【数学】数学 圆的综合的专项 培优练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若AB
AC
=
5
3
,求BC的长;
②当AB
AC
为何值时,AB•AC的值最大?
【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则
CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BG
BF BA
=,即BF•BG=BE•A B,将BF=BC-CF=BC-
AC、BG=BC+CG=BC+AC代入可得;
(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,
Rt△DMC中由DC=AC=3k、MC=1
2
6k求得22
CD CM
-3,可知OM=OD-
3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴BE BG
BF BA
=,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB•AC,
∴6k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=1
2
6k,
∴223
CD CM k
-=,
∴OM=OD﹣DM=33k,
在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,
解得:k=
3
3
或k=0(舍),
∴62;
②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣3
4
)2+
81
4
,
∴当d=3
4
,即OM=
3
4
时,AB•AC最大,最大值为
81
4
,
∴DC2=27
2
,
∴AC=DC=36
2
,
∴AB=96
4,此时
3
2
AB
AC
.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.
(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.
(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.
(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.
【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.
【解析】
试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;
(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则
可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;
(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.
试题解析:(1)相切,理由如下:
如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,
∵α=15°,A′C∥AB,
∴∠ABA′=∠CA′B=30°,
∴DE=A′E,OE=BE,
∴DO=DE+OE=(A′E+BE)=AB=OA,
∴A′C与半圆O相切;
(2)当BA′与半圆O相切时,则OB⊥BA′,
∴∠OBA′=2α=90°,
∴α=45°,
当O′在上时,如图2,
连接AO′,则可知BO′=AB,
∴∠O′AB=30°,
∴∠ABO′=60°,
∴α=30°,
(3)∵点P,A不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,