人教版七年级数学第三章一元一次方程教案

合集下载

人教版七年级上册数学第三章一元一次方程教学设计

人教版七年级上册数学第三章一元一次方程教学设计
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发学生主动学习的积极性。
2.使学生认识到数学在现实生活中的重要性,增强学生的应用意识。
3.培养学生面对问题时的耐心和毅力,提高学生克服困难的信心。
4.培养学生的团队精神,让学生学会与人合作、交流,共同解决问题。
二、学情分析
七年级上册的学生经过前两章的学习,已经具备了一定的数学基础和解决问题的能力。在此基础上,他们对一元一次方程的学习既有挑战性,又是提高数学素养的契机。学生在小学阶段已经接触过简单的方程,对方程有一定的认识,但对方程的解法和应用还较为陌生。因此,在本章节的教学中,教师需要关注以下几点:
3.教师简要介绍一元一次方程的定义和特点,为学生后续学习打下基础。
(二)讲授新知
1.教师详细讲解一元一次方程的定义、未知数、已知数和解的概念。
2.通过具体的例题,讲解等式的性质,如两边同时加上或减去、乘以或除以同一个数,方程的解不变。
3.引导学生掌握一元一次方程的解法,如移项、合并同类项等。
4.教师示范解题过程,强调注意事项,如符号变化、化简步骤等。
2.分步教学,循序渐进:将一元一次方程的解法分解为若干个步骤,引导学生逐步掌握,降低学习难度。
3.合作探究,互帮互助:组织学生进行小组合作,共同探究一元一次方程的解法,培养学生的合作意识和团队精神。
4.精讲精练,巩固提高:在课堂上,教师精选典型例题进行讲解,让学生在练习中巩固所学知识,提高解题能力。
2.完成课本第三章第一节后的练习题,包括基础题和拓展题。基础题旨在巩固一元一次方程的基本概念和解法,拓展题则旨在提高学生的思维能力和知识运用能力。
3.针对本节课的学习内容,编写至少三道一元一次方程的题目,并尝试给出解题思路。通过出题和解答,培养学生的问题提出和解决能力。

新人教版七年级上册数学第3章_一元一次方程全章教案

新人教版七年级上册数学第3章_一元一次方程全章教案

第三章 一元一次方程3.1从算式到方程§3.1.1一元一次方程(一)教学目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=- ()50701310502301513+⨯-+=-问题3:能否用方程的知识来解决这个问题呢?二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:507035x x -+= ,依据“王家庄至青山路段的车速=青山至秀水路段的车速” 可列方程: 50507032x -+=3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计一、教学目标1. 了解一元一次方程的定义与性质。

2. 研究解一元一次方程的基本步骤和方法。

3. 掌握使用逆运算解一元一次方程的技巧。

4. 运用所学知识解决实际问题。

二、教学准备1. 教材:新人教版七年级数学上册。

2. 教具:黑板、粉笔、教学PPT、题练册。

三、教学过程1. 导入- 通过简单的问题引入一元一次方程的概念,激发学生的兴趣。

- 用生活中的例子说明一元一次方程的应用场景。

2. 知识讲解- 结合教材内容,讲解一元一次方程的定义和性质。

- 介绍解一元一次方程的基本步骤和方法,包括两边加减同一个数、两边乘除同一个非零数等。

- 强调使用逆运算解一元一次方程的重要性和技巧。

3. 案例演练- 提供一些简单的实例,引导学生通过运用所学方法解一元一次方程。

- 让学生积极参与,提供解题思路,讲解解题过程。

4. 讲解技巧与方法- 教授一些解一元一次方程的常见技巧与方法,如整理方程、消元法等。

- 指导学生如何有效地应用这些技巧解决较复杂的方程。

5. 综合练- 提供一些综合性的题,要求学生将所学知识灵活运用解决实际问题。

- 强调解题过程的合理性和正确性,鼓励学生多思考,多尝试。

6. 运用扩展- 引导学生思考一元一次方程在实际生活中的应用,例如用于解决购物、旅行等问题。

- 鼓励学生运用所学知识解决更复杂的实际问题。

7. 总结归纳- 对本节课所学内容进行总结概括,强调解一元一次方程的重要性和应用价值。

四、教学评价1. 教师实时检查学生课堂表现,观察他们对知识的掌握情况。

2. 针对学生的理解程度和解题能力,进行个别辅导和巩固训练。

3. 提供题练册,让学生课后进行自主练,发现问题并及时解决。

五、教学反思本课设计以简单明了的步骤和方法为主线,通过案例演练和综合练习,培养学生解一元一次方程的能力和运用能力。

同时,引导学生思考方程在实际生活中的应用,激发学生学习数学的兴趣。

人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案

人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
2.学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

新人教版初中七年级数学上册第三章《一元一次方程》精品教案一、教学目标:知识与技能:1.通过本节知识的学习,使学生清楚了方程、一元一次方程的概念。

2.体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。

过程与方法:1.会将实际问题抽象为数学问题,通过列方程解决问题;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;3.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。

情感态度与价值观:增强用数学的意识,激发学习数学的热情。

二、教学重点:会根据实际问题列出一元一次方程。

三、教学难点:会根据实际问题列出一元一次方程。

四、教学过程设计:一、选择题1.在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个. ( ) A.1 B.2 C.3 D.42.若方程3ax -4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或13.x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04.x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ) A.1()43x y += B.143x y += C.143x y ++= D.以上都不对 二、填空题5.在方程①732-=-x ②32=-b a ③963-=+y y ④212=x ⑤y y 31421=-中是一元一次方程的是 。

三、解答题6.王浩妈妈买了6千克香蕉和3千克苹果,共花去51元钱,但她忘了香蕉的价格,只记得苹果每千克5元,她想考一考正上七年级的王浩,你能替王浩得出香蕉的价格吗? 附答案:1.B 2.C 3.D 4.A 5.①③⑤6.解:设香蕉的单价为x 元,根据题意,得51356=⨯+x七年级数学(上册)第 2 课 3.1.2 等式的性质一、教学目标:知识与技能:1.会利用等式的两条性质解方程.过程与方法:2.利用天平,通过观察、分析得出等式的两条性质.情感态度与价值观:培养学生参与数学活动的自信心、合作交流意识.二、教学重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.三、教学难点:由具体实例抽象出等式的性质.四、教学过程设计:达标测评题(时间约5分钟,题目、题型要根据本节内容灵活把握)一、选择题1.下列方程的解是x=2的有().A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 2.下列各组方程中,解相同的是().A .x=3与2x=3B .x=3与2x+6=0C .x=3与2x-6=0D .x=3与2x=5 二、填空题3.在等式2x-1=4,两边同时________得2x=5. 4.在等式5x=5y ,两边都_______得x=y . 5.在等式-13x=4的两边都______,得x=______. 三、解答题6.用等式的性质解方程(1)x+2=5; (2)-3x=15; (3)23x-1=5. 附答案:1.A2.C3. 加14. 除以55.乘-3 , x=-12 6.解:(1)两边减2,得x+2-2=5-2 ,于是 x=3(2)两边同除以-3,得31533-=--x ,于是 x=-5 (3)两边加1,得23x-1+1=5+1,化简,得23x=6,两边同乘23,得x=9。

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教
案)
第三章一元一次方程
本章的内容包括:一元一次方程及其相关的概念,等式的性质;一元一次方程的解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.在中考中只要考查一元一次方程的解法以及列一元一次方程解应用题,既可能单独命题,也可能结合其他知识综合命题,题型主要是填空题、选择题和解答题.【本章重点】
1.理解和掌握一元一次方程的解法.
2.能利用一元一次方程解应用题.
【本章难点】
1
上一页下一页。

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《第三章一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生继初中代数初步知识学习之后,进一步深化对数学概念的理解和运用的关键章节。

本章通过引入一元一次方程,让学生掌握方程的解法,提高解决实际问题的能力。

教材内容主要包括一元一次方程的概念、解法以及应用。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。

但对于一元一次方程这一概念,可能还存在一定的难度,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够应用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一元一次方程的概念。

2.一元一次方程的解法。

3.一元一次方程在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例分析,让学生理解和掌握一元一次方程的解法;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.教材、教案、课件。

2.练习题、测试题。

3.教学工具(如黑板、粉笔、多媒体设备等)。

七. 教学过程1.导入(5分钟)利用实例引入一元一次方程的概念,让学生思考和讨论,引导学生发现一元一次方程的特点。

2.呈现(10分钟)讲解一元一次方程的定义,通过示例演示一元一次方程的解法。

让学生跟随老师一起解方程,确保学生能够掌握解法。

3.操练(10分钟)让学生独立完成练习题,老师巡回指导。

针对学生出现的问题进行讲解和解答。

4.巩固(10分钟)通过案例分析,让学生应用一元一次方程解决实际问题。

让学生分组讨论,分享解题过程和心得。

5.拓展(10分钟)引导学生思考:如何判断一个方程是否是一元一次方程?如何求解一元一次方程?让学生进行小组讨论,老师点评并总结。

6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

一元一次方程(1)一、教学目标:1.理解什么是方程,什么是一元一次方程.2.理解方程的解和解方程是两个不同的概念.3.根据条件列简单的一元一次方程.二、教学重点:方程与一元一次方程的概念三、教学难点:找等量关系列方程四、教学方法:读书指导法、观察归纳法、合作探究五、教学用具:PPT六、教学安排:1课时七、教学过程1、导入新课老师展出情景:欧拉是数学史上着名的数学家,在孩提时代他一点也不讨老师的喜欢,但是个很聪明的孩子。

有一天,回家后无事,他就帮助爸爸放羊。

他一面放羊,一面读书。

爸爸的羊群渐渐增多了,达到了100只。

原来的羊圈有点小了,爸爸决定建造一个新的羊圈。

他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。

正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。

若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。

他有办法。

父亲不相信小欧拉会有办法,听了没有理他。

小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。

父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。

他以一个木桩为中心,将原来的40米边长截短,缩短到25米。

父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。

”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。

经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。

然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。

”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。

人教版七年级数学第三章一元一次方程教案

人教版七年级数学第三章一元一次方程教案

人教版七年级数学第三章一元一次方程教案授课章节:第三章一元一次方程授课日期:课题:3.1.1 一元一次方程教学目标:知识:了解方程、一元一次方程的概念。

根据方程解的概念,判断一个数是否是一个方程的解。

能力:通过对多种实际问题的分析,能列出该问题的方程,感受方程作为刻画现实世界有效模型的意义。

情感、态度、价值观:鼓励学生进行观察思考,发展合作交流的意识和能力。

教学重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解。

教学难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解。

教学过程:问题1:一辆客车和一辆卡车同时从A地出发,沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早一小时经过B地,A、B两地间的路程是多少?1) 你会用算术方法解决这个问题吗?请列式试试。

2) 如果设A、B两地相距x km,你能分别列式表示客车与卡车从A地到B地的行驶时间吗?客车时间,货车时间。

3) 如何用式子表示两车行驶时间之间的关系?问题2:对于上述问题,你还能列出其他的方程吗?问题3:比较列算式和列方程解决这个问题有什么特点?二、探究新知问题4:你能归纳出方程的概念吗?方程是含有未知数的等式。

三、典型例题例1:根据下列问题,设未知数并列方程。

1) 用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?2) 一台计算机已使用了1700h,预计每月再用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?3) 某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?小结:列方程时,要先设未知数,然后根据问题中的等量关系,写出方程。

问题5:观察上面的例题,列出的三个方程有什么特点?只含有一个未知数(元),并且未知数的指数都是1(次),等号两边都是整式的方程叫一元一次方程。

练:下列式子哪些是方程?哪些是一元一次方程?1) 2x+1;(2) 2m+15=3;(3) 3x-5=5x+4;(4) x2+2x-6=0;(5) -3x+1.8=3y;(6) 3a+9>15;(7)问题6:能满足方程4x=24的未知数的值是多少?可以发现,当x=6时,4x的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解。

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

人教版七年级数学上册第三章《一元一次方程》教学设计

人教版七年级数学上册第三章《一元一次方程》教学设计

人教版七年级数学上册第三章《一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生学习方程的入门内容,主要介绍一元一次方程的概念、解法及其应用。

这一章节的内容是后续学习更复杂方程的基础,因此在本章节中,让学生掌握一元一次方程的基本概念、解法和应用是非常重要的。

二. 学情分析学生在进入七年级之前,已经学习了代数知识,对代数式、函数等概念有一定的了解。

但大部分学生对这些知识的掌握程度有限,因此,在教学过程中需要从基础入手,让学生逐步理解和掌握一元一次方程的知识。

三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的解法;2.培养学生解决实际问题的能力,能够运用一元一次方程解决生活中的问题;3.培养学生合作学习、积极思考的能力。

四. 教学重难点1.一元一次方程的概念;2.一元一次方程的解法;3.一元一次方程在实际问题中的应用。

五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中,自然地引入一元一次方程的知识;2.使用案例教学法,让学生通过具体案例,理解一元一次方程的应用;3.采用小组合作学习,培养学生合作学习的能力。

六. 教学准备1.准备相关案例,用于讲解一元一次方程的应用;2.准备练习题,用于巩固所学知识;3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用生活中的实例,引出一元一次方程的概念,激发学生的学习兴趣。

2.呈现(15分钟)讲解一元一次方程的基本概念,如解、解集等,并通过示例让学生理解这些概念。

3.操练(15分钟)让学生分组讨论,尝试解一些简单的一元一次方程,引导学生发现解一元一次方程的方法。

4.巩固(10分钟)讲解一元一次方程的解法,并通过练习题让学生巩固所学知识。

5.拓展(10分钟)让学生运用一元一次方程解决实际问题,培养学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确一元一次方程的概念、解法及应用。

7.家庭作业(5分钟)布置一些练习题,让学生课后巩固所学知识。

2024年人教版七年级数学上册课件

2024年人教版七年级数学上册课件

2024年人教版七年级数学上册课件一、教学内容本节课我们将学习2024年人教版七年级数学上册教材第三章《方程》的3.1节“一元一次方程”。

具体内容包括方程的定义、方程的解、方程的求解方法等。

二、教学目标1. 理解方程的概念,掌握一元一次方程的解法。

2. 能够根据实际问题列出一元一次方程,并求解。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:一元一次方程的解法。

难点:如何将实际问题转化为方程,并求解。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:练习本、铅笔。

五、教学过程1. 实践情景引入:通过一个关于年龄问题的实际案例,引导学生思考如何用数学方法解决问题。

2. 知识讲解:a. 方程的概念及一元一次方程的特点。

b. 一元一次方程的解法:移项、合并同类项、化简。

3. 例题讲解:讲解一个关于速度、时间和路程的问题,展示如何列出一元一次方程并求解。

4. 随堂练习:布置两道关于一元一次方程的题目,让学生独立完成。

六、板书设计1. 方程的概念2. 一元一次方程的特点3. 一元一次方程的解法4. 例题及解答5. 课堂小结七、作业设计1. 作业题目:a. 解下列方程:2x5=3x+1b. 小明和小华的年龄之和是30岁,小明比小华大6岁,求小明和小华的年龄。

2. 答案:a. x=6b. 小明18岁,小华12岁八、课后反思及拓展延伸1. 反思:关注学生在课堂上的掌握情况,对未掌握的学生进行课后辅导。

2. 拓展延伸:引入二元一次方程,让学生思考如何求解。

为下一节课的教学内容做好铺垫。

重点和难点解析1. 实践情景引入的案例选择。

2. 一元一次方程的解法教学。

3. 例题的选取与讲解。

4. 作业设计中的题目难度和答案解析。

5. 课后反思及拓展延伸的深度和广度。

详细补充和说明:一、实践情景引入的案例选择案例应贴近学生的生活,能够激发学生的兴趣,同时要能够明确地引出一元一次方程的问题。

人教版七年级数学3.1.1一元一次方程教案

人教版七年级数学3.1.1一元一次方程教案

人教版七年级数学3.1.1一元一次方程教案第一篇:人教版七年级数学3.1.1一元一次方程教案3.1 从算式到方程——3.1.1 一元一次方程(第2课时)教学目标:1.了解一元一次方程及方程的解、解方程的概念。

2.掌握检验某个值是不是方程的解的方法。

3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力。

教学重点:一元一次方程的概念及方程的解。

教学难点:会寻找实际问题中的相等关系列出方程。

教学课时:1课时教学过程:一、创设情境问题:世界上最大的动物是蓝鲸.一只蓝鲸重124吨,比一头大象体重的25倍少1吨.问这头大象重几吨?分析:若已知大象的重量为 x 吨,那么蓝鲸的重量为(25x-1)吨。

列出方程,得25x-1=124(1)二、自主探究例:根据下列问题,设未知数并列出方程:1、用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?2、一台计算机已使用1700 h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?3、某校女生占全体学生数的52%,比男生多80人,这个学校有多少 1学生?学生探究得出:x=24(2)1700+150 x=2450(3)0.52 x-(1-0.52)x=80(4)问题:观察上面例题列出的四个方程有什么特征?探究得出:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

三、应用新知练习1:判断下列方程是不是一元一次方程:(1)2x+3y=0()(2)x2 –3x+2=0()(3)x+1=2x-5()(4)0.32m-(3+0.02m)=0.7()(5)3x 2()认知感悟实际问题列一元一次方程思考(1)方程4 x=24中未知数 x 的值是多少?当 x=6时,方程等号左右4 x=24两边相等.x=6叫做方程4 x=24的解.(2)方程1700+150x=2450中未知数x的值是多少?当x=5时,当x=1时,左边=1700+150×5=2450左边=1700+150×1=1850 右边=2450右边=2450左边=右边左边≠右边X=5是方程1700+150x=2450的解x=1不是方程1700+150x=2450的解学生探究得出:方程的解:使方程中等号左右两边相等的未知数的值叫做方程的解解方程:求出方程的解的过程叫做解方程练习2:(1)下列方程中,以x=3为解的方程是().(A)3x-1-9=0(B)x=10-4x(C)x(x-2)=3(D)2x-7=126的解是().(2)方程=-x2(A)-3(B)1(C)12(D)-12练习3:根据下列问题,设未知数,列出方程。

人教版数学七年级上册第三章《一元一次方程》教学设计

人教版数学七年级上册第三章《一元一次方程》教学设计

人教版数学七年级上册第三章《一元一次方程》教学设计一. 教材分析人教版数学七年级上册第三章《一元一次方程》是学生在初中阶段首次接触方程的学习,本章通过实际问题引入方程的概念,使学生了解方程在实际生活中的应用,培养学生解决实际问题的能力。

本章内容包括一元一次方程的定义、解法、检验及应用。

通过本章的学习,学生能理解一元一次方程的本质,熟练掌握解一元一次方程的方法,并能在实际问题中应用。

二. 学情分析学生在进入七年级之前,已经学习了整数、分数、有理数等基础知识,对数学运算有一定的掌握。

但大部分学生可能还未接触过方程,对于用数学语言描述实际问题还比较陌生。

因此,在教学过程中,需要注重引导学生理解方程的概念,培养学生运用方程解决实际问题的能力。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念、解法及应用。

2.重点:一元一次方程的解法,包括加减法、乘除法、移项等。

3.难点:实际问题中的一元一次方程的建立和求解。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现方程,理解方程的概念。

2.运用实例讲解法,通过具体例题讲解一元一次方程的解法。

3.采用小组合作学习法,鼓励学生相互讨论、交流,共同解决问题。

4.运用巩固练习法,及时检查学生的学习效果,提高学生运用知识解决问题的能力。

六. 教学准备1.教材、教案、PPT等相关教学资料。

2.练习题、测试题等教学用纸。

3.教学多媒体设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引入方程的概念,激发学生的学习兴趣。

例如:某商店举行打折活动,原价为100元的商品,打八折后价格为80元,求打折力度是多少?2.呈现(15分钟)讲解一元一次方程的定义,展示一元一次方程的解法,包括加减法、乘除法、移项等。

通过具体例题,让学生理解并掌握一元一次方程的解法。

人教版七年级数学上册:第三章一元一次方程(教案)

人教版七年级数学上册:第三章一元一次方程(教案)
5.数据分析:在习题讲解中,引导学生分析解题思路,提高学生数据分析与解决问题的能力。
三、教学难点与重点
1.教学重点
-方程的定义及其解的概念:理解方程的平衡状态,掌握解方程的基本思想。
-举例:3x + 5 = 14,让学生明白等式两边的平衡性,并找出使等式成立的未知数的值。
-一元一次方程的解法:重点掌握移项、合并同类项、系数化为1等基本解法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调方程的解法和应用这两个重点。对于难点部分,如移项、合并同类项等,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过一元一次方程解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影,我们了解了一元一次方程的基本概念、解法以及在实际生活中的应用。通过实践活动和小组讨论,我们加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
培养学生以下数学学科核心素养:

七年级上册数学第三章《一元一次方程》教案精选全文完整版

七年级上册数学第三章《一元一次方程》教案精选全文完整版

精选全文完整版数学七年级上册第三章《一元一次方程》教案课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.2 解一元一次方程(2)──合并同类项与移项课型:新授本课(节)第4课时本期总第课时【学习目标】:运用方程解决实际问题,会用移项法则解方程;【学习重点】:运用方程解决实际问题,会用移项法则解方程;【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系;【导学指导】一、知识链接解方程:(1)3x-2x=7;(2)14x+12x=3;二、自主探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等;根据这一相等关系,列方程: __________________;本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20即 3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.3x+20=4x-25↓移项3x-4x=-25-20↓合并同类项-x=-45↓系数化为1x=45由此可知这个班共有45个学生.例3 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】:1.解方程:(1)6x-7=4x -5 (2)12x-6 =34x (3)3x+5=4x+1 (4)9-3y=5y+5【要点归纳】:上面解方程中“移项”的作用很重要:“移项”使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x=a形式.在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”;【拓展训练】课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课后反思使用时间:课前预设设计时间:课题:3.4实际问题与一元一次方程(4)课型:新授本课(节)第10课时本期总第课时【学习目标】1、掌握用分类讨论法解决电话计费问题,提高独立解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课章节:第三章一元一次方程授课日期:课题:3.1.1一元一次方程教学目标知识:了解方程、一元一次方程的概念.根据方程解的概念,会判断一个数是否是一个方程的解.能力:通过对多种实际问题的分析,能列出该问题的方程,感受方程作为刻画现实世界有效模型的意义.情感、态度、价值观:鼓励学生进行观察思考,发展合作交流的意识和能力.教学重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.教学难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解。

教学过程:问题1.一辆客车和一辆卡车同时从A地出发,沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早一小时经过B地,A,B两地间的路程是多少?(1)你会用算术方法解决这个问题吗?列式试试.(2)如果设A,B两地相距x km,你能分别列式表示客车与卡车从A地到B地的行驶时间吗?客车时间,货车时间 .(3)如何用式子表示两车行驶时间之间的关系?.问题2:对于上述问题,你还能列出其他的方程吗?问题3:比较列算式和列方程解决这个问题个有什么特点?二、探究新知问题4:你能归纳出方程的概念么?方程是含有未知数的等式.三、典型例题例1. 根据下列问题,设未知数并列方程.(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用了1700h,预计每月再用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?小结:列方程时,要先设未知数,然后根据问题中的等量关系,写出方程.问题5:观察上面的例题,列出的三个方程有什么特点?只含有一个未知数(元),并且未知数的指数都是1(次),等号两边都是整式的方程叫一元一次方程.练习 下列式子哪些是方程?哪些是一元一次方程?(1)21x +;(2)2153m +=;(3)3554x x -=+;(4)2260x x +-=;(5)3 1.83x y -+=;(6)3915a +>;(7)1513x =-;(8)231x -+≠问题6:能满足方程4x=24的未知数的值是多少?可以发现,当x=6时,4x 的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解.练习:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?课堂练习依据下列问题,设未知数,列出方程.(1) 环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m ?(2)(3) 甲铅笔每支0.3元,乙铅笔每支0.6元,用9元钱买了两种铅笔共220支,两种铅笔各买了多少支?(4) 一个梯形的下底比上底多2cm ,高是5cm ,面积是402cm ,求上底.(5) 用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯单价多5元,两种水杯的单价各是多少?四、小结:(1)本节课学了哪些主要内容?(2)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?课后反思:授课章节:第三章一元一次方程授课日期:课题:3.1.2等式的性质教学目标:知识:通过观察、分析,将有理数的运算推广到字母运算,掌握用字母表示等式的两条性质. 能力:培养观察能力、思考能力、归纳能力和创新能力.会用等式的两条性质解一元一次方程. 情感、态度、价值观:鼓励学生对事物进行观察和思考,发展合作交流的意识和能力.教学重点:等式的性质的推导和应用.教学难点:对等式性质的理解.教学过程:问题1:等式具有什么样的性质呢?我们不妨做一个实验,请同学们认真观察,然后用“>、<、=”填空:5=5 5+6 5+6 ;-7=-7 -7-5 -7-5;a=b a+5 b+5a=b a-2 b-2 ;x=y x+m y+m a=b a+(m+n)b+(m+n)问题2:我们再看一个实验,请同学们认真观察后然后用“>、<、=”填空:6=6 6×5 6×5;-3=-3 -3×(-2) -3×(-2); a =b 6a 6b8=8 8÷2 8÷2;-10=-10 -10÷(-5) -10÷(-5); m=n 18m 18n归纳:2333152315m n n m x x x x y +=++=⨯+=⨯+=, , , 这样的式子叫等式.问题3:通过以上观察,你能说说等式有什么性质么?等式性质1:等式两边都加(或减)同一个数(或式子),结果仍相等;等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等;追问1:根据等式的两条性质,对等式进行变形需要注意什么?1.必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边;2.等式变形时,两边加、减、乘、除的数或式必须相同;3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.追问2:(1)从a+b=b+c ,能否得到a=c ? (2)从a -b=c -b ,能否得到a=c ?(3)从ab=bc 能否得到a=c ? (4)从=,能否得到a=c ? (5)从xy=1,能否得到x=? 例1.用等式的性质解方程.(1)6315x x =+ (2)7332+-=-x xa b c b 1y如果b a =,那么=±c a练习:1.下列等式变形错误的是( )A.由a =b 得a +5=b +5B.由a =b 得99a b =--C.由x +2=y +2得x =yD.由-3x =-3y 得x =-y2.运用等式性质进行的变形,正确的是( )A.若a =b ,则a +c=b -c;B. 若a b c c =,则a =b; C. 若a =b , 则a b c c=; D. 若a 2=3a , 则a =3 3. 用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的:(1)如果x +8=10,那么x =10_________; ( )(2)如果4x =3x +7,那么4x -_______=7; ( )(3)如果-3x =8,那么x =________; ( )4. 用等式的性质解方程⑴ 2x - 6=14 ⑵ 8y =4y +1 ⑶ -35x -1=4 ⑷ 2x +3=x -1小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:3.2解一元一次方程(一)合并同类项与移项教学目标知识:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.掌握移项和合并,理解其数学本质,会解“ax+bx=c”类型的一元一次方程.能力:能够找出简单实际问题中的已知量和未知量,分析它们之间的数量关系,列出方程.情感、态度、价值观:初步体会一元一次方程的应用价值,感受数学文化.教学重点:合并同类项和移项法则.教学难点:合并同类项和移项,系数化为1等步骤的数学本质.教学过程:问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?题目中的相等关系为:_____________________ 列方程:_____________问题2:回顾解决这个问题的过程,你发现其中哪些步骤和以前所学的哪些知识有联系?例1解方程(1)86252-=-x x ; (2)例2有一列数,按一定规律排列成1,-3,9,-27,81,-243,…其中某三个相邻数的和是-1701,这三个数各是多少?追问1:知道了三个数中的某一个,是不是就可以知道另外两个数了?追问2:你是否能找到不同的设置未知数的办法来解决这个问题?问题3:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x 名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x 本和剩余的20本,可知道这批书共有________本;364155.135.27⨯-⨯-=-+-x x x x根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x 本和还缺少25本那么这批书共有________本;列方程: __________________;问题4:怎样才能使它转化为x =a (常数)的形式呢?例3 解方程(1)3x +7=32-2x (2)x-3=32x +1小结:解方程的步骤:例4:某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?课堂练习1.解方程:(1)6x -7=4x -5 (2)x -6 =x (3)3x +5=4x +1 (4)9-3y =5y +52.解下列方程:1234(1)529x x -=(2)3722x x +=(3)30.510x x -+=(4)7 4.5 2.535x x -=⨯-3.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?4.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.小结:课后反思:授课章节:第三章 一元一次方程授课日期:课题:3.3解一元一次方程(二)去括号教学目标知识:掌握解方程过程中“去括号”的步骤,进一步理解去括号法则的数学本质.能力:准确、熟练地解含有括号的一元一次方程,培养整式的计算能力.情感、态度、价值观:增强自信心和意志力,激发学习兴趣.教学重点:解方程的去括号法则.教学难点:去括号法则的数学本质.教学过程:问题1:请大家回忆去括号法则,化简下列各式:(1)=___________;(2)=___________;问题2:某工厂加强节能措施,去年下半年与今年上半年相比,月平均用电量减少2000kwh(千瓦时),全年用电15万kwh (千瓦时),这个工厂去年上半年每月平均用电是多少?例1 解方程(1)2x-(x+10)=5x+2(x-1) (2).注意:1. 当括号前是“-”号,去括号时,各项都要___________.2.括号前有数字,则要乘遍括号内___________,不能漏乘并注意___________.3.去括号的的本质是______________________.归纳:解一元一次方程的步骤:___________→___________ →___________→___________.例2一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了)2(24-+x x )1(73--x x )3(23)1(73+-=--x x x2.5小时.已知水流的速度是3km/h ,求船在静水中的平均速度.分析:一般情况下可以认为这艘船往返的路程相等 ,由此可填空:顺流速度________顺流时间________逆流速度 _________逆流时间解:练习1.方程 3x +2(3x -1)-4(x -1)= 0,去括号正确的是( )A .3x +6x -2-4x +1=0B .3x + 6x +2-4x -4=0C .3x +6x +2+4x +4=0D .3x +6x -2-4x +4=02.若x =2是方程k (2x -1)=kx +7 的解,则k 的值为( )A .1B .-1C .7D .-73.方程 2(x -3)=6-x 的解是x =___________4.解方程⑴ 2(x+3)=5x (2) 4-3(20-x )=3 (3) 4x + 3(2x – 3)=12 -(x +4)⑷ 2(10-0.5x ) = -(1.5x +2) (5))131(72)421(6--=+-x x x(6)2-3(x+1)=1-2(1+0.5x)小结:课后反思:授课章节:第三章一元一次方程授课日期:课题:3.3解一元一次方程(二)去分母教学目标知识:掌握解方程过程中“去分母”的步骤,理解去分母的数学本质.能力:准确、熟练地解含有分母的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会方程的同解变换和数学的转化思想.教学重点:准确、熟练地解含有分母的一元一次方程.教学难点:去掉分母后记得给分子添加括号.教学过程:问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.问题2:解方程:53210232213+--=-+x x x小结:解一元一次方程的步骤:例1:解方程:(1)422121x x -+=-+(2)归纳:去分母应注意:① 程两边应乘以各分母的公倍数;②不要漏乘的项;③分数线有括号作用,去掉分母后,若分子是一个多项式,要加,视多项式为一个整体. 练习1.小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正.(1)方程去分母,得; (2)方程去分母,得; (3)方程去分母,得 ; (4)方程去分母,得. 2. 解方程312148x x -+-=,去分母正确的是( ) A .2(x -3)-(1+2x ) = 1 B .(x -3)-(1+2x )= 8C .2x -3-1-2x = 8D .2(x -3)-(1+2x )=83.解方程:(1); (2); 3123213--=-+x x x 1024x x --=214x x -+=1136x x -+=122x x +-=11263x x --=312x x --=1123x x -=+3261x x -=+32213415x x x --+=-5124121223+--=-+x x x(3)53210232213+--=-+x x x (4)32116110412x x x --=+++(5) ;(6);小结:课后反思:授课章节:第三章 一元一次方程授课日期:632141+-=+-x x 223131x x --=--课题:一元一次方程的解法(习题课)教学目标知识:了解一元一次方程的一般形式,掌握解一元一次方程过程一般步骤,及其理论依据、数学本质.理解并会解简单的含参方程.能力:准确地解具有一定难度的一元一次方程,进一步提高运算能力.情感、态度、价值观:通过将未知问题转化为已知问题,体会一元一次方程的同解变换;通过对含参方程的学习,进一步体会分类讨论的数学思想.教学重点:准确、熟练地解一元一次方程.教学难点:含参方程的学习.教学方法:探究与讲解相结合.教学过程:问题1:解方程:432151413121=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x问题2:解方程:3.006.003.04.072.05.1-+=x问题3:解关于x 的方程:1ax x b +=+提问:(1)这是什么方程?为什么?(2)你打算如何解这个方程?问题4:解关于x 的方程:1ax bx b +=+问题5:(1)在解决问题3和问题4的过程中,你遇到了什么问题?是如何解决的?(2)为什么要这样解决?解决问题的依据是什么?。

相关文档
最新文档