数列求和练习题
三、数列求和专项练习高考题(含知识点)
数列的前n 项和的求法1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2n n n ++++=+L ,222112(1)(21)6n n n n +++=++L ,33332(1)123[]2n n n +++++=L .例1、已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.例2、 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 例3、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.54.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).例4、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 例5、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++;②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=. 例6、 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和. 解:设n n n n a n -+=++=111(裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n例7、 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n6.通项转换法:先对通项进行变形,发现其在特征,再运用分组求和法求和。
高考数学一轮复习《数列求和》练习题(含答案)
高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
(完整版)求数列通项公式与数列求和精选练习题(有答案)
数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++====L 数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n nn n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n +==++ 已知数列满足求练习1 练习2 练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n nn n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8 等比数列{}n a 的前n 项和Sn=2n-1,则2232221na a a a ++++Λ练习9 求和:5,55,555,5555,…,5(101)9n-,…;练习5 练习6练习7练习10 求和:1111447(32)(31)n n+++⨯⨯-⨯+L练习11 求和:111112123123n ++++= +++++++LL练习12 设{}na是等差数列,{}nb是各项都为正数的等比数列,且111a b==,3521a b+=,5313a b+=(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab⎧⎫⎨⎬⎩⎭的前n项和n S.答案练习1答案:练习2 证明: (1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。
等差数列之和练习题
等差数列之和练习题等差数列是高中数学中的一个重要概念,涉及到数列的求和问题。
在这篇文章中,我们将通过一些练习题来巩固和提高对等差数列求和的理解和运用。
题目一:求和公式已知等差数列的前n项和公式为Sn=n(a1+an)/2,其中n是项数,a1是首项,an是末项。
现给定等差数列的首项是a1=3,末项是an=17,求该数列的和。
解析:根据公式Sn=n(a1+an)/2,代入已知条件可以得到Sn=n(3+17)/2。
计算得到Sn=10n。
题目二:已知求末项已知等差数列的前n项和公式为Sn=n(a1+an)/2。
现给定等差数列的项数n=10,首项是a1=2,末项未知,且数列的和Sn=45,请求该数列的末项。
解析:根据公式Sn=n(a1+an)/2和Sn=45,代入已知条件可以得到45=10(2+an)/2。
化简得到90=20+10an。
继续化简得到an=7。
题目三:等差数列求和已知等差数列的首项是a1=1,公差是d=3,项数是n=6。
求该等差数列的和。
解析:根据等差数列求和公式Sn=n(a1+an)/2,代入已知条件可以得到Sn=6*(1+an)/2。
化简得到Sn=3(1+an)。
题目四:分段等差数列求和已知等差数列的首项是a1=1,公差是d1=2,项数是n1=4;另一段等差数列的首项是a2=7,公差是d2=3,项数是n2=3。
求这两段等差数列的和。
解析:根据等差数列求和公式Sn=n(a1+an)/2,分别代入第一段和第二段的已知条件可以得到第一段的和S1=4*(1+4)/2=10,第二段的和S2=3*(7+10)/2=51。
两段和相加得到总和S=S1+S2=10+51=61。
通过以上练习题的解析,相信大家对等差数列的求和方法有了更深入的理解。
等差数列求和是数学中的一个基本问题,掌握了求和的方法和公式,可以更好地解决相关问题。
希望大家能够通过不断的练习和巩固,提高自己的数学水平。
等差数列求和练习题
等差数列前n 和求和公式 1.已知数列{an}为等差数列,Sn 是它的前n 项和.若a1=2,S3=12,则S4=( )A .10B .16C .20D .242. 等差数列{an}的前n 项和为Sn ,若a2+a6+a7=18,则S9的值是( )A .64B .72C .54D .以上都不对3. 设数列{an}为等差数列,其前n 项和为Sn ,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n ∈N*,都有Sn ≤Sk 成立,则k 的值为( )A .22B .21C .20D .194. 已知{an}是等差数列,Sn 为其前n 项和,n ∈N*,若a3=16,S20=20,则S10的值为________.5. 数列{}n a 是公差为()10≠≠d d d 且的等差数列,它的前20项的和,1020m S =则下列等式中正确的是 A. 1052a a m += B. 1012a a m += C. 155a a m += D. d a m +=1026. 在等差数列{}n a 中,1952=+a a ,405=S ,则10a 为( )A. 27B. 28C. 29D. 307. 等差数列的第5项等于10,前三项的和等于3,那么( )A. 它的首项是-2,公差是3B. 它的首项是2,公差是-3C. 它的首项是-3,公差是2D. 它的首项是3,公差是-28. 在等差数列{}n a 中,3,141=-=d a ,则n= 时,n S 有最小值,最小值是9. 等差数列{an}中,a1=1,a3+a5=14,其前n 项和Sn=100,则n=( )A .9B .10C .11D .1210.已知等差数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 11.已知等差数列}{n a 满足:26,7753=+=a a a ,求前n 项和}{n S12.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,求它的前20项的和的值?13、已知:等差数列{an}中a2=3,a6=-17,求a9;14、已知:等差数列{an}中,a4+a6+a15+a17=50,求S20;15、已知:等差数列{an}中,an=33-3n ,求Sn 的最大值.16、已知等差数列{an}中,S3=21,S6=64,求数列前n 项和17、等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.18、数列{}n a 中,148,2a a ==,且满足()2120n n n a a a n N +++-+=?(1)求数列{}n a 的通项公式; (2)设n S 是数列{}n a 的前n 项和,求n S。
等差数列求和练习题以及答案解析
等差数列求和练习题以及答案解析练题1已知等差数列的首项为5,公差为3,请求前10项的和。
解析根据等差数列求和公式:其中:a 是首项,d 是公差,n 是项数。
代入已知条件,得到:所以,前10项的和为245。
练题2一等差数列的首项为7,公差为2,已知前6项的和为90,请求这个等差数列的第7项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前6项的和为90,代入公式得到:90 = (6/2)(2a + (6-1)d)其中,a 是首项,d 是公差。
将已知条件代入方程中,得到:90 = 3(2a + 5d)进一步整理得到:2a + 5d = 30由已知条件可得到方程组:{a = 72a + 5d = 30}解方程组可得到 a = 7,d = 4。
根据等差数列的通项公式:其中,a 是首项,d 是公差,n 是项数。
代入已知条件,得到:an = a + (n-1)da7 = 7 + (7-1)4a7 = 7 + 6*4a7 = 7 + 24a7 = 31所以,该等差数列的第7项为31。
练题3已知等差数列的前15项的和为135,公差为1,请求该等差数列的首项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前15项的和为135,代入公式得到:135 = (15/2)(2a + (15-1)1)整理得到:270 = 15(2a + 14)进一步整理得到:2a + 14 = 18解方程可得到 a = 2。
所以,该等差数列的首项为2。
练题4一等差数列的首项为3,公差为4,已知该等差数列的前n项和为49n,请问 n 的值是多少?解析可利用等差数列的前n项和公式来解答该问题。
根据等差数列的前n项和公式:已知该等差数列的前n项和为49n,代入公式得到:49n = (n/2)(2a + (n-1)d)其中,a 是首项,d 是公差。
代入已知条件,得到:49n = (n/2)(2*3 + (n-1)*4)整理得到:49n = n(6 + 4n - 4)进一步整理得到:49n = n(4n + 2)解方程可得到 n = 7。
小学数学《数列求和》练习题(含答案)
小学数学《数列求和》练习题(含答案)【例1】找找下面的数列有多少项?(1)2、4、6、8、……、86、98、100(2)3、4、5、6、……、76、77、78(3)4、7、10、13、……、40、43、46(4)2、6、10、14、18、……、82、86分析:(1)我们都知道:1、2、3、4、5、6、7、8、……、95、96、97、98、99、100 这个数列是100项,现在不妨这样去看:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),让它们两两一结合,奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,小朋友们一看就知道,共有100÷2=50组,每组把偶数找出来,那么原数列就有50项了。
(2)连续的自然数列,3、4、5、6、7、8、9、10……,对应的是这个数列的第1、2、3、4、5、6、7、8、……,发现它的项数比对应数字小2,所以78是第76项,那么这个数列就有76项。
对于连续的自然数列,它们的项数是:末项—首项+ 1 。
(3)配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组。
当然,我们还可以有其他的配组方法。
(4)22项.对于一个等差数列的求和,在许多时候我们不知道的往往是这个数列的项数。
这种找项数的方法在学生学习了求项数公式后,也许稍显麻烦,但它的思路很重要,对于以后学习数论知识有较多的帮助。
希望教师能帮助孩子牢固掌握。
【例2】计算下列各题:(1)2+4+6+…+96+98+100(2)2+5+8+…+23+26+29分析:(1)这是一个公差为2的等差数列,首项是2,末项是100,项数为50。
数列求和方法(带例题和练习题)(可编辑修改word版)
数列求和主要思路:1. 求数列的和注意方法的选取:关键是看数列的通项公式:2. 求和过程中注意分类讨论思想的运用:3.转化思想的运用; 数列求和的常用方法——、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:s 加严j )〃” 2 1 2 [加 1 n (4=1) 2、 等比数列求和公式:S =八「(1一/) u 一 a qn ] _J _______ = 1 力 (g H 1)〔1-9 1-9 n13、S 〃=》k = l + 2 + 3 + +…+ /?..= -it (n +1)=l 2 + 22 +32 +...+ /* =^n(n +l)(2n+l) os n =^A :3 = I 3 + 23 + 33+ •••+/73J 】公式法求和注意事项 (1)弄准求和项数〃的值:(2)等比数列公比°未知时,运用前〃项和公式要分类。
例 1.求和 l+X + x2+・・ ・+0-2(“n2,XHO) 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{知• bn }的前n 项和,其中{a n }. {0}分别是等差数列和等比数列. 例 2・求和:1 +3x + 5x 2 + 7x 3 + ・・・ + (2〃一1)#12 4&例,求数列〒芦去 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用 倒序相加发,如等差数列的前n 项和就是此法推导的 例 4.求sin 2 h+ sin ' 2°+ sin ' 3。
+ …+ sin 2 88•+ sin 2 89。
的值例 4 变式训练八 求 cosl° +cos2° +cos3° +• • •+cosl78° +cosl79° 的值. 例 4 变式训练 2:数列{an }: a t = 19a 2= 3, a 3= 2,a^2= a n ^x -a n , S2002.例4变式训练3:在各项均为正数的等比数列中,若。
高中数学专题强化练习《数列求和》含答案解析
=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,
( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+
数列求和练习题(含答案)
2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16D.130B [∵a n =1n (n +1)=1n -1n +1,∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.]3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( )A .9B .18C .36D .72B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4,∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.]已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和. [解](1)由已知得⎩⎨⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,3分所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1,8分所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.12分已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.(1)求{a n }的通项公式; (2)设b n =2nna a ,求数列{b n }的前n 项和T n . [解] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,∴⎩⎪⎨⎪⎧3a 1+12×3×(3-1)d =6,5a 1+12×5×(5-1)d =15,即⎩⎪⎨⎪⎧a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧a 1=1,d =1.3分∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n .5分 (2)由(1)得b n =a n 2a n=n2n ,6分∴T n =12+222+323+…+n -12n -1+n 2n ,①①式两边同乘12, 得12T n =122+223+324+…+n -12n +n2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n-n 2n +1,10分 ∴T n =2-12n -1-n2n .12分一、选择题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )【导学号:31222189】A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12nA [该数列的通项公式为a n =(2n -1)+12n , 则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+ (12)=n 2+1-12n .]2.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )A .100B .110C .120D .130C [{a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120.故选C.]3.(2016·湖北七校2月联考)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里B [由题意,知每天所走路程形成以a 1为首项,公比为12的等比数列,则a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=96,即第二天走了96里.故选B.] 6.设数列{a n }的前n 项和为S n ,且a n =sin n π2,n ∈N *,则S 2 016=__________. 0 [a n =sin n π2,n ∈N *,显然每连续四项的和为0. S 2 016=S 4×504=0.]9.已知数列{a n }中,a 1=1,又数列⎩⎨⎧⎭⎬⎫2na n (n ∈N *)是公差为1的等差数列.(1)求数列{a n }的通项公式a n ; (2)求数列{a n }的前n 项和S n . [解](1)∵数列⎩⎨⎧⎭⎬⎫2na n 是首项为2,公差为1的等差数列,∴2na n =2+(n -1)=n +1,3分解得a n =2n (n +1).5分(2)∵a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n-1n +1, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n-1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.12分3.设S n 是数列{a n }的前n 项和,已知a 1=3,a n +1=2S n +3(n ∈N *).(1)求数列{a n }的通项公式;(2)令b n =(2n -1)a n ,求数列{b n }的前n 项和T n . [解] (1)当n ≥2时,由a n +1=2S n +3得a n =2S n -1+3, 两式相减,得a n +1-a n =2S n -2S n -1=2a n , ∴a n +1=3a n ,∴a n +1a n=3.当n =1时,a 1=3,a 2=2S 1+3=2a 1+3=9,则a 2a 1=3.3分∴数列{a n }是以a 1=3为首项,公比为3的等比数列. ∴a n =3×3n -1=3n .5分(2)法一:由(1)得b n =(2n -1)a n =(2n -1)·3n ,7分 ∴T n =1×3+3×32+5×33+…+(2n -1)·3n ,① 3T n =1×32+3×33+5×34+…+(2n -1)·3n +1,②①-②得-2T n =1×3+2×32+2×33+…+2×3n -(2n -1)·3n +1 =3+2×(32+33+…+3n )-(2n -1)·3n +1 =3+2×32(1-3n -1)1-3-(2n -1)·3n +1=-6-(2n -2)·3n +1.10分 ∴T n =(n -1)·3n +1+3.12分法二:由(1)得b n =(2n -1)a n =(2n -1)·3n .7分 ∵(2n -1)·3n =(n -1)·3n +1-(n -2)·3n , ∴T n =b 1+b 2+b 3+…+b n=(0+3)+(33+0)+(2×34-33)+…+[(n -1)·3n +1-(n -2)·3n ] =(n -1)·3n +1+3.12分。
初一数学综合算式练习题数列求和
初一数学综合算式练习题数列求和数列是数学中的一个重要概念,它由一系列按照一定规律排列的数所组成。
数列求和是数学中常见的问题,它要求我们计算数列中所有数的和。
在初一数学综合中,数列求和也是一个重要的考点。
本文将通过几个练习题来帮助初一学生加深对数列求和的理解。
练习题1:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ。
如果首项a₁=2,公差d=3,前n项和Sₙ=50,求n的值。
解析:根据等差数列的前n项和公式,可以得到Sₙ = (n/2)(2a₁+ (n−1)d)。
将已知条件代入公式,得到50 = (n/2)(2×2 + (n − 1)×3)。
化简得到50 = (n/2)(4 + 3n − 3),进一步化简得到3n² - n - 100 = 0。
通过解一元二次方程,可以求得n的值。
练习题2:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ。
如果首项a₁=-2,公差d=5,前n项和Sₙ=-45,求n的值。
解析:同样地,我们可以根据等差数列的前n项和公式得到Sₙ =(n/2)(2a₁ + (n−1)d)。
将已知条件代入公式,得到-45 = (n/2)(2×(-2) + (n− 1)×5)。
化简得到-45 = (n/2)(-4 + 5n - 5),进一步化简得到5n² - 11n + 90 = 0。
通过解一元二次方程,我们可以求得n的值。
练习题3:求等差数列1, 4, 7, 10, ... 的前10项和。
解析:对于这个等差数列,我们可以发现首项为1,公差为3。
我们可利用等差数列前n项和公式 Sₙ = (n/2)(2a₁ + (n−1)d),将已知条件代入公式,得到Sₙ= (10/2)(2×1 + (10 − 1)×3) = 5(2 + 27) = 145。
练习题4:求等差数列2, 5, 8, 11, ... 的前15项和。
数列通项与数列求和练习题 (原卷版)
数列通项与数列求和练习题一、选择题:1、已知数列{}n a 满足,11=a ,221n a a a n =⋅⋅ 则=+53a a ( )A .37 B .1661 C .1531 D .411 2、-1,3,-7,15,( ),63,…,括号中的数应为( )A .-33B .-31C .-27D .573、已知数列{}n a 满足,2121,2111+==+n n a a a 则=8a ( ) A .1615 B .3231 C .128127 D .2562554、在数列{}n a 中,),11lg(,211na a a n n ++==+ 则=100a ( )A 、2B 、3C 、4D 、55、已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *),则数列{a n }的通项公式为( )A .a n =2n -1B .a n =2-13n -1C .a n =12n -1D .a n =13n -26、已知数列{}n a 的通项公式为)2(1+=n n a n ,数列{}n a 的前n 项和为n S ,则=9S ( ) A .115B .1110 C .5536 D .55727、若数列{a n }满足a 1=1,a 2=23,2a n -1a n +1=a n a n +1+a n -1a n (n ≥2),则a n =( )A .2n +1B .2n +2C .(23)nD .(23)n -18、已知数列{}n a 满足,)21(21,2111n n n a a a +==+则=10a ( ) A .102415B .102417C .102419D .1024219、已知数列{}n a 满足),2(122,511≥-+==-n a a a nn n 且设nn n a b 2λ+=,要使数列{}n b 为等差数列,则实数 λ的值为( )A 、−1B 、1C 、2D 、310、设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列}1{na 前10项的和为( ) A .1110 B .1120 C .109 D .20911、设4()42xx f x =+,则1231011111111f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .4B . 5C . 6D . 10 12、数列{}n a 中,111,()2(1)(1)n n n na a a n N n na ++==∈++,则数列{}n a 的前2020项的和为( )A .20182017 B .20192018 C .20202019 D . 20212020二、填空题(每小题5分,共20分)13、已知数列{}n a 中,)(2,12111n n a a a a a +++==+ ,则通项=n a 14、已知正数数列{}n a 满足:11()2n n nS a a =+,其中n S 是数列{}n a 的前n 项和,则数列{}n a 的通项公式是 .15、已知数列{}n a 满足),2(12,2111≥-+==--n n a na a a n n n 且则数列{}n a 的通项公式为 .16、已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,则=n a三、解答题17、已知函数213(),{},22n f x x x a =+n 数列的前n 项和为S 点(,)(n n S n N *∈)均在函数()y f x =的图象上。
高中数学《数列求和与综合问题》专项练习题(含答案解析)
高中数学《数列求和与综合问题》专项练习题(含答案解析)一、选择题1.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44D .44+1A [因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n ,即a n +1a n=4(n ≥2),所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=a 2·44=3×44.]2.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( ) A .2B .12C .3D .13C [∵在等差数列中,S 2n -1=(2n -1)a n ,∴S 1=a 1,S 3=3a 2,S 5=5a 3,∴35=1a 1a 2+1a 2a 3+1a 1a 3,∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,即a 2=3.]3.已知数列{b n }满足b 1=1,b 2=4,b n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2,则该数列的前23项的和为( )A .4 194B .4 195C .2 046D .2 047A [当n 为偶数时,b n +2=⎝⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2=b n +1,有b n +2-b n =1,即偶数项成等差数列,所以b 2+b 4+…+b 22=11b 2+11×102×1=99.当n 为奇数时,b n +2=2b n ,即奇数项成等比数列,所以b 1+b 3+…+b 23=b 11-2121-2=212-1=4 095.所以该数列的前23项的和为99+4 095=4 194,故选A .]4.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0192 019=( )A .1 010B .1 009C .2 020D .2 019A [S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019), =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 018+1), =1+2×2 018+11 0102=2 019×1 010,∴S 2 0192 019=1 010,故选A .]5.已知数列{a n }的前n 项和S n =2+λa n ,且a 1=1,则S 5=( ) A .27 B .5327C .3116D .31C [∵S n =2+λa n ,且a 1=1,∴S 1=2+λa 1, 即λ=-1,∴S n =2-a n ,当n ≥2时,S n =2-(S n -S n -1),∴2S n =2+S n -1,即S n =12S n -1+1,∴S n -2=12(S n -1-2),∴S n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1.当n =1时也满足.∴S 5=2-⎝ ⎛⎭⎪⎫124=3116.故选C .]6.设曲线y =2 018x n +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1D [因为y ′=2 018(n +1)x n ,所以切线方程是y -2 018=2 018(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1.]7.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( )A .1403B .60C .80D .160C [法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a1q 2×1q 3291-q 3=q 21+q +q 2×a 11-q 871-q =47×140=80.故选C . 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,而1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C .]8.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和的最大值为( )A .49B .1C .4181D .151315A [a 1=9,a 2为整数,可知:等差数列{a n }的公差d 为整数,由S n ≤S 5,∴a 5≥0,a 6≤0,则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,d 为整数,d =-2.∴a n =9-2(n -1)=11-2n . 1a n ·a n +1=111-2n9-2n =12⎝⎛⎭⎪⎫19-2n -111-2n , 数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和为 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19, 令b n =19-2n ,由于函数f (x )=19-2x 的图象关于点⎝ ⎛⎭⎪⎫92,0对称及其单调性,可知:0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴最大值为49.故选A .]二、填空题 9.已知a n =2n ,b n =3n -1,c n =b n a n,则数列{c n }的前n 项和S n 为________.5-3n +52n [由题设知,c n =3n -12n ,所以S n =221+522+823+…+3n -12n , ①2S n =2+521+822+…+3n -12n -1,②由②-①得,S n =2+321+322+…+32n -1-3n -12n .故所求S n =2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .]10.已知数列{a n }和{b n }满足a 1=1,a n +1a n=n +1n,b n a n=sin 2n π3-cos 2n π3,n ∈N *,则数列{b n }的前47项和等于________.1 120 [依题意得a n +1n +1=a nn ,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列,于是有a n n =1,a n =n 2,b n =-n 2cos 2n π3,b 3k -2+b 3k -1+b 3k =3k -223k -122-(3k )2=-9k +52(k ∈N *),因此数列{b n }的前47项和为S 47=S 48-b 48=-9×161+162+52×16+482=1 120.]11.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.2 [由S nS 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d 4k -10,2k -12-d0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2.]12.记S n 为正项等比数列{a n }的前n 项和,若S 4-2S 2=3,则S 6-S 4的最小值为________.12 [由题可知数列{a n }的公比q >0,a n >0,则3=(a 4-a 2)+(a 3-a 1)=a 1(q +1)·(q 2-1),则有q >1,所以3S 6-S 4=3a 6+a 5=3a 1q +1q 4=a 1q +1q 2-1a 1q +1q 4=1q 2-⎝ ⎛⎭⎪⎫1q 22=14-⎝ ⎛⎭⎪⎫1q 2-122≤14(当且仅当q =2时,取等号),所以S 6-S 4≥12,即S 6-S 4的最小值为12.]三、解答题13.(2018·黔东南州二模)已知数列{a n }的前n 项和为S n ,且满足S n =43(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =log 2a n ,记数列⎩⎨⎧⎭⎬⎫1b n -1b n +1的前n 项和为T n ,证明:T n <12.[解] (1)当n =1时,有a 1=S 1=43(a 1-1),解得a 1=4.当n ≥2时,有S n -1=43(a n -1-1),则a n =S n -S n -1=43(a n -1)-43(a n -1-1),整理得:a na n -1=4,∴数列{a n }是以q =4为公比,以a 1=4为首项的等比数列.∴a n =4×4n -1=4n (n ∈N *)即数列{a n }的通项公式为:a n =4n (n ∈N *). (2)由(1)有b n =log 2a n =log 2 4n =2n ,则1b n +1b n -1=12n +12n -1=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =12⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1. 易知数列{T n }为递增数列, ∴T 1≤T n <12,即13≤T n <12.14.(2018·邯郸市一模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2.(1)求T n -S n ; (2)求数列⎩⎨⎧⎭⎬⎫b n 2n 的前n 项和R n .[解] (1)依题意可得b 1-a 1=3,b 2-a 2=5,…,b n -a n =2n +1, ∴T n -S n =(b 1+b 2+…+b n )-(a 1+a 2+…+a n ) =n +(2+22+…+2n )=2n +1+n -2. (2)∵2S n =S n +T n -(T n -S n )=n 2-n , ∴S n =n 2-n2,∴a n =n -1. 又b n -a n =2n +1, ∴b n =2n +n .∴b n2n =1+n2n , ∴R n =n +⎝ ⎛⎭⎪⎫12+222+…+n 2n ,则12R n =12n +⎝ ⎛⎭⎪⎫122+223+…+n 2n +1,∴12R n =12n +⎝ ⎛⎭⎪⎫12+122+…+12n -n2n +1, 故R n =n +2×12-12n +11-12-n 2n =n +2-n +22n .。
数列求和综合练习题(含答案)
数列求和综合练习题一、选择题1.已知数列{}n a 的前n 项和为n S ,若11++=n n a n ,10n S =,则=n ( )A .90B .121C .119D .1202.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192C.10D.12 3.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.630 4.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于( )A .142 B .45 C .56 D .675.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( ) A.12 B.314 C.172 D.1526.设是等差数列的前项和,已知,则等于 ( )A. 13B. 35C. 49D. 637.等差数列的前n 项和为= ( ) A .18 B .20 C .21D .228.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A.1- B.1 C.2- D.29.设等差数列{}n a 的前n 项和为n S ,若111-=a ,664-=+a a ,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 10.在等差数列中,已知,则该数列前11项的和等于( )A .58B .88C .143D . 17611.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .1312.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为( ) A .12 B .14 C .15 D .1613.等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则{}n a 的前9项和为( ) {}n a 5128,11,186,n S a S a ==则{}n a 4816a a +=11S二、解答题14.已知数列{}n a 的前n 项和()2*,n S n n N =∈. (1)求数列{}n a 的通项公式;(2)若数列{}n b 是等比数列,公比为()0q q >且11423,b S b a a ==+,求数列{}n b 的前n 项和n T .15.已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .16.设数列{}n a 的前n 项和122nn S ,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n nn b a b a b a T b +++== 2211,2求已知的值.18.已知数列}{n a 的前n 项和nn S 2=,数列}{n b 满足)12(,111-+=-=+n b b b n n ()1,2,3,n =.(1)求数列}{n a 的通项n a ; (2)求数列}{n b 的通项n b ; (3)若nb ac nn n ⋅=,求数列}{n c 的前n 项和n T .19.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式; (2)若*)(,1211N n a a a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .20.已知数列{a n }的前n 项和2n n S a =-,数列{b n }满足b 1=1,b 3+b 7=18,且112n n n b b b -++=(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若nnn a b c =,求数列{c n }的前n 项和T n.21.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项. (1)求数列}{n a 的通项公式; (2)求数列{}n na 的前n 项和n T .22.设数列{}n a 满足11=a )(211*+∈=-N n a a n n n (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S三、填空题23.已知等比数列{}n a 的各项均为正数,若11a =,34a =,则2________;a =此数列的其前n 项和__________.n S =24.已知等差数列{}n a 中,52=a ,114=a ,则前10项和=10S .25.设等比数列{}n a 的前n 项和为n S ,已知488,12,S S ==则13141516a a a a +++的值为 . 26.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = .27.等差数列{}n a 中,10120S =,那么29a a += .28.[2014·北京海淀模拟]在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.29.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S = . 30.已知等差数列{}n a 中,已知8116,0a a ==,则18S =________________.31.已知等比数列的前项和为,若,则的值是 .32.已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ . 33.数列{}n an 项和为9n S =,则n =_________.34.[2014·浙江调研]设S n 是数列{a n }的前n 项和,已知a 1=1,a n =-S n ·S n -1(n≥2),则S n =________.}{n a n n S 62,256382-==S a a a a 1a参考答案1.D【解析】n n n n a n -+=++=111 ,()()111...23)12(-+=-+++-+-=∴n n n S n ,1011=-+n ,解得120=n .【命题意图】本题考查利用裂项抵消法求数列的前n 项和等知识,意在考查学生的简单思维能力与基本运算能力. 2.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式3.B 【解析】试题分析:因为13n n a a +=+,所以13n n a a +-=。
数列求和 经典练习题(含答案解析)
1.在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34=20a 1+190d=5(4a 1+38d)=5×34=170由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=1702.已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2又=+×S 20a d 20120192解法二 S =(a +a )202=10(a a )20120120×+(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=23. 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)4.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,d =a =2a 10S 1807120--a 373,=-,=S na d m S ma d n (m n)a d =n mn 1m11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n++=++++-=+++-+12121211()()()()()Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪b b y b 234,,,均为等差数列,求.b b a a 4321--5.在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .且S m =S n ,m ≠n∴S m+n =06. 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.∵a 1=25,S 17=S 9 解得d =-2∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等分析解 d =y x 51(1)=y x52(2)可采用=由a a m na ab b m n ----------21433264(2)(1)÷,得b b a a 432183--=解 S (m n)a (m n)(m n 1)d(m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212根据题意:+×,=+×S =17a d S 9a d 1719117162982∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∵a 1=25,S 9=S 17∴a n =25+(n -1)(-2)=-2n +27即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14 ∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0 ∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列 ∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S 9=S 17,∴取n=13时,S 13=169最大差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩∴×+××+×,解得-9252d =1725d d =29817162∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩∴对称轴 x =9+172=137.求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到+2说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.8. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----⇒aq 2=4a +②解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.9.证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n )类似地,可得S 3n =S n (1+q n +q 2n )说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 10.数列{a n }是等比数列,其中S n =48,S 2n =60,求S 3n .解法一 利用等比数列的前n 项和公式若q=1,则S n =na 1,即na 1=48,2na 1=96≠60,所以q ≠1①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq++.S S =S (S S )n 22n 2n 2n 3n ∴++++S +S =S [S (1q )]=S (22q q )n 22n 2n 2n n 2n2n 2nS (S S )=S [S (1q )S (1q q )]=S (22q q )S S =S (S S )n 2n 3n n n n n n 2n n 2n 2nn 22n 2n 2n 3n +++++++∴++∵S =a (1q )1n 1n --q=S n (1+q n +q 2n )解法二 利用等比数列的性质:S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列 ∴ (60-48)2=48·(S 3n -60) ∴ S 3n =63. 解法三 取特殊值法取n=1,则S 1=a 1=48,S 2n =S 2=a 1+a 2=60 ∴ a 2=12∵ {a n }为等比数列S 3n =S 3=a 1+a 2+a 3=6311.已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n ∈N*),a 1=1(1)设b n =a n+1-2a n (n ∈N*),求证:数列{b n }是等比数列;解 (1)∵ S n+1=4a n +2 S n+2=4a n+1+2S =a (1)a (1)(1+)1q 2n 11--=--=+q qq q S q nn n n n 211()∴q =14S =a (1q )1qn 3n 13n --=-++-a q q q qn n n 12111()()∴S =48(1+116)=633n +14∴ q =a a a =3213=14(2)c =a 2(n N*){c }n nnn 设∈,求证:数列是等差数列.两式相减,得S n+2-S n+1=4a n+1=4a n (n ∈N*) 即:a n+2=4a n+1-4a n变形,得a n+2-2a n+1=2(a n+1-2a n ) ∵ b n =a n+1-2a n (n ∈N*) ∴ b n+1=2b n由此可知,数列{b n }是公比为2的等比数列. 由S 2=a 1+a 2=4a 1+2,a 1=1 可得a 2=5,b 1=a 2-2a 1=3 ∴ b n =3·2n-1将b n =3·2n-1代入,得说明 利用题设的已知条件,通过合理的转换,将非等差、非等比数列转化为等差数列或等比数列来解决(2) c =a 2(n N*)c =b 2n nnn+1n n+1∵∈∴-=-=-++++c a a a a n n n n n n nn 11112222c c =34(n N*)n+1n -∈由此可知,数列是公差的等差数列,它的首项,故+-·即:{c }d =34c =a 2c =(n 1)C =34n 11n n =-12123414n。
(完整版)数列求和练习题
数列求和1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.252.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-153.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -14.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ). A .11B .99C .120D .1215. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ).A .1-14nB .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛⎭⎪⎫1-12n二、填空题8.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.11.定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若数列{a n}满足⎪⎪⎪⎪⎪⎪a 1122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为________.三、解答题13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.。
等差数列求和练习题
等差数列前n 和练习题1.已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( )A .10B .16C .20D .242. 等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对3. 设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( )A .22B .21C .20D .194. 已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________.5. 已知a n =n 的各项排列成如图的三角形状:记A(m ,n)表示第m 行的第n 个数,则A(21,12)=________.a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9… … … … … … … … … …6. 设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( ) A.S 15a 15 B.S 9a 9 C.S 8a 8 D.S 1a 17. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .18. 将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组.A .30B .31C .32D .339. 数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.10.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .。
求和练习题
求和练习题一、基础求和题1. 计算下列各数列的和:1 +2 +3 + + 102 + 4 + 6 + + 203 + 6 + 9 + + 365 + 10 + 15 + + 502. 求下列等差数列的和:首项为2,末项为20,公差为2首项为3,末项为30,公差为3首项为4,末项为40,公差为4首项为5,末项为45,公差为5 3. 求下列等比数列的和:首项为2,公比为2,项数为5首项为3,公比为3,项数为4首项为4,公比为4,项数为3首项为5,公比为5,项数为2二、混合求和题4. 计算下列各数列的和:1 + 3 + 5 + + 19 + 212 + 4 + 6 + + 18 + 203 + 6 + 9 + + 24 + 274 + 8 + 12 + + 40 + 445. 求下列等差数列和等比数列的和:等差数列:首项为2,末项为20,公差为2;等比数列:首项为3,公比为3,项数为5等差数列:首项为3,末项为30,公差为3;等比数列:首项为4,公比为4,项数为4等差数列:首项为4,末项为40,公差为4;等比数列:首项为5,公比为5,项数为3等差数列:首项为5,末项为45,公差为5;等比数列:首项为6,公比为6,项数为26. 求下列混合数列的和:1 +2 +3 + + 10 + 2^1 + 2^2 + 2^3 + + 2^103 + 6 + 9 + + 36 + 3^1 + 3^2 + 3^3 + + 3^64 + 8 + 12 + + 40 + 4^1 + 4^2 + 4^3 + + 4^55 + 10 + 15 + + 50 + 5^1 + 5^2 + 5^3 + + 5^4三、复杂求和题7. 求下列数列的和:1^2 + 2^2 + 3^2 + + 10^21^3 + 2^3 + 3^3 + + 5^31^4 + 2^4 + 3^4 + + 4^41^5 + 2^5 + 3^5 + + 3^58. 求下列数列的和:1/1 + 1/2 + 1/3 + + 1/101/2 + 1/4 + 1/6 + + 1/201/3 + 1/6 + 1/9 + + 1/271/4 + 1/8 + 1/12 + + 1/409. 求下列数列的和:sin(1) + sin(2) + sin(3) + + sin(10)cos(1) + cos(2) + cos(3) + + cos(10)tan(1) + tan(2) + tan(3) + + tan(5)cot(1) + cot(2) + cot(3) + + cot(4)四、四、多项式求和题10. 求下列多项式的和:(1 + 2x + 3x^2) + (4 + 5x + 6x^2) + + (10 + 11x + 12x^2)(x^3 + 2x^2 + 3x) + (4x^3 + 5x^2 + 6x) + + (10x^3 + 11x^2 + 12x)(1 + x + x^2 + x^3) + (2 + 2x + 2x^2 + 2x^3) + + (5 + 5x + 5x^2 + 5x^3)(x^4 + 2x^3 + 3x^2 + 4x + 5) + (2x^4 + 3x^3 + 4x^2 + 5x + 6) + + (5x^4 + 6x^3 + 7x^2 + 8x + 9)五、分数求和题11. 求下列分数数列的和:1/1 + 1/2 + 1/3 + + 1/1001/2 + 1/4 + 1/6 + + 1/2001/3 + 1/6 + 1/9 + + 1/3001/4 + 1/8 + 1/12 + + 1/40012. 求下列分数数列的和:1/1 1/2 + 1/3 1/4 + + 1/99 1/1001/2 1/4 + 1/6 1/8 + + 1/198 1/2001/3 1/6 + 1/9 1/12 + + 1/297 1/3001/4 1/8 + 1/12 1/16 + + 1/396 1/400六、特殊数列求和题13. 求下列特殊数列的和:Fibonacci数列前20项的和(Fibonacci数列:1, 1, 2, 3, 5, 8, 13, )Catalan数列前10项的和(Catalan数列:1, 1, 2, 5, 14, 42, )Lucas数列前15项的和(Lucas数列:2, 1, 3, 4, 7,11, )Harmonic数列前30项的和(Harmonic数列:1, 1/2, 1/3, 1/4, )14. 求下列数列的和:平方数的和:1^2 + 2^2 + 3^2 + + 50^2立方数的和:1^3 + 2^3 + 3^3 + + 20^3第四次幂的数列和:1^4 + 2^4 + 3^4 + + 10^4第五次幂的数列和:1^5 + 2^5 + 3^5 + + 8^5七、组合求和题15. 求下列组合数列的和:C(1,1) + C(2,1) + C(3,1) + + C(10,1)C(2,2) + C(3,2) + C(4,2) + + C(9,2)C(3,3) + C(4,3) + C(5,3) + + C(8,3)C(4,4) + C(5,4) + C(6,4) + + C(7,4)16. 求下列组合数列的和:C(5,0) + C(6,1) + C(7,2) + + C(10,5)C(6,0) + C(7,1) + C(8,2) + + C(11,6)八、函数求和题17. 求下列函数在指定区间内的和:f(x) = x 在区间 [1, 10] 上的和g(x) = x^2 在区间 [1, 5] 上的和h(x) = x^3 在区间 [1, 3] 上的和j(x) = sin(x) 在区间[0, π] 上的和18. 求下列函数在指定区间内的和:f(x) = e^x 在区间 [0, 1] 上的和g(x) = ln(x) 在区间 [1, e] 上的和h(x) = √x 在区间 [1, 10] 上的和j(x) = cos(x) 在区间[0, 2π] 上的和九、数列变换求和题19. 求下列数列变换后的和:原数列:1, 2, 3, , 100;变换后数列:1^2, 2^2, 3^2, , 100^2原数列:2, 4, 6, , 100;变换后数列:2^3, 4^3, 6^3, , 100^3原数列:3, 6, 9, , 99;变换后数列:3^4, 6^4, 9^4, , 99^4原数列:4, 8, 12, , 100;变换后数列:4^5, 8^5,12^5, , 100^520. 求下列数列变换后的和:原数列:1/1, 1/2, 1/3, , 1/100;变换后数列:1/1^2, 1/2^2, 1/3^2, , 1/100^2原数列:1/2, 1/4, 1/6, , 1/100;变换后数列:1/2^3, 1/4^3, 1/6^3, , 1/100^3原数列:1/3, 1/6, 1/9, , 1/99;变换后数列:1/3^4, 1/6^4, 1/9^4, , 1/99^4原数列:1/4, 1/8, 1/12, , 1/100;变换后数列:1/4^5, 1/8^5, 1/12^5, , 1/100^5十、综合求和题21. 求下列数列的和:1 + 3 + 5 + + 97 + 99 + 2/1 + 2/2 + 2/3 + + 2/502 + 4 + 6 + + 98 + 100 + 3/1 + 3/2 + 3/3 + + 3/333 + 6 + 9 + + 96 + 99 + 4/1 + 4/2 + 4/3 + + 4/254 + 8 + 12 + + 100 + 104 + 5/1 + 5/2 + 5/3 + +5/2022. 求下列数列的和:(1 + 2 + 3 + + 50) (1/1 + 1/2 + 1/3 + + 1/50)(1 + 2 + 3 + + 100) (1/1 + 1/2 + 1/3 + + 1/100)(1 + 2 + 3 + + 150) (1/1 + 1/2 + 1/3 + + 1/150)(1 + 2 + 3 + + 200) (1/1 + 1/2 + 1/3 + + 1/200)十一、矩阵求和题23. 求下列矩阵所有元素的和:3x3 矩阵:[ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]4x4 矩阵:[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]5x5 矩阵:[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25] ] 6x6 矩阵:[ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36] ]24. 求下列矩阵对角线元素的和:主对角线:3x3 矩阵:[ [1, 2, 3], [4, 5, 6], [7, 8,9] ]副对角线:4x4 矩阵:[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] ]主对角线:5x5 矩阵:[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25] ]副对角线:6x6 矩阵:[ [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36] ]十二、多项式乘积求和题25. 求下列多项式乘积的和:(x + 1)(x + 2)(x + 3) + (x + 2)(x + 3)(x + 4) + +(x + 10)(x + 11)(x + 12)(x^2 + 1)(x^2 + 2)(x^2 + 3) + (x^2 + 2)(x^2 + 3)(x^2 + 4) + + (x^2 + 5)(x^2 + 6)(x^2 + 7)(x^3 + 1)(x^3 + 2)(x^3 + 3) + (x^3 + 2)(x^3 + 3)(x^3 + 4) + + (x^3 + 4)(x^3 + 5)(x^3 + 6)(x^4 + 1)(x^4 + 2)(x^4 + 3) + (x^4 + 2)(x^4 + 3)(x^4 + 4) + + (x^4 + 3)(x^4 + 4)(x^4 + 5)26. 求下列多项式乘积的和:(1 + x)(1 + 2x)(1 + 3x) + (2 + x)(2 + 2x)(2 + 3x) + + (10 + x)(10 +答案:一、基础求和题1. 552. 2103. 9454. 220二、混合求和题5. 1056. 2807. 330三、复杂求和题8. 3859. 9.6462510. 1.57079633四、多项式求和题11. 33012. 33013. 33014. 330五、分数求和题15. 2.8289682516. 1.48829558六、特殊数列求和题17. 1771018. 22019. 489520. 816七、组合求和题21. 20422. 204八、函数求和题由于函数求和通常涉及到定积分,这里只给出一些常见函数在指定区间内的和的近似值:17. f(x) = x 在区间 [1, 10] 上的和约为 55g(x) = x^2 在区间 [1, 5] 上的和约为 55h(x) = x^3 在区间 [1, 3] 上的和约为 36j(x) = sin(x) 在区间[0, π] 上的和约为 218. f(x) = e^x 在区间 [0, 1] 上的和约为 e 1g(x) = ln(x) 在区间 [1, e] 上的和约为 e 1h(x) = √x 在区间 [1, 10] 上的和约为 2.82896825 j(x) = cos(x) 在区间[0, 2π] 上的和约为 0九、数列变换求和题19. 945020. 9450十、综合求和题21. 429022. 4290十一、矩阵求和题23. 9, 34, 65, 13624. 15, 15十二、多项式乘积求和题25. 由于这些多项式乘积的和涉及到高阶多项式的展开和求和,通常需要使用数学软件或手动展开来计算,这里只给出一些近似值: (x + 1)(x + 2)(x + 3) + + (x + 10)(x + 11)(x + 12) 的和将是一个关于 x 的多项式,具体值需要展开后计算。
等差数列求和练习题
入门题:
1、有一个数列,4、10、16、22 …… 52,这个数列有多少项?
2、一个等差数列,首项是3,公差是2,项数是10。
它的末项是多少?
3、求等差数列1、
4、7、10 ……,这个等差数列的第30项是多少?
4、6+7+8+9+……+74+75=()
5、2+6+10+14+……+122+126=()
6、已知数列2、5、8、11、14 ……,47应该是其中的第几项?
7、有一个数列:6、10、14、18、22 ……,这个数列前100项的和是多少?练习题:
1、3个连续整数的和是120,求这3个数。
2、4个连续整数的和是94,求这4个数。
3、在6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少?
4、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。
丽丽在这些天中共学会了多少个单词?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和
1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25
2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15
B .12
C .-12
D .-15
3.数列112,314,518,71
16,…的前n 项和S n 为( ).
A .n 2+1-
12
n -1
B .n 2+2-12n
C .n 2+1-12n
D .n 2+2-1
2
n -1
4.已知数列{a n }的通项公式是a n =1
n +n +1
,若前n 项和为10,则项数n 为
( ). A .11
B .99
C .120
D .121
5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1
n
(a 1+a 2+…+a n ),则数列{b n }
的前10项和T 10=( )
A .70
B .75
C .80
D .85
6.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )
A .16
B .8
C .4
D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1
a 1a 2+
1
a 2a 3
+…+
1
a n a n +1
的结果
可化为( ).
A .1-14n
B .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛
⎭⎪⎫1-12n
二、填空题
8.数列{a n }的通项公式为a n =
1
n +n +1
,其前n 项之和为10,则在平面直角
坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.
9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2
n =________.
10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫1b n b n +1的前n 项和S n =________.
11.定义运算:⎪⎪
⎪⎪
⎪⎪
a b c
d =ad -bc ,若数列{a n
}满足⎪⎪⎪⎪
⎪⎪a 1
122 1=1且⎪⎪⎪⎪
⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.
12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+9
10
,…,那么数
列{b n }=⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫1a n a n +1的前n 项和S n 为________.
三、解答题
13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;
(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .
14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;
(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .
15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.
(1)求{a n },{b n }的通项公式;
(2)求数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫a n b n 的前
n 项和S n .
16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1
S 1+1
S 2+…+1
S n
.。