。
用Cholesky 分解强迫
201
1211103231A -⎡⎤⎢⎥=+⎢
⎥⎢⎥⎣⎦正定,即令A A E =+正定,其中E 为修正矩阵。
4. (15分)设()f x =x b Ax x T T -,其中213,123A b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
(1) 证明010d ⎛⎫= ⎪⎝⎭与112d -⎛⎫= ⎪⎝⎭
关于A 共轭 (2) ()00
0T x =,以0d 和1d 为搜索方向,用精确线搜索求f 的极小点 5. (15分)叙述并证明牛顿法及其二次收敛性
6. (20分)写出拟牛顿法的一般步骤,叙述几种常用的拟牛顿校正公式,包括(SR1,DFP ,BFGS ,Broyden 族,Huang 族)。
《最优化方法》复习题.docx
《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。
5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。
最优化方法试卷及答案5套
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
24.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
最优化方法试题及答案
最优化方法试题及答案一、选择题1. 下列哪项不是最优化方法的特点?A. 目标性B. 可行性C. 多样性D. 随机性答案:D2. 在最优化问题中,约束条件的作用是什么?A. 限制解的可行性B. 增加问题的复杂性C. 提供额外的信息D. 以上都是答案:A3. 线性规划问题中,目标函数与约束条件之间的关系是什么?A. 无关B. 相等C. 线性D. 非线性答案:C二、简答题1. 简述最优化问题的基本构成要素。
答案:最优化问题的基本构成要素包括目标函数、决策变量、约束条件和解的可行性。
目标函数是衡量最优化问题解的质量的函数,决策变量是问题中需要确定的参数,约束条件是对决策变量的限制,解的可行性是指解必须满足所有约束条件。
2. 什么是局部最优解和全局最优解?请举例说明。
答案:局部最优解是指在问题的邻域内没有其他解比当前解更优的解,而全局最优解是指在整个解空间中最优的解。
例如,在山峰攀登问题中,局部最优解可能是到达了一个小山丘的顶部,而全局最优解是到达了最高峰的顶部。
三、计算题1. 假设一个农民有一块矩形土地,长为100米,宽为80米,他想在这块土地上建一个矩形的养鸡场,但只能沿着土地的长边布置。
如果养鸡场的一边必须靠在土地的长边上,另一边与土地的宽边平行,求养鸡场的最大面积。
答案:为了使养鸡场的面积最大,养鸡场的一边应该靠在土地的宽边上,另一边与土地的长边平行。
这样,养鸡场的长将是80米,宽将是100米,所以最大面积为80米 * 100米 = 8000平方米。
2. 一个工厂需要生产三种产品A、B和C,每种产品都需要使用机器X 和机器Y。
生产一个单位的产品A需要机器X工作2小时和机器Y工作1小时;产品B需要机器X工作3小时和机器Y工作2小时;产品C需要机器X工作1小时和机器Y工作3小时。
工厂每天有机器X总共300小时和机器Y总共200小时的使用时间。
如果工厂每天需要生产至少100单位的产品A,50单位的产品B和20单位的产品C,请问工厂应该如何安排生产以最大化产品的总产量?答案:设生产产品A的单位数为x,产品B的单位数为y,产品C的单位数为z。
最优化考试卷子
考试时间120分钟最优化试卷1.考试形式:闭卷;2.本试卷共十大题,满分100分班级学号姓名任课教师一.(20分)解释下列概念: (1)凸集,凸规划;(2)线性规划的基和基本解;(3)无约束优化算法的下降搜索方向,举出两种搜索方向;(4)约束最优化问题的可行解集合或容许解集合;(5)共轭方向;二.(10分)解答下列问题(1)判断函数22131212f(x)=10x 52x x x x x ---+为凸函数或凹函数或严格凸函数或严格凹函数;(2)求函数12212f(x)=34x x x x +的梯度和hessian 矩阵。
三.(15分)写出下列线性规划的对偶形式,并用单纯形法求解原规划的最优值和最优解 max 123z=33x x x ++ 123232x x x ++≤s.t 123235x x x ++≤ 123226x x x ++≤123,,0x x x ≥四.(10分)写出一维搜索0.618法的基本思想和算法步骤或框图。
五.(15分)分别利用内点法和外点法求解下列问题 min 3121(1)3x x ++s.t 1(1)0x -≥20x ≥六(15分).设A 为n 阶对称正定矩阵 (1) 写出A 的共轭向量组的定义;(2) 并证明该向量组必为线性无关向量组;(3)设n 维向量组12,,,n a a a 线性无关,如果存在n 维向量x ,满足'0i x a =,(i=1,2,…n),证明:n 维向量x=0.七.(15分)简述DFP 算法的优缺点:并证明迭代的尺度矩阵满足拟牛顿方程11其中x x x ,,x (x )(x )()()k k k k k k K k k k k K k K k k K kg g g C g H g H g g H g ++∇=-∇=-''''=∇∇∇∇-∇∇∇∇。
最优化理论与方法 试题2005
2005年最优化理论与方法试题(时间150分钟)一、选择题与判断题(10分)判断题:以T表示正确的,以F表示错误的。
1.对整数线性优化问题,用连续最优化方法代替计算时,求得的最优解与实际最优解的偏差不大于各离散设计变量最大间距值。
( )2.性态约束是在优化设计中由结构的某种性能和设计要求推导出来的,因此它通常为显约束。
( )3.黄金分割法(0.618法)的区间缩短率通常是优于Fibonacci法的缩短率。
( )4.利用拉格朗日(Lagrangian)乘子法可以将约束最优化问题变成无约束最优化问题。
( )5.从消元法的观点看:等式约束的实质是使原最优化问题的的实际维数降低。
( )二、填空题(10分)1.机械优化设计中的三要素是、和。
2.函数值的最大下降率的方向是函数在该点的方向。
3.对一般最优化设计而言,总希望缩小理论结果与实际情况的差距,因此这要求结果对作用约束的灵敏度越越。
三、简答题(10分)1.给出三种一维搜索采用的主要方法。
2.给出4种用于无约束最优化问题中的主要方法。
3.给出4种约束最优化问题中的主要方法。
4.给出2种用到目标函数的导数(梯度)的优化方法。
5.给出1种用到目标函数的二次导数(Hessian矩阵)的优化方法。
四、求解下面的单纯形问题(10分)x1 x2x3x4x5 RHS0 -2 1 0 0 0x1 1 1 -2 0 0 2x4 0 -3 1 1 0 1x5 0 -1 1 0 1 2判断该问题是否有最优解。
如果有,计算给出最优的解和对应的目标函数值。
如果没有,计算说明原因。
五、利用Kuhn-Tucker ,其判别X =[2,0]T 点是否为下面约束问题的极值点。
(10分))(0)(0)2)(2()( s.t.}96min{)(min 2312211112221≤−=≤−=≤+−+=+−+=x g x g x x x g x x x F X X X X六、简要说明A *算法。
最优化方法试题
《最优化方法》试题一、 填空题1.设()f x 是凸集n S R ⊂上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( );2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ∇是( )矩阵;3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ⎧=+---⎪--≥-⎨⎪--≥-≥⎩,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。
二、选择题1.给定问题222121212min (2)..00f x x s t x x x x ⎧=-+⎪⎪-+≤⎨⎪-≤⎪⎩,则下列各点属于K-T 点的是( )A) (0,0)T B) (1,1)TC) 1(,22T D) 11(,)22T 2.下列函数中属于严格凸函数的是( )A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-<C) 2222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题()22121212121211min 51022..2330420,0f x x x x x s t x x x x x x =+---≤+≤≥取初始点()0,5T。
四、考虑约束优化问题()221212min 4..3413f x x x s t x x =++≥用两种惩罚函数法求解。
五.用牛顿法求解二次函数222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。
初始点011,1,22Tx ⎛⎫= ⎪⎝⎭。
最优化理论试题及答案
最优化理论试题及答案一、单项选择题1. 以下哪个函数是凸函数?A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = e^x答案:A2. 线性规划问题的基本解是:A. 基本可行解B. 可行解C. 基本解D. 基本最优解答案:A3. 单纯形法中,如果目标函数的最优值是无界的,则对应的解是:A. 无解B. 可行解C. 基本可行解D. 基本最优解答案:A4. 在拉格朗日乘数法中,拉格朗日函数是:A. 目标函数和约束条件的乘积B. 目标函数和约束条件的和C. 目标函数和约束条件的差D. 目标函数和约束条件的商答案:B5. 以下哪个算法用于解决非线性规划问题?A. 单纯形法B. 内点法C. 匈牙利法D. 动态规划答案:B二、多项选择题1. 以下哪些条件是凸优化问题的必要条件?A. 目标函数是凸函数B. 所有约束条件是凸集C. 目标函数是凹函数D. 所有约束条件是凹集答案:A, B2. 在线性规划中,以下哪些是可行域的性质?A. 非空B. 凸集C. 闭集D. 有界答案:A, B, C3. 以下哪些方法可以用于解决整数规划问题?A. 分支定界法B. 割平面法C. 单纯形法D. 动态规划答案:A, B, D4. 以下哪些是拉格朗日乘数法的用途?A. 寻找局部最优解B. 寻找全局最优解C. 确定约束条件的活跃性D. 确定目标函数的梯度答案:A, C5. 以下哪些是动态规划的基本要素?A. 状态B. 决策C. 阶段D. 策略答案:A, B, C三、填空题1. 一个函数f(x)是凸函数,当且仅当对于任意的x1, x2和任意的λ∈[0,1],有f(λx1 + (1-λ)x2) ≤ λf(x1) + (1-λ)f(x2)。
2. 线性规划问题的标准形式是:最大化或最小化目标函数z = c^T x,满足约束条件Ax ≤ b和x ≥ 0。
3. 单纯形法的基本思想是通过不断地从一个基本可行解移动到另一个基本可行解,直到找到最优解。
最优化理论考试试题
最优化理论考试试题一、选择题1. 最优化理论的基本概念是指:A. 在给定条件下寻找函数的最小值或最大值B. 通过不断迭代来逼近函数的极值点C. 利用数值方法求解函数的最优解D. 以上都是2. 关于最优化问题中的约束条件,以下说法正确的是:A. 约束条件可以是等式约束B. 约束条件可以是不等式约束C. 约束条件可以是混合约束D. 以上都是3. 最优化问题分为无约束和约束两种情况,下列哪一种情况不属于最优化问题?A. 无约束最优化问题B. 约束最优化问题C. 反馈最优化问题D. 离散最优化问题4. 最优化理论中常用的优化方法包括:A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 以上都是5. Golden Section Search方法主要用于:A. 精确搜索极值点B. 近似搜索极值点C. 寻找函数的全局最小值D. 寻找函数的局部最小值二、填空题1. 在最优化理论中,目标函数一般被记为_______。
2. 梯度下降法中的步长大小通常由_______确定。
3. 在多元函数优化中,Hessian矩阵是由二阶_______组成的。
4. 拉格朗日乘子法用于处理含有_______的约束最优化问题。
5. 共轭梯度法是解决_______问题的一种有效方法。
三、简答题1. 请简要介绍最优化理论的基本思想和应用领域。
2. 分别说明无约束最优化问题和约束最优化问题的关键特点。
3. 请解释梯度下降法和牛顿法的基本原理,并比较它们之间的异同。
4. 举例说明拉格朗日乘子法在实际问题中的应用。
5. 请解释共轭梯度法的基本原理,并说明其在优化问题中的优势和适用情况。
以上是最优化理论考试的试题内容,希望同学们认真复习,做好准备,祝大家取得优异的成绩!。
最优化方法试卷及答案5套.docx
最优化⽅法试卷及答案5套.docx《最优化⽅法》1⼀、填空题:1. _______________________________________________________ 最优化问题的数学模型⼀般为:_____________________________________________ ,其中___________ 称为⽬标函数,___________ 称为约束函数,可⾏域D可以表⽰为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2⽄+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿⽅向d的⼀阶⽅向导数为___________ ,⼏何意义为_____________________________________ ,⼆阶⽅向导数为____________________ ,⼏何意义为_____________________________3.设严格凸⼆次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中⼦(兀)为严格凸函数,D 是凸集)的最优解是唯⼀的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可⾏点,若在元处 d 满⾜巧(计<0,VC,(元)(可则d 是元处的可⾏下降⽅向。
最优化方法考试试题
最优化方法考试试题一、选择题(每题2分,共20分)1、下列哪个选项不是最优化方法的常见应用场景?A.生产计划优化B.金融投资组合优化C.图像处理优化D.自然语言处理优化正确答案:D.自然语言处理优化。
2、下列哪个算法不是求解线性规划问题的常用算法?A.单纯形法B.内点法C.外点法D.牛顿法正确答案:D.牛顿法。
3、下列哪个选项不是整数规划问题的特点?A.变量取值必须是整数B.问题复杂度较高,通常需要特殊算法求解C.在实际应用中比线性规划更为广泛D.可以使用与线性规划相同的方法求解正确答案:D.可以使用与线性规划相同的方法求解。
4、下列哪个选项不是梯度下降法的优点?A.简单易行,易于实现B.能较快地收敛到局部最优解C.对初值不敏感,易于找到全局最优解D.对于大规模数据处理效率较高正确答案:C.对初值不敏感,易于找到全局最优解。
5、下列哪个选项不是模拟退火算法的特点?A.基于概率的搜索方法,有一定的随机性B.在解空间内随机搜索,可以跳出局部最优解的陷阱C.可以找到全局最优解,但需要设置退火温度等参数D.对于组合优化问题通常比暴力搜索算法更快找到最优解正确答案:D.对于组合优化问题通常比暴力搜索算法更快找到最优解。
二、填空题(每空2分,共20分)6.最优化方法中,通常使用__________来衡量一个解的好坏。
正确答案:目标函数。
7.在使用单纯形法求解线性规划问题时,__________是算法终止的条件。
正确答案:迭代次数达到预设的上限。
8.整数规划问题中,如果所有变量都有上限和下限的约束,则称为__________规划问题。
正确答案:背包。
9.在使用模拟退火算法求解组合优化问题时,__________是算法终止的条件。
正确答案:达到预定的迭代次数或者解的变化小于某个给定的阈值。
10.最优化方法中,__________是一种启发式搜索方法,通常用于解决组合优化问题。
正确答案:遗传算法。
最优化问题在现实世界中随处可见,从解决日常生活中的最佳路线问题,到企业寻求最大化利润和最小化成本,最优化方法都发挥着至关重要的作用。
最优化方法练习题(答案)
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
附录5:《最优化方法》复习题
附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()()()T T T f x f x f x d f x f x =-∇∇+∇+∇∇ ()0T f x d =∇<,所以,方向p 是函数()f x 在点x 处的下降方向.4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈L L 的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+L ,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111ki ii k k i k λλλλ=++≥==--∑L , 则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈I .若x 不是全局最优解,则存在x S ∈%,使()()f xf x <%.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<%%.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈%I ,于是()((1))f x f x x λλ≤+-%,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈%,使得()()0T f x x x ∇-<%,则d x x =-%是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈%,使得()()f xf x <%. (())()((1))()f x x x f x f x x f x λλλλλ+--+--=%%()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀%%,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<%%,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k kk k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩L . (3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;360,2210,20,,,0.f x x x x x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩s.t. (1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩L所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩L (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<.比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>. 第三次迭代:323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==.7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->. 第九次迭代:989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-,将()f x 写成1()2T Tf x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭.第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3Tx x d λλ-⎛⎫⎛⎫⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭. 此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。
最优化理论与方法 试题2006
2006级硕士生《最优化理论与方法》试题 姓名:学号:成绩:注意:请将答案全部写在答题纸上。
1、填空题(5分)(1)最优化设计问题的三要素是、和。
(2)函数值的最大下降率的方向是函数在该点的方向。
(3)线性规划问题是指的最优化问题。
2、判断题(5分)(1)黄金分割法(0.618法)的区间缩短率随问题性质的不同而改变。
(2)虽然利用拉格朗日乘子法可以将约束最优化问题变成无约束最优化问题进行求解,但是要付出增加变量维数的代价。
(3)在求解约束优化设计问题时,可以将约束函数通过一定方式变为目标函数的一部分,从而将问题化为无约束问题进行求解。
(4)性态约束是在优化设计中由结构的某种性能和设计要求推导出来的一种约束条件,因此它通常为显约束。
(5)从消元法的观点看,等式约束的实质是使原最优化问题的的实际维数降低。
3、简答题(10分)(1)写出4种求解一维优化问题的主要方法。
(2)写出4种求解无约束多维最优化问题的主要方法。
(3)写出4种求解约束多维最优化问题的主要方法。
(4)写出2种用到目标函数的导数(梯度)的优化方法。
(5)写出1种用到目标函数的二次导数(Hessian 矩阵)的优化方法。
4、用单纯形法求解以下线性规划问题。
(10分)()2134x x f −−=X mins.t. 50321=++x x x802421=++x x x14023521=++x x x0≥j xj = 1, 2, 3, 4 ,55、利用Kuhn-Tucker 条件,判断点[2,0]T 是否为下面约束问题的极值点。
(10分)()9612221+−+=x x x F X mins.t. ()()()022 2111≤+−+=x x x g X()012≤−=x g X()023≤−=x g X6、用黄金分割法求解目标函数()212−−=x x f X 的极小值,用表格形式列出前四步计算过程,计算区间为[ 0, 1.2 ]。
(10分)7、简要说明A *算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006级硕士生《最优化理论与方法》试题 姓名:学号:成绩:
注意:请将答案全部写在答题纸上。
1、填空题(5分)
(1)最优化设计问题的三要素是、和。
(2)函数值的最大下降率的方向是函数在该点的方向。
(3)线性规划问题是指的最优化问题。
2、判断题(5分)
(1)黄金分割法(0.618法)的区间缩短率随问题性质的不同而改变。
(2)虽然利用拉格朗日乘子法可以将约束最优化问题变成无约束最优化问题进行求解,但是要付出增加变量维数的代价。
(3)在求解约束优化设计问题时,可以将约束函数通过一定方式变为目标函数的一部分,从而将问题化为无约束问题进行求解。
(4)性态约束是在优化设计中由结构的某种性能和设计要求推导出来的一种约束条件,因此它通常为显约束。
(5)从消元法的观点看,等式约束的实质是使原最优化问题的的实际维数降低。
3、简答题(10分)
(1)写出4种求解一维优化问题的主要方法。
(2)写出4种求解无约束多维最优化问题的主要方法。
(3)写出4种求解约束多维最优化问题的主要方法。
(4)写出2种用到目标函数的导数(梯度)的优化方法。
(5)写出1种用到目标函数的二次导数(Hessian 矩阵)的优化方法。
4、用单纯形法求解以下线性规划问题。
(10分)
()2134x x f −−=X min
s.t. 50321=++x x x
802421=++x x x
14023521=++x x x
0≥j x
j = 1, 2, 3, 4 ,5
5、利用Kuhn-Tucker 条件,判断点[2,0]T 是否为下面约束问题的极值点。
(10分)
()9612
221+−+=x x x F X min
s.t. ()()()022 2111≤+−+=x x x g X
()012≤−=x g X
()023≤−=x g X
6、用黄金分割法求解目标函数()2
1
2−−=x x f X 的极小值,用表格形式列出前四步计算过程,计算区间为[ 0, 1.2 ]。
(10分)
7、简要说明A *算法。
图1中起始节点S 和终止节点E 所给出的8数码问题,以离家将牌数Misplaced(n )为启发函数,用A *算法构造搜索图。
(7分)
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=56748321 45761382E S
图1 已知8数码问题的起始布局和目标布局
8、用二进制编码的遗传算法解决如下数值优化问题。
求下面优化问题的最优解:
min f (x )=x 1+x 2+x 3
s.t. 8≤x 1≤15
3≤x 2≤7 5≤x 3≤11
已知三个初始个体(x 1, x 2, x 3)为(8, 6, 7)
、(11, 4, 10)与(10, 5, 9), 并给出三个初始个体按二进制编码分别为(1 0 0 0,0 1 1 0,0 1 1 1), (1 0 1 1,0 1 0 0,1 0 1 0),(1 0 1 0 ,0 1 0 1,1 0 0 1),请通过进行交叉,变异,选择遗传操作来求解上述的优化问题,要进行两轮进化操作即可。
(10分)
9、给定双积分系统的状态方程如下:
u x x
⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=100010
设初始条件和边界条件为:x 1(0)=1,x 2(0)=1;终端约束条件:x 1(1)=0;x 2(1)=0
求使性能泛函:()∫=1
02
dt t u J 为极小值时的最优控制u *(t )及最有轨线
x *(t )。
(10分)
10、设有5个城市1, 2, 3, 4, 5相互的距离如下图2所示,试用函数空间迭代法,求各城市到城市5的最短路线和最短路程。
(7分)
图 2 城市路线图
11、简述模拟退火算能够全局优化爬出极小值的原理。
(5分) 12、试叙述霍氏网神经元满足李亚普诺夫函数(Lyapunov function)的条件。
(6分)
13、已知霍普费尔德网络的基本结构如图3所示。
(5分)
图3 霍氏网的基本结构
设双极硬限器为:
(1)
这里取T i =0。
在同步进行时,网络中所有神经元的更新同时进行,也就是
(2)
其中初始值⎥⎦⎤⎢⎣⎡−=2.07.00I ;⎥⎦
⎤
⎢⎣⎡+−=110S
;权系数为:⎥⎦
⎤
⎢⎣
⎡−=01
11
W 。
试用霍氏神经网进行更新迭代过程计算,要求迭代2步以上。