【精品】平行四边形练习题以及答案(word解析版)
平行四边形练习题及答案
平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。
只有矩形和正方形的对角线相等。
2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。
平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。
3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。
- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。
这意味着平行四边形是一个菱形。
在菱形中,所有边长相等,所以对边的长度也是10厘米。
4. 证明题:证明平行四边形的对角线互相平分。
- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。
由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。
因此,△ABC和△CDA是相似三角形。
根据相似三角形的性质,我们可以得出AE/EC = BE/ED。
同理,我们可以证明AE/EC = BD/DC。
因此,AE = EC且BE = ED,证明了对角线互相平分。
5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。
- 答案:平行四边形的面积公式是底乘以高。
设另一边的长度为x厘米,高为h厘米。
根据面积公式,8h = 64,解得h = 8厘米。
由于平行四边形的对边相等,另一边的长度也是8厘米。
练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。
这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。
希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。
在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。
《平行四边形》习题精选及参考答案
《平行四边形》习题精选及参考答案一、填空题1.过□ABCD的顶点A、C分别作对角线BD的垂直线,垂足为E、F,则四边形AECF是 .2.延长△ABC的中线AD到E,使DE=AD 则四边形ABEC是四边形.3.在四边形ABCD中∠A=50°欲使四边形为平行四边形,则∠B= ,∠C=,∠D= .4.在四边形中,任意相邻两个内角互补,则这个四边形是四边形.5.如图12-1-29,在□ABCD中,E、F为AB、CD的中点,连结DE、EF、BF则图中共有个平行四边形.6.在□ABCD中连结BD作AE⊥BD,CF⊥BD,垂足分别为E、F,连结CE、AF,点P、Q在线段BD上,且BP=DQ,连结AP、CP、AQ、CQ,MN分别交AB、CD于M、N连结AM、CM、NA、NC,那么图中平行四边形(除□ABCD外)有个,它们是 .二、判断题1.平行四边形的对边分别相等()2.平行四边形的对角线相等()3.平行四边形的邻角互补()4.平行四边形的对角相等()5.平行四边形的对角线互相平分一组对角()6.对角线平分平行四边形的四个三角形的面积相等()三、选择题1.能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2.能确定平行四边形的大小和形状的条件是()A.已知平行四边形的两邻边B.已知平行四边形的两邻角C.已知平形四边形的两对角线D.已知平行四边形的两边及夹角3.平行四边形一边为32,则它的两条对角线长不可能为()A.20和18 B.40和50C.60和30 D.32和504.如图12-1-30所示,已知□ABCD的对角线的交点是O,直线EF过O点且平行于BC,直线GH过O且平行AB,则图中有()个平行四边形.A.5个B.6个C.7个D.10个5.能判定四边形为平行四边形的是()A.一组对角相等B.两条对角线互相垂直C.两条对角线互相平分 D.一对邻角互补6.以下结论正确的是()A.对角线相等,且一组对角也相等的四边形是平行四边形.B.一边长为5,两条对角线分别是4和6的四边形是平行四边形.C.一组对边平行,且一组对角相等的四边形是平行四边形.D.对角线相等的四边形是平行四边形.7.在□ABCD中,点E、F分别在边BC、AD上,如果点E,F分别由下列各种情况得到的,那么四边形AECF不一定是平行四边形的是()A.AE、CF分别平分∠DAB、∠BCDB.AE,CF使∠BEA=∠CFDC.E、F分别是BC、AD的中点D.BE=BC,AF=AD8.□ABCD对角线交点为O,△OBC的周长为59cm,且AD=28cm,两对角线之差为14cm,则对角线长为()A.12cm和9cm B.24cm 和38cmC.8.5cm和22.5cm D.15.5cm 和29.5cm四、解答题1.如图12-1-31所示,在□ABCD中,AE平分∠BAD,CF平分∠BCD,四边形AECF是平行四边形吗?2.如图12-1-32所示,四边形ABCD中∠B=∠D,∠1=∠2,则四边形ABCD是平行四边形吗?为什么?3.如图12-1-33所示,四边形ABCD的对角线AC、BD相交于点O,E、F分别是OD、OB上一点,若∠ECD=∠FAB,EC=AF,则四边形AECF是平行四边形吗?为什么?4.如图12-1-34所示,四边形ABCD中AB=CD,∠DBC=90°,FD⊥AD于D,求证四边形ABCD 是平行四边形.5.如图12-1-35所示,△ABC中DE在BC边上,N、M在AB、AC上,且EN与DM互相平分,MD ∥AB,NE∥AC求证:BD=DE=CE五、证明题1.已知:如图12-1-18,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF(2)AE∥CF2.已知:如图12-1-19,四边形ABCD为平行四边形,E、F是直线BD延长线上的两点,且DE =BF,求证AE=CF参考答案一、填空题1.平行四边形点拨:由一组对边平行且相等,即可判断2.平行四边形3.130°,50°,130°4.平行四边形点拨:由题意可得两组对边分别平行5.4个点拨:□ABCD,□ADFE,□EFCB,□EDFB6.3个□AECF,□APCQ,□AMCN二、判断题1.√ 2.×点拨:对角线不一定相等,但互相平分3.√ 4.√5.×点拨:对角线不平分一组对角,只是自己互相平分 6.√三、选择题1.B 2.D 3.A 4.D 5.C 6.C 7.B 8.B四、解答题1.解:四边形AECF是平行四边形点拨:由□ABCD知∠BCD=∠BAD,又AE平分∠BAD,CF平分∠BCD,故∠EAF=∠ECF,又∠AF ∥EC,故∠AEC+∠EAF=18O°,即∠AEC+∠ECF=18O°,所以AE∥CF,故四边形AECF是平行四边形.2.解:四边形ABCD是平行四边形由∠1=∠2得DC∥AB,所以∠D+∠DAB=18O°,又∠B=∠D,所以∠DAB+∠B=180°,所以AD∥BC,即四边形ABCD为平行四边形.3.解:是平行四边形点拨:AB∥CD,故∠ACD=∠CAB,又∠ECD=∠FAB,故∠ACD-∠ECD=∠CAB-∠FAB,即∠ACE =∠CAF,所以CE=AF,CE=AF,故AFCE是平行四边形.4.证明:∵BD⊥AD ∴∠BDA=90°∵∠DBC=90°,DC=AB,DB=DB∴△ADB≌△CBD ∴AD=BC∴四边形ABCD是平行四边形5.证明:∵NE,MD互相平分∴四边形MNDE为平行四边形∴MN DE又∵MD∥AB,NE∥AC ∴四边形MNBD、MNEC为平行四边形∵MN=BD,MN=CE ∴BD=DE=CE五、证明题1.证明:∵四边形ABCD为平行四边形∴AB DC ∴∠ABE=∠CDF在△ABE和△CDF中∴△ABE≌△CDF(SAS)∴AE=CF ∴∠AEB=∠CFD∴∠AED=∠BFC(等角的补角相等)∴AE∥CF2.证明:如图(3)所示∵四边形ABCD是平行四边形∴AD∥BC,AD=BC ∴∠1=∠2∵BD是直线∴∠1+∠3=180°,∠2+∠4=180°∴∠3=∠4∴△ADE≌△CBF ∴AE=CF。
(完整版)平行四边形性质和判定习题(答案详细)(可编辑修改word版)
平行四边形性质和判定习题L如图,已知四边形ABCD为平行四边形,AE1BD于E- CF丄BD于F.(1)求证:BE=DF:X _勒(2)若N分别为边AD、BC±的点,且DM=BN.试判断四边形MENF的形状——必说明理由).2.如图所示,UAECF的对角线相交于点0, DB经过点O分別与AE, CF” p交于B. D.求证:四边形ABCD是平行四边形•3・如图,在四边形ABCD中,AB=CD, BF=DE, AE丄BD・CF丄BD,垂足分别为E, F.(1)求证J A ABE=A CDF:(2)若AC与BD交于点0,求证:AO=CO.4・已知:如图,他ABC中,^BAC=90\DE.DF是△ABC的中位线,连接EF、EF=AD・5・如图,已知D是A ABC的边AB上一点,CEIIAB,DE交AC于点0,且OA=0C,猜想线段CD与线段AE的大小关系和位置关并加以证明・B AD.求证:。
(不CNCBAFED FE系E6・如图,已知,UABCD中,AE=CF, M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形•7・如图,平行四边形ABCD, E 、F 两点在对角线BD 上,且BE=DF,连接AE. EG CF, FA ・求证:四边形AECF 是平行四边形•& 在UABCD 中,分别以AD 、BC 为边向内作等边△ADE 和等边△BCF,连接BE. DF ・求证:四边形BEDF 是平 行四边形・DBIIAC,且DB 丄AC. E 是AC 的中点,求证:BC=DE ・2如图,在梯形ABCD 中,ADIIBC, AD=24cm. BC=30cm,点P 自点A 向D 以IcmZs 的速度运动,到D 点Q 自点C 向B 以2cm/s 的速度运动,到B点即停止,直线PQ 截梯形为两个四边形•问当P. Q同时10. 已知脣 点即停止. 出发,几秒后其中一个四边形为平行四边形?IL 如图:已知D 、E 、F 分别是A ABC 各边的中点, 求证:AE 仃DF 互相平分.如图所示, 9・ED13.如图,已知四边形ABCD中,点E, F. G, H分别是AB、CD、AC. BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分・14.如图J oABCD 中,MNIIAC.试说明MQ=NP.15.已知:如图所示「平行四边形ABCD的对角线AC, BD柑交于点6 EF经过点0并且分别和AB. CD相交于点E, F,点G, H分别为OA, 0C的中点.求证:四边形EHFG是平行四边形.-46 如制已知的ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH. 连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,尖余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在A ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证J AF=CE:(2)如果AC=EF,且ZACB=135\试判断四边形AFCE是什么样的四边形,并证明你的结论・18,如图平行四边形ABCD 中.mBC=6(几 点E 、F 分別在CD.BC 的延长线上,AE||BD ・ EEhBB 垂足为点F, DF=2 (1) 求证:D 是EC 中点; (2) 求FC 的长.19.如图,已知A ABC 是等边三角形,点D 、F 分别在线段BC 、AB 匕 厶EFB=60。
八年级数学平行四边形30道经典题(含答案和解析)
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
(完整版)平行四边形的性质习题(有答案)
平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。
八年级数学下册《平行四边形的判定》练习题及答案解析
八年级数学下册《平行四边形的判定》练习题及答案解析一、选择题(共12小题)1. 下面几组条件中,能判定一个四边形是平行四边形的是( )A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2. 在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm3. 下面条件中,能判定四边形是平行四边形的条件是( )A. 一组对角相等B. 对角线互相平分C. 一组对边相等D. 对角线互相垂直4. 如图,四边形ABCD中,AD∥BC,点M是AD的中点,若动点N从点B出发沿边BC方向向终点C运动,连接BM,CM,AN,DN,则在整个运动过程中,阴影部分面积和的大小变化情况是( )A. 不变B. 一直变大C. 先减小后增大D. 先增大后减小5. 在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为( )A. 2√5B. 2√10C. 6√2D. 3√56. 如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A. a户最长B. b户最长C. c户最长D. 三户一样长7. 在同一平面内,已知a∥b∥c,若直线a,b间的距离为3cm,直线a,c间的距离为5cm,则直线b,c间的距离是( ).A. 2cmB. 8cmC. 2cm或8cmD. 不确定8. 下列命题中,说法正确的是( )A. 所有菱形都相似B. 两边对应成比例且有一组角对应相等的两个三角形相似C. 三角形的重心到一个顶点的距离,等于它到这个顶点对边距离的两倍D. 斜边和直角边对应成比例,两个直角三角形相似9. 如图,已知直线a∥b,小王在直线a上任取5个点:P1,P2,P3,P4,P5,经测量发现它们到直线b的距离都是3cm;小丁在直线b上任取5个点:Q1,Q2,Q3,Q4,Q5,经测量发现它们到直线a的距离b也都是3cm.该操作反映了平行线的某种性质,下列对该性质的描述中,不正确的是( )A. 如果直线a∥b,那么直线a上任意一点到直线b的距离都相等B. 如果直线a∥b,那么直线b上任意一点到直线a的距离都相等C. 两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值D. 两条平行线中,一条直线上的任意一点与另一条直线上的任意一点之间的距离都是一个定值10. 平行四边形ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )A. BE=DFB. AE=CFC. AF∥CED. ∠BAE=∠DCF11. 如图所示,l1∥l2,B,C是l2上的两点,A,D,E是l1上的三点,S△ABC记作S1,S△DBC记作S2,S△EBC记作S3,则( )A. S1>S2>S3B. S3>S2>S1C. S1=S2=S3D. 无法比较12. 有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图①),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图②),如果按此规律继续“生长”下去,那么它将变得“枝繁叶茂”.在“生长”了2021次后形成的图形中所有正方形的面积和是( )A. 2019B. 2020C. 2021D. 2022二、填空题(共8小题)13. 下列四边形中,是平行四边形的是(请填写序号).14. 如图,在四边形ABCD中,AB∥CD,请你添加—个条件,使得四边形ABCD成为平行四边形,你添加的条件是 .15. 一个四边形四条边顺次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是.16. 如图,a∥b,AB⊥b,CD⊥b,AB=4cm,则CD=.17. 已知直线a、b、c互相平行,直线a与b的距离是2厘米,直线b与c的距离是6厘米,那么直线a与c的距离是.18. 如图,已知AD∥BC,AB∥CD,过点A分别画直线BC,CD的垂线,垂足为点E,F.通过度量,可以得到平行线AD与BC间的距离为,平行线AB 与CD间的距离为.19. 在平面直角坐标系中,点A,B,C的坐标分别为A(−2,1),B(−3,−1),C(1,−1).若四边形ABCD为平行四边形,那么点D的坐标是.20. 如图,AD∥BC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是1,则△BOC的面积是.三、解答题(共6小题)21. 已知:如图所示,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.22. 如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE.请分别度量AE与CF之间的距离,AF与CE之间的距离(精确到0.1cm).23. 若两个角的两边分别垂直,其中一个角比另一个角的2倍少30∘,求这两个角的度数.24. 如图,已知E为平行四边形ABCD的边BC上的任一点,DE延长线交AB延长线于点F.试说明S△ABE=S△CEF的理由.25. 如图,在平行四边形ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.求证:AE=BF.26. 如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=√a−21+√21−a+16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒).(1)求B,C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P,Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P,Q两点的坐标.参考答案与解析1. B2. C3. B4. A【解析】连接MN,过F作WQ⊥AD于Q,交BC于W,过E作EH⊥AD于Q,交BC于P,∴QW=PH,∵AD∥BC,∴WQ⊥BC,∴S△MFD+S△FNC=12×MD×FQ+12×NC×FW=12×(MD+NC)×QW,S△AEM+S△BNE=12×AM×EH+12×BN×EP=12×(AM+BN)×PH,∴阴影部分面积=12×(AD+BC)×QW,∴阴影部分面积不变.5. B【解析】作A(0,2)关于x轴的对称点A′(0,−2),过A′作A′E∥x轴且A′E=CD=2,故E(2,−2),连接BE交x轴与D点,过A′作A′C∥DE交x轴于点C,所以四边形CDEA′为平行四边形,此时AC+BD最短等于BE的长,即AC+BD=A′C+BD=DE+BD=BE=√(2−0)2+(−2−4)2=2√10.6. D7. C8. D9. D10. B【解析】A.如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B.如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C.如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF∥CE且AF=CE,∴四边形AECF是平行四边形,故不符合题意;D.如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE∥CF且AE=CF,∴四边形AECF是平行四边形,故不符合题意.11. C【解析】同底等高的三角形的面积相等.12. D 【解析】设正方形A,B,C围成的直角三角形的三条边长分别是a,b,c.如图,根据勾股定理,得a2+b2=c2,一次“生长”后,S A+S B=S C=1.第二次“生长”后,S D+S E+S F+S G=S A+S B=S C=1,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是2022×1=2022.13. ①②③14. 答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B= 180∘或∠C+∠D=180∘等.15. 平行四边形16. 4cm17. 4厘米或8厘米18. 4cm,5cm【解析】如图所示:通过度量,得到AE=4cm,AF=5cm,故平行线AD与BC的距离为4cm,AB与CD 的距离为5cm.19. (−6,1),(2,1),(0,−3)20. 421. ∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,{AB=EC,∠B=∠ECD, BC=CD,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).22. 过点E作EH⊥AF于点H.经测量可得:AD=3.2cm,EH=1.3cm,则AE与CF之间的距离是 3.2cm,AF与CE之间的距离是 1.3cm.23. 设另一个角的度数为α,则这个角的度数是2α−30∘.因为两个角的两边分别垂直,所以α+2α−30∘=180∘或α=2α−30∘,解得α=70∘或α=30∘,所以2α−30∘=110∘或2α−30∘=30∘.故这两个角的度数分别是110∘,70∘或30∘,30∘.24. 提示:连接BD,因为AD∥BC,所以S△ABE=S△DBE,因为CD∥AF,所以S△EFD=S△BFC,所以S△BED=S△CEF,所以S△ABE=S△CEF.25. ∵CF∥BD且CF=DE,∴四边形CDEF是平行四边形,∴CD∥EF,CD=EF.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴AB∥EF,AB=EF,∴四边形ABFE是平行四边形,∴AE=BF.26. (1)因为b=√a−21+√21−a+16,所以a=21,b=16,故B(21,12),C(16,0).(2)根据题意得:QP=2t,QO=t,则:PB=21−2t,QC=16−t,因为当PB=QC时,四边形PQCB是平行四边形,所以21−2t=16−t,计算得出:t=5,所以P(10,12),Q(5,0).(3) 当 PQ =CQ 时,过 Q 作 QN ⊥AB ,如图所示,根据题意得:122+t 2=(16−t )2,计算得出:t =72,故 P (7,12),Q (72,0),当 PQ =PC 时,过 P 作 PM ⊥x 轴,如图所示,根据题意得:QM =t ,CM =16−2t ,则 t =16−2t ,计算得出:t =163,2t =323, 故 P (323,12),Q (163,0).。
(完整版)平行四边形经典练习题(3套)附带详细解答过程
(完整版)平⾏四边形经典练习题(3套)附带详细解答过程练习1⼀、选择题(3′×10=30′)1.下列性质中,平⾏四边形具有⽽⾮平⾏四边形不具有的是().A.内⾓和为360° B.外⾓和为360° C.不确定性 D.对⾓相等2.Y ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平⾏四边形内⾓和为360°;②平⾏四边形对⾓线相等;③平⾏四边形对⾓线互相平分;④平⾏四边形邻⾓互补.A.1 B.2 C.3 D.44.平⾏四边形中⼀边的长为10cm,那么它的两条对⾓线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在Y ABCD中,AB+BC=11cm,∠B=30°,S YABCD=15cm2,则AB与BC的值可能是(). A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和⼀直⾓边对应相等的两个直⾓三⾓形全等;B.直⾓三⾓形两个锐⾓互余;C.全等三⾓形对应⾓相等;D.⾓平分线上的点到这个⾓两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.⼀个三⾓形三个内⾓之⽐为1:2:1,其相对应三边之⽐为().A.1:2:1 B.12:1 C.1:4:1 D.12:1:29.⼀个三⾓形的三条中位线把这个三⾓形分成⾯积相等的三⾓形有()个.A.2 B.3 C.4 D.510.如图所⽰,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=?14,?AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5⼆、填空题(3′×10=30′)11.⽤14cm长的⼀根铁丝围成⼀个平⾏四边形,短边与长边的⽐为3:4,短边的⽐为________,长边的⽐为________.12.已知平⾏四边形的周长为20cm,⼀条对⾓线把它分成两个三⾓形,?周长都是18cm,则这条对⾓线长是_________cm.13.在Y ABCD中,AB的垂直平分线EF经过点D,在AB上的垂⾜为E,?若Y ABCD?的周长为38cm,△ABD的周长⽐Y ABCD的周长少10cm,则Y ABCD的⼀组邻边长分别为______.14.在Y ABCD中,E是BC边上⼀点,且AB=BE,⼜AE的延长线交DC的延长线于点F.若∠F=65°,则YABCD 的各内⾓度数分别为_________.15.平⾏四边形两邻边的长分别为20cm ,16cm ,两条长边的距离是8cm ,?则两条短边的距离是_____cm . 16.如果⼀个命题的题设和结论分别是另⼀个命题的______和_______,?那么这两个命题是互为逆命题.17.命题“两直线平⾏,同旁内⾓互补”的逆命题是_________.18.在直⾓三⾓形中,已知两边的长分别是4和3,则第三边的长是________.19.直⾓三⾓形两直⾓边的长分别为8和10,则斜边上的⾼为________,斜边被⾼分成两部分的长分别是__________. 20.△ABC 的两边分别为5,12,另⼀边c 为奇数,且a+b+?c?是3?的倍数,?则c?应为________,此三⾓形为________三⾓形.三、解答题(6′×10=60′)21.如右图所⽰,在YABCD 中,BF ⊥AD 于F ,BE ⊥CD 于E ,若∠A=60°,AF=3cm ,CE=2cm ,求YABCD 的周长.22.如图所⽰,在YABCD 中,E 、F 是对⾓线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所⽰,Y ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB?的延长线于点F ,DE 的长是3,求(1)∠C 的⼤⼩;(2)DF 的长.FCDAEB24.如图所⽰,Y ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、?∠CDA的平分线,AQ与BN交于P,CN 与DQ交于M,在不添加其它条件的情况下,试写出⼀个由上述条件推出的结论,并给出证明过程(要求:?推理过程中要⽤到“平⾏四边形”和“⾓平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所⽰,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,?求∠C的度数.27.已知三⾓形三条中位线的⽐为3:5:6,三⾓形的周长是112cm,?求三条中位线的长.28.如图所⽰,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所⽰,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,?CD?⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,?使MN不经过△ABC内部时,其他条件不变,上述结论是否成⽴呢?30.如图所⽰,E 是Y ABCD 的边AB 延长线上⼀点,DE 交BC 于F ,求证:S△ABF=S △EFC .答案:⼀、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C⼆、11.3cm 4cm 12.8 13.9cm 和10cm 14.50°,130°,50°,130° ? ? 15.10 16.结论题设 17.同旁内⾓互补,两直线平⾏ 18.519.13 直⾓三、21.Y ABCD 的周长为20cm 22.略23.(1)∠C=45° (2)DF=224.略 25.?略 26.∠C=90° 27.三条中位线的长为:12cm ;20cm ;24cm 28.提⽰:连结BD ,取BD?的中点G ,连结MG ,NG 29.(1)略(2)结论仍成⽴.提⽰:过F 作FG ⊥MN 于G 30.略练习2⼀、填空题(每空2分,共28分) 1.已知在中,AB =14cm ,BC =16cm ,则此平⾏四边形的周长为 cm .2.要说明⼀个四边形是菱形,可以先说明这个四边形是形,再说明(只需填写⼀种⽅法)3.如图,正⽅形ABCD 的对线AC 、BD 相交于点O .那么图中共有个等腰直⾓三⾓形. 4.把“直⾓三⾓形、等腰三⾓形、等腰直⾓三⾓形”填⼊下列相应的空格上.(1)正⽅形可以由两个能够完全重合的拼合⽽成; (第3题)AB CD O(2)菱形可以由两个能够完全重合的拼合⽽成; (3)矩形可以由两个能够完全重合的拼合⽽成.5.矩形的两条对⾓线的夹⾓为ο60,较短的边长为12cm ,则对⾓线长为 cm .6.若直⾓梯形被⼀条对⾓线分成两个等腰直⾓三⾓形,那么这个梯形中除两个直⾓外,其余两个内⾓的度数分别为ο和ο.7.平⾏四边形的周长为24cm ,相邻两边长的⽐为3:1,那么这个平⾏四边形较短的边长为 cm .8.根据图中所给的尺⼨和⽐例,可知这个“⼗”字标志的周长为 m .(第8题) (第10题) 9.已知平⾏四边形的两条对⾓线互相垂直且长分别为12cm 和6cm ,那么这个平⾏四边形的⾯积为 2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上) ⼆、选择题(每题3分,共24分)11. 如果⼀个多边形的内⾓和等于⼀个三⾓形的外⾓和,那么这个多边形是()A 、三⾓形B 、四边形C 、五边形D 、六边形12.下列说法中,错误的是 ( ) A.平⾏四边形的对⾓线互相平分 B.对⾓线互相平分的四边形是平⾏四边形 C. 平⾏四边形的对⾓相等 D.对⾓线互相垂直的四边形是平⾏四边形13.给出四个特征(1)两条对⾓线相等;(2)任⼀组对⾓互补;(3)任⼀组邻⾓互补;(4)是轴对称图形但不是中⼼对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) A.1个 B.2个 C.3个 D.4个 14. 四边形ABCD 中,AD//BC ,那么的值可能是() A 、3:5:6:4 B 、3:4:5:6 C 、4:5:6:3 D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的⼀个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ?的⾯积 ( )A.变⼤B.变⼩C.不变D.⽆法确定(第15题) (第16题) (第17题) 16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果ο60=∠BAF ,则DAE ∠等于 ( )A.ο15B.ο30C.ο45D.ο6017.如图,在ABC ?中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,A B C D EF 1m 1mA B C a b A B CDO l那么四边形AFDE 的周长是 ( ) A.5 B.10 C.15 D.2018.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平⾏四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD ⼀定是平⾏四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD ⼀定是平⾏四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD ⼀定是平⾏四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD ⼀定是平⾏四边形其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4) 三、解答题(第19题8分,第20~23题每题10分,共48分)19.如图,中,DB=CD ,ο70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数.(第19题)20.如图,中,G 是CD 上⼀点,BG 交AD 延长线于E ,AF=CG ,ο100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.(第20题)21.⼯⼈师傅做铝合⾦窗框分下⾯三个步骤进⾏:(1)先截出两对符合规格的铝合⾦窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是: ;(3)将直⾓尺靠紧窗框的⼀个⾓(如图③),调整窗框的边框,当直⾓尺的两条直⾓边与窗框⽆缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是: .AB CD EABCDABCD FEGABCD(图①) (图②) (图③) (图④) (第21题)22.李⼤伯家有⼀⼝如图所⽰的四边形的池塘,在它的四个⾓上均有⼀棵⼤柳树,李⼤伯开挖池塘,使池塘⾯积扩⼤⼀倍,⼜想保持柳树不动,如果要求新池塘成平⾏四边形的形状.请问李⼤伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.(第22题)答案1.60.2.平⾏四边形;有⼀组邻边相等.3.8. 提⽰:它们是.,,,,,,,ACD BCD ABC ABD AOD COD BOC AOB4.(1)等腰直⾓三⾓形; (2)等腰三⾓形; (3)直⾓三⾓形. 7.3. 8.4. 提⽰:如图所⽰,将“⼗”字标志的某些边进⾏平移后可得到⼀个边长为1m 的正⽅形,所以它的周长为4m .8题) 9. 36. 提⽰:菱形的⾯积等于菱形两条对⾓线乘积的⼀半. 10. (1)(2)(4). 提⽰:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C.15.C. 提⽰:因为ABC ?的底边BC 的长不变,BC 边上的⾼等于直线b a ,之间的距离也不变,所以ABC ?的⾯积不变.16.A. 提⽰:由于()BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ο9021,所以通过折叠后得到的是由 . 17.B. 提⽰:先说明DF=BF,DE=CE,所以四边形AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C.19.因为BD=CD ,所以,C DBC ∠=∠⼜因为四边形ABCD 是平⾏四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为οοοο20709090,,=-=∠-=∠?⊥D DAE AED BD AE 中所以在直⾓.20.(1)因为四边形ABCD 是平⾏四边形,所以AB=DC ,⼜AF=CG ,所以AB -AF=DC -CG,即GD=BF,⼜ DG ∥BF,所以四边形DFBG 是平⾏四边形,所以DF=BG ;(2)因为四边形DFBG 是平⾏四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得DGE GBF ∠=∠,所以ο100=∠=∠DGE AFD .A BCD21.(1)平⾏四边,两组对边分别相等的四边形是平⾏四边形; (2)矩,有⼀个是直⾓的平⾏四边形是矩形.22.如图所⽰,连结对⾓线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平⾏线,且这些平⾏线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平⾏四边形.练习31、把正⽅形ABCD 绕着点A ,按顺时针⽅向旋转得到正⽅形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.2、四边形ABCD 、DEFG 都是正⽅形,连接AE 、CG .(1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.AB CDE FGH DC ABGH F E3、将平⾏四边形纸⽚ABCD按如图⽅式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.挑战⾃我:1、 (2010年眉⼭市).如图,每个⼩正⽅形的边长为1,A、B、C是⼩正⽅形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°2、(2010福建龙岩中考)下列图形中,单独选⽤⼀种图形不能进⾏平⾯镶嵌的图形是()A. 正三⾓形B. 正⽅形C. 正五边形D. 正六边形3.(2010年北京顺义)若⼀个正多边形的⼀个内⾓是120°,则这个正多边形的边数是()A.9 B.8 C.6 D.4 4、(2010年福建福州中考)如图4,在□ABCD中,对⾓线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为。
(完整版)平行四边形的判定练习题(含答案)
平行四边形的判定及中位线知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如下左图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形;B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形;D.若AO=OC,BO=OD,则ABCD是平行四边形4.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=12 AD.13.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F分别为AB,CD的中点,EF=1cm,那么对角线BD 的长度是多少?你是怎样得到的?19.如图所示,在△AB C中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•试说明:(1)DE∥BC.(2)DE=12(BC-AC).开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)× 5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CF E(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//12AB,即AB=2OF.12.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12 AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12 AC.同理,GH//12 AC.∴EF//GH,∴四边形EFGH为平行四边形. 16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF=12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12 AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.222221AB AD-=-3cm). 19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12 BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1 223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。
(完整版)平行四边形的性质练习题及答案
(完整版)平⾏四边形的性质练习题及答案平⾏四边形的性质、课中强化(10分钟训练)1?如图3,在平⾏四边形 ABCD 中,下列各式不⼀定正确的是()A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为()3. 如图5,」ABCD 中,EF 过对⾓线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平⾏四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平⾏四边形 ABCD 中,点E 、F 在对⾓线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则⼛DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32?如图4,⼆ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1?⼆ABCD中,/A⽐/ B⼤20。
,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2?以A、B、C三点为平⾏四边形的三个顶点,作形状不同的平⾏四边形,⼀共可以作(A.0个或3个B.2个C.3个D.4个3?如图9 所⽰,在—ABCD 中,对⾓线AC、BD交于点0,下列式⼦中⼀定成⽴的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4?如图10,平⾏四边形ABCD中,对⾓线AC、BD相交于点O ,将⼛AOD平移⾄△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5?如图11,在平⾏四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平⾏四边形的个数共有()6?如图12,平⾏四边形ABCD中,AE丄BD , CF丄BD,垂⾜分别为E、F,求证:/ BAE= / DCF.7、如图13所⽰,已知平⾏四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138?如图14,已知四边形ABCD是平⾏四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加⼀个条件,使得△EFG是等腰直⾓三⾓形,并说明理由?19.1.2平⾏四边形的判定⼆、课中强化(10分钟训练)1?如图3,在ABCD中,对⾓线AC、BD相交于点O,E、F是对⾓线AC上的两点,当E、F满⾜下列哪个条件时,四边形DEBF不⼀定是平⾏四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平⾏四边形.4. 如图6,AD=BC,要使四边形ABCD是平⾏四边形,还需补充的⼀个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平⾏四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平⾏四边形有,理由分别是图4 图53.如图5,E、F是平⾏四边形ABCD对⾓线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1?以不在同⼀直线上的三个点为顶点作平⾏四边形最多能作()是平⾏四边形的是()4?已知四边形 ABCD 的对⾓线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平⾏四边形的有(⽤序号表⽰): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形请选取⼀种情形举出反例说明平⾏四边形?6?如图,E 、F 是四边形ABCD 的对⾓线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平⾏四边形A.4个B.3个C.2个D.1个2?下⾯给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之⽐,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33?九根⽕柴棒排成如右图形状,图中 ____ 个平⾏四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5?若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对⾓线 ABCD 是平⾏四边形的,,另17?如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC⼣⼘,请再写出两个与△ AED的⾯积相等的三⾓形(直接写出结果,不要求证明): ___________________________8?如图,已知⼆ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平⾏四边形9?如图,已知■ ABCD中,E、F分别是AB、CD的中点?求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平⾏四边形?⼆、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平⾏四边形,所以OA=OC. ⼜0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平⾏四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3?解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4?解析:由平⾏四边形的性质AB // DC,知/ ABE= / F,结合⾓平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等⾓对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD./ ABE= / CDF.AB CD,在⼛ABE和⼛CDF中,ABE CDF ,BE DF .△ ABE ◎△ CDF.AE=CF.6. 解:/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .AB=2BE=4(cm). CD=4(cm). CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同⼀直线上时,可作3 个. 答案:A3. 解析:平⾏四边形对⾓线互相平分,所以OA=OC. 答案:B4. 解析:由平⾏四边形的对⾓线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平⾏且相等可得OA=BE.答案:B5?解析:本题借助于平⾏四边形的定义,按照从左到右,从⼩到⼤的顺序,可找到下列的平⾏四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,⼆ABCD.答案:C6?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD. /-Z ABE= / CDF ?/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:四边形ABCD是平⾏四边形,AB=CD, Z B= Z D.在⼛ABE和⼛CDF中,AB CD,B D, ?/△ ABE 也⼛CDF.BE DF.8?答案:(1)证明:四边形ABCD是平⾏四边形,? AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/?/ ADG= Z AGD. ? AD=AG ?同理,BC=BF.⼜四边形ABCD 是平⾏四边形,? AD=BC,AG=BF. ? AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2/ AD // BC,/?/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .⼜v EF=EG ,?△ EFG为等腰直⾓三⾓形.⼆、课中强化(10分钟训练)1. 解析:当E、F满⾜AE=CF时,由平⾏四边形的对⾓线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平⾏四边形.当E、F满⾜Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.⼜AD=BC,可证出⼛ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平⾏四边形.类似地可说明D也可以.。
初二下册平行四边形练习题加答案
初二下册平行四边形练习题加答案一、选择题1. 若一平行四边形的一个内角是140°,则其对顶角的度数是:A. 40°B. 140°C. 180°D. 220°答案:A. 40°2. 若两个平行四边形的对应内角相等,那么这两个四边形一定是:A. 相似B. 全等C. 同一个形状D. 同一个大小答案:B. 全等3. 已知平行四边形ABCD的边长为5cm,对角线AC长为8cm,则平行四边形的面积为:A. 20cm²B. 25cm²C. 30cm²D. 40cm²答案:B. 25cm²4. 若一平行四边形的两个内角分别是60°和120°,则其对边的夹角的度数是:A. 30°B. 60°C. 80°D. 150°答案:B. 60°二、填空题1. 若一个平行四边形的底边长为6cm,高为3cm,则该平行四边形的面积为______cm²。
答案:18cm²2. 若一个平行四边形的底边长为8cm,高为4cm,则该平行四边形的面积为______cm²。
答案:32cm²3. 若一个平行四边形的两个相邻边长分别为7cm和10cm,夹角为120°,该平行四边形的面积为______cm²。
答案:35cm²4. 若一个平行四边形的对边互相垂直,其中一边的长度为5cm,另一边的长度为12cm,则该平行四边形的面积为______cm²。
答案:60cm²三、解答题1. 在平行四边形ABCD中,已知AB = 6cm,BC = 8cm,AC延长线与CD的交点为E,连接DE。
求证:∠DCE = ∠ABE。
解答:首先,由平行四边形的性质可知∠ADE = ∠DCB(对应角相等)。
又因为平行线AC延长线与CD相交于点E,所以∠CAE = ∠CDA (同位角相等)。
初中数学平行四边形练习题(含答案和解析)
一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
数学平行四边形试题答案及解析
数学平行四边形试题答案及解析1.两条直线相交成直角时,这两条直线互相,它们的交点叫做.【答案】垂直,垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可.解:如果两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足.故答案为:垂直,垂足.点评:此题考查了垂直与垂足的定义.2.两条平行线间的距离.【答案】处处相等【解析】因为平行线之间的距离都是两条平行线的垂线段,所以相等.解:两条平行线间的距离处处相等;故答案为:处处相等.点评:此题很简单,考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.3.两条直线相交成直角,这两条直线的交点叫.【答案】垂足【解析】如果两直线相交的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足;据此判断即可.解:由垂足的含义可知:两条直线相交成直角,这两条直线的交点叫垂足;故答案为:垂足.点评:此题主要是考查垂足的含义.4.两条直线相交成直角,就是说这两条直线互相,其中一条直线叫做另一条直线的.这两条直线的交点叫做.【答案】垂直、垂线、垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线;据此解答即可.解:两条直线相交成直角,就是说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.这两条直线的交点叫做垂足.故答案为:垂直、垂线、垂足.点评:此题考查了学生垂直、垂线与垂足的定义.5.直线a垂直于直线b,则直线b一定垂直于直线a..(判断对错)【答案】√【解析】根据垂直的定义可知:两条直线相交所组成的四个角中,有一个角是直角,那么这两条直线就互相垂直,其中一条直线就叫做另一条直线的垂线,解:根据垂直的定义可知,垂直是指两条直线的位置关系,是相互的,一条直线a垂直与直线b,则直线b一定垂直与直线a,原题说法正确.故答案为:√.点评:垂直是指两条直线之间的位置关系,是相互的.6.(2010•深圳模拟)两条直线如果永不相交,这两条直线一定互相平行..【答案】错误【解析】同一平面内,两条永不相交(即没有交点)的直线的位置关系叫互相平行,其中一条叫另一条的平行线,同一平面内,两条直线的位置关系只有平行和相交两种情况.解:两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.点评:解答此题应根据同一平面内,两条直线的位置关系进行解答.7.(2011•北海模拟)从直线外一点画到直线的线段中垂直的线段最短..【答案】√【解析】通过画图即可解答.解:如图所示:,从直线外一点画到直线的线段中垂直的线段最短,题干说法正确.故答案为:√.点评:此题应根据垂线段的性质进行解答.从直线外一点向已知直线画垂直线段和斜线,垂线段最短.8.过已知直线外的一点作已知直线的平行线,能作无数条..【答案】错误【解析】过直线外一点有且只有一条直线与已知直线平行.据此解答.解:根据以上分析知:过直线外一点只有一条直线与已知直线平行.故答案为:错误.点评:本题考查了过直线外一点与已知直线平行的知识.9.两条直线平行,无论怎样延长直线,都不相交..【答案】√【解析】利用平行线的定义:在同一平面内,不相交的两条直线叫做平行线;据此判断.解:由平行线定义可知:两条直线平行,无论怎样延长直线,都不相交;故答案为:√.点评:本题主要考查了平行的特征及性质.10.过直线外一点可以画无数条直线与已知直线平行..【答案】错误【解析】根据平行的性质:同一平面内,过直线外一点,画已知直线的平行线,只能画一条;据此判断即可.解:根据平行的性质可知:过直线外一点可以画一条直线与已知直线平行,所以本题说法错误;故答案为:错误.点评:此题考查了平行的特征.11.(2009•游仙区模拟)因为平行线是不相交的两条直线,所以不相交的两条直线一定是平行线..【答案】错误【解析】根据平行线的定义“在同一平面内,两条永不相交的直线叫做平行线.”而在本题中,缺少了“在同一平面内”这个条件.因此是错误的.解:因为平行线是不相交的两条直线,所以不相交的两条直线一定是平行线,说法错误,前提必须是“在同一平面内”;故答案为:错误.点评:本题主要考查了平行线的含义,需要认真揣摩题干,注意每一个条件是否满足,避免粗心大意.12.若两条直线不相交,则两条直线平行.【答案】×【解析】根据直线平行、相交的定义及平行公理和推论进行分析判断即可.解:若两条直线不相交,则两条直线平行,说法错误;应该是在同一平面内,两直线不相交就平行;故答案为:×.点评:本题是对概念和公理的考查,准确记忆是解答本题的关键.13.(2013•福田区模拟)垂直于同一条直线的两条直线一定平行..【答案】错误【解析】在同一平面内,垂直于同一条直线的两条直线一定平行;如果不在同一平面内,垂直于同一条直线的两条直线可能相交或异面;进而判断即可.解:垂直于同一条直线的两条直线一定平行,说法错误,前提必须是在同一平面内;故答案为:错误.点评:根据垂直和平行的特征进行解答即可.14.(2004•苏州模拟)在同一平面内,不相交的直线一定平行..【答案】√【解析】利用平行线的定义解答即可.解:根据平行线的定义:在同一平面内,不相交的两条直线叫做平行线;所以原题说法正确.故答案为:√.点评:本题主要考查了平行的特征及性质.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.15.过直线外的一点,画已知直线的平行线,这样的平行线可以画()A.1条B.2条C.无数条【答案】A【解析】根据平行线的性质,过直线外一点作已知直线的平行线,能作且只能作一条.解:过直线外的一点,画已知直线的平行线,这样的平行线可以画1条.故选:A.点评:此题主要考查了平行线的性质.16.同一平面内两条直线的位置关系有()A.2种B.3种C.无数种【答案】A【解析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.解:在同一个平面内,两条直线只有两种位置关系,即平行或相交;故选:A.点评:本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.17.同一平面内的两条直线最多有()个交点.A.0B.1C.2【答案】B【解析】根据垂直与平行的特征可知:平面内两条直线相交,有1个交点;据此解答.解:同一平面内的两条直线最多有1个交点.故选:B.点评:此题考查了垂直于平行的特征,应注意理解和应用.18.两条直线相交成四个角,其中一个角是直角,那么其他三个角一定是()A.锐角B.直角C.钝角【答案】B【解析】两条直线相交,有两种情况,垂直或不垂直,如果其中一个角是90°,那么其它各个角都是90°,这两条直线就相互垂直.解:两条直线相交成四个角,其中一个角是直角,那么其他三个角一定是直角;故选:B.点评:此题考查了垂直的含义,注意对一些基础概念和性质的理解.19.在同一平面内,若两条直线都和同一条直线垂直,那么这两条直线()A.互相垂直B.互相平行C.不能确定【答案】B【解析】根据平行的性质:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;据此解答.解:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;故选:B.点评:此题考查了垂直和平行的性质,应注意积累和理解.20.下面的各组直线中,哪组互相平行?()A B C D E F【答案】B、D、F【解析】根据平行的含义:同一平面内,永不相交的两条直线是平行线;据此解答即可.解:根据平行的含义可知:B、D、F中的两条直线互相平行;故选:B、D、F.点评:此题考查了平行的含义,应注意灵活运用.21.线段AB向下平移后得到线段CD,那么AB和CD()A.互相平行B.相交C.互相垂直【答案】A【解析】根据平移的性质:平移的对应线段平行且相等可知.解:由平移的性质及平行的含义可知:AB和CD互相平行;故选:A.点评:本题主要考查了平移的性质及平行的含义.22.两条直线相交成直角时,这两条直线()A.互相平行B.互相垂直C.互相重合【答案】B【解析】根据垂直的含义:在同一平面内相交成直角的两条直线叫做互相垂直;进行解答即可.解:根据垂直的含义可知:如果两条直线相交成直角,我们就说这两条直线互相垂直;故选:B.点评:本题主要考查垂直的定义,熟练掌握定义是解题的关键.23.画已知直线的平行线,可以画()条.A.1B.2C.3D.无数【答案】D【解析】根据平行线的含义:在同一平面内不相交的两条直线,叫平行线;可知过直线外一点,可以做一条平行线和已知直线平行,这样的点有无数个,所以在同一平面内画已知直线的平行线,可以画无数条;据此解答.解:在同平面内可以画无数条已知直线的平行线;故选:D.点评:此题应根据平行的含义和性质进行分析、解答.24.梯形的两条腰如果无限延长,其结果是()A.互相平行B.互相垂直C.相交【答案】C【解析】只有一组对边平行的四边形是梯形,平行的这组对边叫做梯形的底,不平行的对边叫做梯形的腰,由此根据同一平面内,两条直线的位置关系即可进行选择.解:根据梯形的定义可知,梯形的两条腰不平行,因为在同一平面内,两条直线不平行,就相交,所以把梯形的两条腰无限地延长,两腰会相交.点评:此题考查梯形的特征及同一平面内两条直线的位置关系的灵活应用.25.关于下面图形中四条线段的关系,有下面几种说法,其中正确的是()A a和b互相垂直B b和c互相垂直C c和d互相垂直D a和b互相平行E c和a互相平行F d和a互相平行【答案】C、E【解析】依据梯形和直角梯形的定义及特点,即可进行解答.解:因为只有一组对边平行的四边形,叫做梯形,有一个角是直角的梯形,叫做直角梯形;再通过观察图可知:只有“c和d互相垂直”和“c和a互相平行”是正确的;故选:C、E.点评:此题主要考查梯形和直角梯形的定义及特点.26.在下面的图中,两条直线互相垂直的是()A.B.C.D.【答案】A【解析】根据垂直的性质:当两条直线相交成90度时,这两条直线互相垂直,其中一条直线是另一条直线的垂线;进行解答即可.解:根据垂直的性质:当两条直线相交成90度时,这两条直线互相垂直,其中一条直线是另一条直线的垂线;故选:A.点评:此题考查了垂直的意义和特征.27.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线【答案】C【解析】根据平行线的定义和平行的特征及性质即可判断.解:因为在同一平面内,两条不相交的直线是平行线,故A、B错误;故选:C.点评:本题考查的重点是平行线的有关概念和特征.28.两条直线相交,有一个角是直角,这两条直线()互相垂直.A.一定B.不一定C.不可能【答案】A【解析】根据垂直的含义:在同一平面内相交成直角的两条直线叫做互相垂直;进行解答即可.解:根据垂直的含义可知:直两条线相交,有一个角是直角,这两条直线一定互相垂直;故选:A.点评:此题考查了垂直的含义.29.在同一平面内,两根小棒都和第3根小棒垂直,那么这两根小棒的位置关系是()A.相交B.互相垂直C.互相平行D.不能确定【解析】根据在同一平面内,两条直线都与同一条直线垂直,则这两直线平行作答.解:因为在同一平面内,l1⊥l2,l2⊥l3,所以l1∥l3,即l1与l3的位置关系是平行.故选:C.点评:此题考查了平行线的判定这一知识点,本题利用了:在同一平面内,两条直线都与同一条直线垂直,则这两直线平行.30.在两条平行线之间作了四条垂线,这四条垂线的长度()A.都相等B.不相等C.有的相等有的不相等【答案】A【解析】根据平行和垂直的性质和特征可知:两条平行线中可以画无数条垂线,这些线段的长度相等;进而解答即可.解:因为两条平行线中可以画无数条垂线,这些线段的长度相等,所以在两条平行线之间作了四条垂线,这四条垂线的长度相等;故选:A.点评:此题应根据垂直和平行的特征和性质进行解答.。
平行四边形专题训练(含答案)
平行四边形专题训练一.解答题(共17小题)1.如图,在▱ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF 交CE于点G.(1)若∠D=60°,CF=2,求CG的长;(2)求证:AB=ED+CG.2.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.3.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH 于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.4.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.5.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.6.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE的延长线交CD于点F,交AD的延长线于点G.(1)若BE=,EC=,求△BCE的面积;(2)若∠ABE=2∠EBC,且AB=BE,求证:EC=DG.7.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tan B=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF 垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.8.如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE 于点H,证明:GH=CH.9.在▱ABCD中,点E是BC的中点,过点A作AF⊥CD交直线CD于点F,连接AE、DE(1)如图1,当点F与点C重合时,AB=AC=2,求线段DE的长;(2)如图2,若∠EAF=30°,AE=CF,求证:BE=AF.10.已知,在▱ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,BE=CE.(1)如图1,当∠AEB=60°,BF=2时,求▱ABCD的面积;(2)如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当GF=GC时,求证:AB=2EG.ABCD BD AD E CD AE BD F G为AF的中点,连接DG.(1)如图1,若DG=DF=1,BF=3,求CD的长;(2)如图2,连接BE,且BE=AD,∠AEB=90°,M、N分别为DG,BD上的点,且DM=BN,H为AB的中点,连接HM、HN,求证:∠MHN=∠AFB.12.在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.13.已知在平行四边形ABCD中,过点D作DE⊥BC于点E,且AD=DE.连接AC交DE于点F,作DG⊥AC于点G.(1)如图1,若,AF=,求DG的长;(2)如图2,作EM⊥AC于点M,连接DM,求证:AM﹣EM=2DG.14.已知,在平行四边形ABCD中,点E是AD边上一点,且DE=DC.(1)若点E与点A重合(如图1),点B沿MN翻折后的点B1恰好落在AC上,且∠MNB1=45°,AB1=1,AM=2,BM=.求:①∠AMN的度数;②BN的长;(2)如图2,若CE交对角线BD于F,∠ABD=2∠DBC,求证:BC=DF+AB.15.在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.16.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.17.如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.18.如图,平行四边形ABCD中,过点C作CE⊥AB于点E,点F是AD上一点,连结BF、CF,交CE于点G。
(完整版)平行四边形练习题及答案(DOC).doc
20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A . 3 种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点 F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图 1图 26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1 .矩形具有而一般平行四边形不具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2 .下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B . 2C . 3D . 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1 图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC 中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE 于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.2 2所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.22 2又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A . 1 种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图 1图 25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.4 2因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB= 2 2 2 2AB OA 8 4 =43 (cm ? ),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3 点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2 2 2 2 2 2 2?AE +DE=AD,即 2 +DE=4 ,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .2 2三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图 1图2图 35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点,AF=2, P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 22 12 = 5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17 点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A. 2 对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A . 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△DCB,△ BAD≌△CDA,△ AOB≌△DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和至少为2L=2× 30=60(cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.理由:延长BA, CD,相交于点 E,如图所示,由∠ B=∠C,可得EB=EC.又AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只要推出 AD∥BC,再由 AD<BC就可知四边形 ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延长 BA,CD,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉着应战!(每小题 3 分,共 30 分)1. 正方形具有菱形不一定具有的性质是()(A )对角线互相垂直(B)对角线互相平分(C)对角线相等(D)对角线平分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么阴影部分的面积是矩形ABCD 的面积的()(A )A 1 1 1( D )3A5(B )( C)104 3D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A )4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A )87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A )3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2 13 2( A )2 ( B)2 ( C)2 ( D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 , BD 平分ABC ,如果这个梯形的周长为30,则AB的长()( A )4 ( B )5 ( C )6 ( D )7A DA DERPB C( 5)B( 4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C 已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A ) 90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2 ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔填,自信!( 每小 2 分,共20 分)11.一个四形四条次是a、b、c、d,且a2 b 2 c 2 d 2 2ac 2bd,个四形是 _______________ .12.在四形ABCD中,角AC、BD交于点O,从(1)AB CD ;(2) AB ∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 平分 BAD 六个条件中,取三个推出四形ABCD 是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出符合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如,已知直l 把 Y ABCD 分成两部分,要使两部分的面相等,直l 所在位置需足的条件是____________________. (只需填上一个你合适的条件)lA DB C(第 13 )(第 16 )14.梯形的上底 6cm ,上底的一点引一腰的平行,与下底相交,所构成的三角形周 21cm ,那么梯形的周_________ cm。
平行四边形综合题(共40道)—2023-2024学年八年级数学下册专题训练 (解析版)
z 平行四边形综合题(共40道)!一、单选题1.如图,平行四边形ABCD 的对角线AC,BD 相交于点O,∠ABC =60°,AB =2BC,E 是AB 的中点,连接CE,OE .下列结论:①∠ACD =30°;②CE 平分∠DCB ;③CD =4OE ;④S △"#$=%&S 四边形'(").其中结论正确的序号有( )A .①②B .②③④C .①②③D .①③④ 【答案】C【分析】根据AB =2BC ,点E 是AB 的中点,∠ABC =60°,可知△BCE 是等边三角形,得出∠BEC =∠BCE =60°,AE =BE =CE ,进而得出∠AEC ,根据平行四边形得性质可判断①,再根据平行四边形的性质得∠BCD =120°,即可说明CE 是否平分∠DCB ,然后说明OE 是△ABC 的中位线,可判断CD 和OE 的关系,再根据点O 是AC 的中点,得S △'#$=S △"#$,由点E 是AB 的中点,得S △'"$=S △("$=2S △"#$,进而得S △'("=4S △"#$,然后根据平行四边形的性质得S 四边形'(")=2S △'(",即可判断④,得出答案.【详解】∵AB =2BC ,点E 是AB 的中点, ∴AB =2BE .∵AB =2BC ,∠ABC =60°,∴BC =BE ,∴△BCE 是等边三角形,∴∠BEC =∠BCE =60°,AE =BE =CE ,∴∠AEC =120°,∴∠ACE =∠CAE =30°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =2BC ,∴∠ACD =∠CAE =30°,∠BCD =120°,∴CE 是平分∠DCB .则①②正确;∵点E 是AB 的中点,点O 是AC 的中点,∴OE 是△ABC 的中位线,∴2OE =BC ,∴CD =4OE .则③正确;∵点O 是AC 的中点,∴S △'#$=S △"#$.∵点E 是AB 的中点,∴S △'"$=S △("$=2S △"#$,∴S △'("=4S △"#$.由平行四边形的性质得S 四边形'(")=2S △'(", ∴S 四边形'(")=8S △"#$,即S △"#$=18S 四边形'("). 则④不正确.所以正确的有①②③.故选:C.【点睛】本题主要考查了平行四边形的性质,等边三角形的判定和性质,中位线的性质,求三角形的面积等,弄清各三角形的面积之间的关系是解题的关键.2.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,则下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的有( )A .①②③B .①②④C .②③④D .①②③④【答案】D【分析】根据等边对等角,平行四边形的性质,平行线的性质即可证明①正确;根据线段垂直平分线的判定即可证明②正确;根据平行线的性质,等角对等边即可证明③正确;根据线段垂直平分线的判定即可证明④正确;即可得出答案.【详解】解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴BE平分∠CBF,①正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴CF平分∠DCB,②正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】本题考查了平行四边形的性质,平行线的性质,线段垂直平分线的性质,等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.3.如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,∠ADO;②EG=EF;③GF平分∠AGE;④GF⊥AC,其中正确的有()下列结论:①∠OBE=%*zA .1个B .2个C .3个D .4个 【答案】D【分析】根据AD ∥BC ,AD =BC 可得OB =BC ,由E 是OC 的中点,即可判断①;由E 是OC 的中点,OB =BC ,可得∠AEB =90°,再由点E 、F 是OC 、OD 的中点,即可判断②;证明四边形BEFG 是平行四边形,可判断③,由GF ∥BE ,即可判断④;【详解】解:在▱ABCD 中,AD ∥BC ,AD =BC ,∴∠ADO =∠OBC ,∵BD =2AD ,∴OB =BC ,∵E 是OC 的中点,∴∠OBE =%*∠OBC =%*∠ADO ,故①正确;∵E 是OC 的中点,OB =BC ,∴∠AEB =90°,∵G 是AB 的中点,∴EG =%*AB , ∵点E 、F 是OC 、OD 的中点,∴EF =%*CD ,EF ∥CD ,∵AB =CD ,∴EG =EF ,故②正确;∵EF ∥CD ,AB ∥CD ,∴BG ∥GF∵BG =%*AB =%*CD =EF , ∴四边形BEFG 是平行四边形,∴GF ∥BE ,∴∠AGF=∠ABE,∠FGE=∠BEG,∵BG=GE,∴∠ABE=∠BEG,∴∠AGF=∠FGE,∴GF平分∠AGE,故③正确;∵GF∥BE,∴∠OEB=∠FHO=90°,∴GF⊥AC,故④正确。
初中平行四边形试题及答案
初中平行四边形试题及答案一、选择题1. 平行四边形的对边相等,其对角线互相平分,以下哪个选项不是平行四边形的性质?A. 对边相等B. 对角线互相平分C. 相邻角互补D. 对角相等答案:C2. 如果一个平行四边形的对角线长度相等,那么这个平行四边形是:A. 矩形B. 平行四边形C. 菱形D. 梯形答案:A二、填空题1. 平行四边形的对角线将平行四边形分成四个________的三角形。
答案:全等2. 如果一个平行四边形的一组对边平行且相等,那么这个平行四边形是________。
答案:矩形三、判断题1. 平行四边形的对角线相等。
()答案:错误2. 平行四边形的对角线互相垂直。
()答案:错误四、简答题1. 请简述平行四边形的性质。
答案:平行四边形的性质包括:对边平行且相等;对角相等;对角线互相平分;邻角互补;对角线互相平分且将平行四边形分成四个全等的三角形。
2. 如何证明一个四边形是平行四边形?答案:证明一个四边形是平行四边形的方法包括:两组对边分别平行;两组对边分别相等;一组对边平行且相等;两组对角分别相等;对角线互相平分。
五、计算题1. 如图所示,平行四边形ABCD中,AB=4cm,BC=5cm,∠A=60°,求平行四边形ABCD的面积。
答案:由于∠A=60°,且AB=4cm,BC=5cm,根据30°-60°-90°三角形的性质,我们可以知道这是一个等边三角形,所以AD=5cm。
平行四边形的面积等于底乘以高,这里的底可以是AB或BC,高是另一条边的高。
由于∠A=60°,高等于边长的一半,即2cm。
所以平行四边形ABCD的面积是5cm×2cm=10cm²。
六、证明题1. 已知平行四边形ABCD中,AB=CD,AD=BC,证明ABCD是矩形。
答案:由于AB=CD,AD=BC,根据平行四边形的性质,我们知道AB∥CD,AD∥BC。
(完整版)平行四边形练习题附答案
平行四边形测试题一、选择题1.若平行四边形ABCD 的周长是40cm ,△ABC 的周长是27cm ,则AC 的长为( )A .13cmB .3cmC .7cmD .11.5 cm2.根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形 B .两组对边分别相等的四边形 C .对角线相等的四边形D .对角线互相平分的四边形3.已知平行四边形周长为28cm ,相邻两边的差是4cm ,则两边的长分别为( )A .4cm 、10cmB .5cm 、9cmC .6cm 、8cmD .5cm 、7cm4.下列条件中,能判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组邻边相等,一组对角相等D .一组对边平行,一组对角互补5.若A 、B 、C 三点不在同一条直线上,则以其为顶点的平行四边形共有( )个A .1B .2C .3D .46.能够判定四边形是平行四边形的条件是( )A .一组对角相等 B .两条对角线互相垂直C .两条对角线互相平分D .一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A .10与6B .12与16C .20与22D .10与188.四边形ABCD 中,AD ∥BC ,当满足条件( )时,四边形ABCD 是平行四边形A .∠A +∠C =B .∠B +∠D = ︒180︒180C .∠A +∠B =D .∠A +∠D =︒180︒1809.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形⑵一个角与相邻两角都互补的四边形是平行四边形⑶一组对角相等,一组对边平行的四边形是平行四边形其中错误的命题的个数是( )A .0个B .1个C .2个D .3个10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC = 10,BD = 8,则AD 的取值范围是( ) A .AD >1 B . AD <9 C .1<AD <9 D .AD >9二、填空题11.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.12.一个平行四边形的一个内角比它的邻角大,则这个四边形的四个内角分别是________.︒2413.在平行四边形ABCD 中,EF 过对角线交点O ,交CD 、AB 于E 、F ,若AB = 4cm ,AD = 3cm ,OF = 1.3cm ,则四边形BCEF 周长为_____________.14.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.15.在平行四边形ABCD 中,对角线BD = 7cm ,∠DBC =,BC = 5cm ,则平行四边形ABCD 的面积为︒30___________.16.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角,则此四边形的四个角分别为︒135_____________.三、解答题:17.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.18.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长.19.如图,某村有一口呈四边形的池塘,在它的四个角A 、B 、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.20.已知如图,在平行四边形ABCD 中,∠A =,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD ︒60=EF .3参考答案:一、选择题:C .C .B . B . C .C .C .D .A .C .二、填空题:11.7.5、12.5、7.5、12.5 12.、、、︒102︒78︒102︒7813.9.6 cm14.6815.17.5 cm 16. ,,,2︒45︒135︒45︒135ADB AB OCDEAEC三、解答题:17.设一条对角线长为2a ,则另一条对角线长为3a .∵平行四边形周长等于68cm ,∴相邻两边的长为 34cm ,∴34+2a +3a = 80,解得a = 9.2,2a = 18.4,3a = 27.6.即两条对角线的长度分别为18.4 cm 和3a = 27.6 cm .18.过点C 作CE ∥AD 交BA 延长线于E ,∵AB ∥CD ,∴四边形AECD 是平行四边形,∴AE = CD ,∠BCE =∠BOA =,CE = AD = 6,︒90BE === 10.22CE BC +2268+∵ BE = AB +AE =AB +CD ,∴AB +CD = 10.19.这村能实现他们的设想.①分别过点A 、C 作BD 的平行线、,1l 2l ②分别过点B 、D 作AC 的平行线、,交、于点3l 4l 3l 1l 2l M 、N ;交、于点P 、Q ,则四边形MNPQ 就是所求的平行4l 1l 2l 四边形.20.连结DE ,在平行四边形ABCD 中,AB CD ,DF =CD ,AE =AB ,=//2121∴DF AE ,=//∴四边形AEFD 是平行四边形,∴EF = AD .又∵AB = 2AD ,AB = 2AE ,∴AD = AE ,且∠A =,︒60ADCB AQ DPCNB M 1l 2l 3l 4l ABOCDABOCDEECA∴DE = AE = BE ,∴∠1 =∠2 =×,∴∠ADB =,2121︒30︒90BD ===AD ,22AD AB -22)2(AD AD -3∴BD =EF .3。
中考数学平行四边形综合练习题含详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、62+;(3)、321++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴2222215OC CD++(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°, ∴四边形BECF 是矩形, ∴BF=CF=12,CF=BE=3, 在Rt △OCE 中,OC=222231122OE CE ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭=62+. (3)、如图3中,当OF ⊥DE 时,OF 的值最大,设OF 交DE 于H ,在OH 上取一点M ,使得OM=DM ,连接DM .∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=22, ∵2232DF DH -=, ∴OF=OM+MH+FH=213222++=3212. ∴OF 321++ 考点:四边形综合题.2.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.3.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5455-32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE ,∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或5-52或32. 【点睛】 本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.4.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF 是菱形.(2)解:如图2中,∵BA =BC ,BD 平分∠ABC ,∴BD 垂直平分线段AC ,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.5.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.7.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值2;(3)△PAB的周长最大值3.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.8.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF 是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.9.(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.【答案】(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】分析:(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下: ∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN == ∴AB AC AM AN=, ∴△ABM ~△ACN ∴BM AB CN AC =,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=2222+=+=,AC MC108241∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.10.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.请你阅读下面交流信息,解决所提出的问题.展示交流:小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.(选择图乙或图丙的一种情况说明即可).(2)小慧思考问题的方式中,蕴含的数学思想是.拓展延伸:根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.【答案】成立;分类讨论思想;正方形.【解析】试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.试题解析:(1)、成立,理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,∠DAC=∠QBC,延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;拓展延伸:四边形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,∴MN TP,∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.考点:几何变换综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形练习题以及答案与解析一.选择题(共28小题)1.已知,在▱ABCD中,BC﹣AB=2cm,BC=4cm,则▱ABCD的周长是()A.6cm B.12cm C.8cm D.10cm【分析】由于平行四边形的对边相等,再根据已知即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∵BC﹣AB=2cm,BC=4cm,∴AB=DC=2cm,∴▱ABCD的周长是=2+2+4+4=12cm.故选B.【点评】此题主要考查平行四边形的对边相等的性质,题型简单.2.如图,▱ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则▱ABCD的周长是()A.20cm B.21cm C.22cm D.23cm【分析】由平行四边形的性质得出AD=BC=4cm,AB=DC,AD∥BC,由平行线的性质和角平分线求出BE=AB=4cb,得出BC=7cm,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=10,AB=DC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BCD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4cm,∴BC=BE+CE=7cm,∴▱ABCD的周长=2(DC+BC)=2(4+7)=22cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.3、如图,在平行四边形ABCD中,AB=m,BC=n,AC的垂直平分线交AD于点E,则△CDE的周长是()A.m+n B.mn C.2(m+n)D.2(n﹣m)【分析】由平行四边形的性质得出DC=AB=m,AD=BC=n,由线段垂直平分线的性质得出AE=CE,得出△CDE 的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB=m,AD=BC=n,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=m+n,故选:A.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.4.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A.1对B.2对C.3对D.4对【分析】平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:AD=BC,AB=CD,AO=CO,DO=BO,再利用“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵在△AOD和△COB中∴△AOD≌△COB(SAS);同理可得出△AOB≌△COD(SAS);∵在△ABD和△DCB中,∴△ABD≌△CDB(SSS);同理可得:△ACD≌△CAB(SSS).共有4对全等三角形.故选D.【点评】考查了平行四边形的性质和全等三角形的判定,三角形全等的条件有时候是直接给的,有时候是根据已知条件推出的,还有时是由已知图形的性质得出的,做题时要全面考虑.5.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm【分析】平行四边形的两条对角线互相平分,根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,进行判断.【解答】解:由题意可知,平行四边形边长的取值范围是:8﹣3<边长<8+3,即5<边长<11.只有选项B在此范围内,故选B.【点评】本题主要考查了平行四边形对角线互相平分这一性质,此类求三角形第三边的范围的题目,解题的关键是根据三角形三边关系定理列出不等式,再求解.6.在▱ABCD中,∠D、∠C的度数之比为3:1,则∠A等于()A.45°B.135°C.50°D.130°【分析】直接利用平行四边形的对角相等以及邻角互补即可得出答案.【解答】解:∵在▱ABCD中,∠D、∠C的度数之比为3:1,∴∠A:∠B=3:1,则∠A+∠A=180°,解得:∠A=135°.故选:B.【点评】此题主要考查了平行四边形的性质,正确掌握平行四边形的内角的性质是解题关键.7.▱ABCD中,∠A:∠B:∠C:∠D可以为()A.1:2:3:4 B.1:2:2:1 C.2:2:1:1 D.2:1:2:1【分析】根据平行四边形对角相等可得答案.【解答】解:∵平行四边形对角相等,∴对角的比值数应该相等,其中A,B,C都不满足,只有D满足.故选D.【点评】此题主要考查了平行四边形的性质.其性质:平行四边形的两组对角分别相等.8.▱ABCD中,∠A=4∠B,则∠D的度数是()A.18°B.36°C.72°D.144°【分析】由平行四边形的性质得出∠A+∠B=180°,再由已知条件∠A=4∠B,即可得出∠B的度数,再根据平行四边形的对角相等即可求出∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴∠A+∠B=180°,∵∠A=4∠B,∴4∠B+∠B=180°,解得:∠B=36°;∴∠D=36°,故选B.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.在平行四边形ABCD中,∠A:∠B:∠C=2:1:2,则∠D=()A.60°B.72°C.108°D.120°【分析】在▱ABCD中,∠A:∠B:∠C=2:1:2,而且四边形内角和是360°,由此得到∠A=∠C=120°,∠B=60°,那么▱ABCD的另一个内角就可以求出了.【解答】解:在▱ABCD中,∠A:∠B:∠C=2:1:2,而∠A+∠B+∠C+∠D=360°,∴∠A=∠C=120°,∠B=60°,∴▱ABCD的另一个内角∠D=∠B=60°.故选:A.【点评】本题主要考查四边形的内角和定理及平行四边形的性质,属于基础题,难度低.10.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD的周长等于()A.18 B.30 C.18或30 D.16或40【分析】分∠BAC为锐角和钝角两种情况讨论,根据勾股定理计算得到BC的长即可.【解答】解:如图1,在直角△ABE中,AB=5,AE=4,由勾股定理得,BE=3,又EC=7,∴BC=10,∴▱ABCD的周长等于30;如图2,在直角△ABE中,AB=5,AE=4,∴BC=4,∴▱ABCD的周长等于18;故选:C.【点评】本题考查的是平行四边形的性质,运用分情况讨论思想求出BC的长是解题的关键,注意平行四边形周长的计算公式的运用.11.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cm C.2cm<OA<5cm D.3cm<OA<8cm【分析】根据三角形的三边关系定理得到AC的取值范围,再根据平行四边形的性质即可求出OA的取值范围.【解答】解:∵AB=3cm,BC=5cm,∴2cm<AC<8cm,∵四边形ABCD是平行四边形,∴AO=AC,∴1cm<OA<4cm,故选:A.【点评】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,得到AO是AC的一半是解此题的关键.12.以▱ABCD的四条边为边,在其形外分别作正方形,如图,连接EF、GH、IJ、KL.若▱ABCD的面积为5,则图中阴影部分四个三角形的面积和为()A.5 B.10 C.15 D.20【分析】过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF和△ABD面积相等,同理求出S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK得出S=2S平行四边形ABCD,代入求出即可.【解答】解:过D作DN⊥AB于N,过E作EM⊥FA交FA延长线于M,连接AC,BD,∵四边形ABGF和四边形ADLE是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DAN,∴sin∠EAM=,sin∠DAN=,∵AE=AD,∴EM=DN,∵S△AEF=AF×EM,S△ADB=AB×DN,∴S△AEF=S△ABD,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×5=10.故选B.【点评】本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,主要考查学生运用定理进行推理和计算的能力,题目比较好,但有一定的难度.13.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.4【分析】根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.【解答】解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.【点评】本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.14.▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°【分析】由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.【点评】本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.15.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.16.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△AEF≌△DMF (ASA),利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故正确;(2)延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故正确;(3)∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;(4)设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.17.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°【分析】根据折叠的性质得出AM=MD=MF,得出∠MFA=∠A=70°,再由三角形内角和定理即可求出∠AMF.【解答】解:根据题意得:AM=MD=MF,∴∠MFA=∠A=70°,∴∠AMF=180°﹣70°﹣70°=40°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质以及三角形内角和定理;根据折叠的性质得出等腰三角形是解决问题的关键.18.▱ABCD的周长为40 cm,△ABC的周长为25 cm,则对角线AC长为()A.5cm B.15cm C.6cm D.16cm【分析】由▱ABCD的周长为40 cm,可得AB+BC=20cm,又有△ABC的周长为25 cm,即可求对角线AC长.【解答】解:∵▱ABCD的周长为40 cm,∴AB+BC=20cm,又∵△ABC的周长为25 cm,∴对角线AC长为25﹣20=5cm.故选A.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.19.如图所示,在▱ABCD中,对角线AC、BD交于点O,已知△BOC与△AOB的周长之差为3,▱ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.8【分析】由平行四边形的性质和已知条件得出:①BC+AB=13,②BC﹣AB=3,由①+②即可得出BC的长度.【解答】解:四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,OB=OD,∵▱ABCD的周长为26,∴BC+AB=13 ①,∵△BOC与△AOB的周长之差为3,∴(OB+OC+BC)﹣(OA+OB+AB)=3,即BC﹣AB=3 ②,由①+②得:2BC=16,∴BC=8;故选:D.【点评】本题考查了平行四边形的性质、三角形周长的计算;熟练掌握平行四边形的性质,根据题意得出相邻两边的关系式是解决问题的关键.20.已知▱ABCD中,若∠A+∠C=120°,则∠B的度数是()A.100°B.120°C.80°D.60°【分析】由四边形ABCD是平行四边形,可得平行四边形的对角相等,邻角互补,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=120°,∴∠A=60°,∴∠B=120°.故选B.【点评】此题考查了平行四边形的性质.注意平行四边形的对角线相等,邻角互补.21.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不能确定【分析】根据平行四边形的性质和判定得出平行四边形GBEP、GPFD,证△ABD≌△CDB,得出△ABD和△CDB 的面积相等;同理得出△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,相减即可求出答案.【解答】解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;,,∴△ABD≌△CDB(SSS),即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选:B.【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定的应用,解此题的关键是求出△ABD 和△CDB的面积相等,△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,注意:如果两三角形全等,那么这两个三角形的面积相等.22.如图,P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S AHPE=3,S PFCG=5,则S△PBD为()A.1.5 B.1 C.2.5 D.3【分析】由题意可得EPGD、GPFC、EPHA、PHBF均为平行四边形,进而通过三角形与四边形之间的面积转化,最终不难得出结论.【解答】解:显然EPGD、GPFC、EPHA、PHBF均为平行四边形,∴S△DEP=S△DGP=S平行四边形DEPG,∴S△PHB=S△PBF=S平行四边形PHBF,又S△ADB=S△EPD+S平行四边形AHPE+S△PHB+S△PDB①S△BCD=S△PDG+S平行四边形PFCG+S△PFB﹣S△PDB②①﹣②得0=S平行四边形AHPE﹣S平行四边形PFCG+2S△PDB,即2S△PBD=5﹣3=2∴S△PBD=1.故选:B.【点评】本题主要考查平行四边形的性质及三角形面积的计算,能够通过面积之间的转化熟练求解.23.如图,BD为▱ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC与S△BNC的大小关系是()A.S△DMC>S△BNC B.S△DMC=S△BNC C.S△DMC<S△BNC D.无法确定【分析】利用平行四边形的性质以及平行线分线段成比例定理得出MD=kAD,NB=kAB,进而分别表示出S△MDC,S△NBC,即可得出答案.【解答】解:过点C作CF⊥AD于点F,过点C作CE⊥AB于点E,∵MN∥BD,∴设==k,则MD=kAD,NB=kAB,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,AD=BC,AB=DC,∴∠FDC=∠CBE,∴FC=DC•sin∠FDC,EC=BC•sin∠CBE,∴S△MDC=MD•DC•sin∠FDC=•kAD•DC•sin∠FDC,S△NBC=NB•BC•sin∠CBE=•kAB•BC•sin∠CBE,∴S△MDC=S△NBC.故选B.【点评】此题主要考查了平行四边形的性质以及三角形面积表示方法,正确表示出S△MDC,S△NBC是解题关键.24.如图所示,一个平行四边形被分成面积为S1,S2,S3,S4的四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,S1•S4与S2•S3的大小关系为()A.S1•S4>S2•S3B.S1•S4<S2•S3C.S1•S4=S2•S3D.不能确定【分析】利用平行四边形面积的表示方法解题,设AB,HG之间的距离为x,AB,EF之间的距离为y,再表示S1,S2,S3,S4的面积,列式比较即可.【解答】解:设AB,HG之间的距离为x,AB,EF之间的距离为y,则S1•S4=OA•x•OB•y,S2•S3=OA•y•OB•x,所以S1•S4=S2•S3.故选C.【点评】主要考查平行四边形的面积公式,平行四边形的面积等于底乘以高.本题的解题关键是找到这些面积之间的等量关系.25.如图,已知M为平行四边形ABCD的边AB的中点,CM交BD于点E,BD=3BE,则图中阴影部分的面积与平行四边形ABCD面积的比是()A.1:2 B.2:5 C.3:5 D.1:3【分析】先过E作GH⊥CD,分别交AB、CD于H、G,再设EH=h,BM=a,S△BEM=ah=x,根据平行四边形的性质,结合M是AB中点,可得AB=CD=2a,再利用AB∥CD,根据平行线分线段成比例定理的推论可知△BME∽△DCE,根据比例线段易得GH=3h,根据三角形面积公式以及平行四边形的面积公式易求S平行四边形ABCD 以及S阴影,进而可求它们的比值.【解答】解:如右图,过E作GH⊥CD,分别交AB、CD于H、G,设EH=h,BM=a,S△BEM=ah=x,那么∵M是AB中点,∴BM=AB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=CD=2a,∵AB∥CD,∴△BME∽△DCE,∴EH:GE=BM:CD=1:2,∴GH=3h,∴S四边形ABCD=AB×GH=2a×3h=6ah=12x,S△CBE=S△MBC﹣S△BME=•a•3h﹣ah=ah=2x,同理有S△MED=2x,S阴影=S△CBE+S△MED=4x,∴S阴影:S四边形ABCD=4x:12x=1:3.故选D.【点评】本题考查了相似三角形的判定和性质、平行四边形的性质、三角形的面积、平行线分线段成比例定理的推论,解题的关键是过E作GH⊥CD,作出三角形、平行四边形的高,从而便于计算.26.如图,已知平行四边形ABCD的面积为48,E为AB的中点,连接DE,则△ODE的面积为()A.8 B.6 C.4 D.3【分析】由E为AB的中点,可得S△AOE=S△AOB,又由平行四边形ABCD的面积为48,即可得S△AOB=S▱ABCD,然后由等底等高的三角形的面积相等,求得△ODE的面积.【解答】解:∵E为AB的中点,∴S△AOE=S△AOB,∵平行四边形ABCD的面积为48,∴S△AOB=S▱ABCD=×48=12,∴S△AOE=6,∴S△ODE=S△AOE=6.故选B.【点评】此题考查了平行四边形的性质.此题难度适中,注意掌握等底等高的三角形的面积相等,注意掌握数形结合思想的应用.27.如图所示,M是▱ABCD的边AD上任意一点,若△CMB的面积为S,△CDM的面积为S1,△ABM的面积为S2,则下列S,S1,S2的大小关系中正确的是()A.S>S1+S2B.S=S1+S2C.S<S1+S2D.S与S1+S2的大小关系无法确定【分析】根据平行四边形的性质得到AD=BC,而△CMB的面积为S=BC•高,△CDM的面积为S1=MD•高,△ABM的面积为S2=AM•高,这样得到S1+S2=MD•高+AM•高=(MD+AM)•高=BC•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∵△CMB的面积为S=BC•高,△CDM的面积为S1=MD•高,△ABM的面积为S2=AM•高,而它们的高都是等于平行四边形的高,∴S1+S2=MD•高+AM•高=(MD+AM)•高=AD•高=BC•高=S,则S,S1,S2的大小关系是S=S1+S2.故选B.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式.28.如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为()A.7cm2 B.8cm2 C.9cm2 D.10cm2【分析】根据题意可知,每个小方格的面积为1cm2,平行四边形的面积等于矩形的面积减去四周4个三角形的面积,只要知道四个三角形的面积,就可求出平行四边形的面积.【解答】解:由图可得,平行四边形的面积等于矩形的面积﹣四周三角形的面积,即3×5﹣×1×2﹣×2×3﹣×1×2﹣×2×3=15﹣8=7 (cm2).故选:A.【点评】此题主要考查平行四边形的性质和矩形的面积,根据图形得出平行四边形的面积等于矩形的面积﹣四周三角形的面积是解题关键.二.填空题(共1小题)29.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD 的面积为40cm2.【分析】由▱ABCD的周长为36cm,可得AB+BC=18cm①,又由过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,由等积法,可得4AB=5BC②,继而求得答案.【解答】解:∵▱ABCD的周长为36cm,∴AB+BC=18cm①,∵过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,∴4AB=5BC②,由①②得:AB=10cm,BC=8cm,∴▱ABCD的面积为:AB•DE=40(cm2).故答案为:40.【点评】此题考查了平行四边形的性质.注意利用方程思想求解是解此题的关键.三.解答题(共1小题)30.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【分析】(1)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(2)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(3)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.【点评】本题考查的是勾股定理,此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.。