数列求和练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和
1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25
2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15
B .12
C .-12
D .-15
3.数列112,314,518,71
16,…的前n 项和S n 为( ).
A .n 2+1-
12
n -1
B .n 2+2-12n
C .n 2+1-12n
D .n 2+2-1
2
n -1
4.已知数列{a n }的通项公式是a n =1
n +n +1
,若前n 项和为10,则项数n 为
( ). A .11
B .99
C .120
D .121
5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1
n
(a 1+a 2+…+a n ),则数列{b n }
的前10项和T 10=( )
A .70
B .75
C .80
D .85
6.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )
A .16
B .8
C .4
D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1
a 1a 2+
1
a 2a 3
+…+
1
a n a n +1
的结果
可化为( ).
A .1-14n
B .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛
⎭⎪⎫1-12n
二、填空题
8.数列{a n }的通项公式为a n =
1
n +n +1
,其前n 项之和为10,则在平面直角
坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.
9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2
n =________.
10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫1b n b n +1的前n 项和S n =________.
11.定义运算:⎪⎪
⎪⎪
⎪⎪
a b c
d =ad -bc ,若数列{a n
}满足⎪⎪⎪⎪
⎪⎪a 1
122 1=1且⎪⎪⎪⎪
⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.
12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+9
10
,…,那么数
列{b n }=⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫1a n a n +1的前n 项和S n 为________.
三、解答题
13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;
(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .
14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;
(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .
15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.
(1)求{a n },{b n }的通项公式;
(2)求数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫a n b n 的前
n 项和S n .
16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1
S 1+1
S 2+…+1
S n
.