专题01 函数与方程思想(解析版)

合集下载

专题01 函数的基本性质学霸必刷100题(解析版)

  专题01  函数的基本性质学霸必刷100题(解析版)

专题01 函数的基本性质100题1.已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-, 即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+,所以函数21x y x +=也关于点(0,2)对称, 所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422miim m i mx y xx x y y y m =+=+++++++=+⨯=∑. 故选:C.2.已知函数2(2)2()log xf x ax +=+,若对任意(1,3]t ∈-,任意x ∈R ,不等式()()1f x f x kt +-≥+恒成立,则k 的最大值为 A .1- B .1C .13-D .13【答案】D 【解析】因为()()22log 2f x x ax =++,所以()()()222log 22f x f x x +-=+≥,则不等式()()1f x f x kt +-≥+恒成立等价于12kt +≤,设()1g t kt =+,则()()1123312g k g k ⎧-=-+≤⎪⎨=+≤⎪⎩,解得113k -≤≤.答案选D.3.已知函数()()f x g x ,的图象分别如图1,2所示,方程()()()()1f g x g f x =,=-1,1(())2g g x =-的实根个数分别为a 、b 、c ,则( )A .a b c +=B .b c a +=C .b a c =D .ab c =【答案】A 【解析】由方程(())1f g x =,可得()(10)g x m m =-<<. 此方程有4个实根,所以方程(())1f g x =有4个实根,则4a =; 由方程(())1g f x =-,可得()1f x =或()1f x =-. 所以方程(())1g f x =-有2个实根,则2b =,由方程1(())2g g x =-,可得113()12g x x x ⎛⎫=-<<- ⎪⎝⎭或()22()10g x x x =-<<或33()(01)g x x x =<<或443()12g x x x ⎛⎫=<< ⎪⎝⎭,这4个方程的实根的个数分别为0,4,2,0. 则6c =.故a b c +=,故选:A4.已知函数()f x 是定义在R 上的增函数,且其图象关于点()2,0-对称,则关于x 的不等式()()23120f x f x -+-≥的解集为( )A .[)4,-+∞B .[]4,2-C .[]2,4-D .(],2-∞【答案】B 【解析】因为()f x 的图象关于点()2,0-对称,所以()()40f x f x +--=. 因为()()23120f xf x -+-≥,故()()()2312412f x f x f x -≥--=---⎡⎤⎣⎦,所以()()2325f xf x -≥-.因为()f x 是定义在R 上的增函数,故2325x x -≥-即2280x x +-≤, 解得42x -≤≤,故原不等式的解集为[]4,2-, 故选:B.5.已知定义域为()0,∞+的函数()f x 满足:(1)对任意()0,x ∈+∞,恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.给出如下结论: ①对任意m Z ∈,有()20mf =;②函数()f x 的值域为[)0,+∞;③若函数()f x 在区间(),a b 上单调递减,则存在k Z ∈,使得()()1,2,2kk a b +⊆.其中所正确结论的序号是( ) A .①② B .①③C .②③D .①②③【答案】D 【解析】()2220f =-= ()()()()122122222220m m m m f f f f ---∴===⋅⋅⋅==,①正确;取(12,2m m x +⎤∈⎦,则(]1,22m x ∈ 222mm xx f ⎛⎫∴=- ⎪⎝⎭()12482202482m m m x x x x f x f ff f x +⎛⎫⎛⎫⎛⎫⎛⎫====⋅⋅⋅==-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()f x ∴的值域为[)0,+∞,②正确;由②知:(12,2k k x +⎤∈⎦时,()12k f x x +=-,此时()f x 单调递减 由此可知,存在()()1,2,2kk a b +⊆,使得()f x 在(),a b 上单调递减,③正确.故选:D6.已知定义域为R 的函数()f x 满足(1)(1)f x f x -=-+,且函数()f x 在区间()1,+∞上单调递增,如果121x x ,且122x x +>,则()()12f x f x +的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负函数【答案】B 【解析】因为(1)(1)f x f x -=-+,所以()()110f x f x -++=,所以()f x 关于点()1,0成中心对称,且()10f = 又因为()f x 在()1,+∞上单调递增,所以()f x 在(),1-∞上也单调递增,所以()f x 是R 上的增函数, 因为122x x +>,所以122x x >-,所以()()122f x f x >-, 又因为()()22110f x f x -++=,所以()()2220f x f x -+=, 所以()()12f x f x >-,所以()()120f x f x +>. 故选:B.7.已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D8.已知函数()|lg |f x x =,若0a b <<,且()()f a f b =,则2a b -的取值范围是( ) A .(0,)+∞ B .[1,)-+∞C .(,1)-∞-D .(,0)-∞【答案】C 【解析】lg ,1()lg lg ,01x x f x x x x ≥⎧==⎨-<<⎩,画出函数图像,如图所示:()()f a f b =,则lg lg a b -=,故1ab =,且01a <<,故22a b a a-=-.设函数()2f x x x =-,则函数在()0,1上单调递增,故()22,1a b a a-=-∈-∞-. 故选:C .9.设函数()f x 是定义在R 上的偶函数,()()4f x f x =-,当02x ≤≤时,52x f x,函数112g xx ,则()()()F x f x g x =-零点个数为( ) A .7B .6C .5D .4【答案】B 【解析】因为函数()f x 是定义在R 上的偶函数,当02x ≤≤时,52x f x ,所以令20x -≤≤,52x f x f x,即当20x -≤≤时,52x f x,因为()()4f x f x =-,所以函数()f x 的周期4T =,综上所述,可以绘出函数()f x 以及函数112g xx 的图像,结合图像可知,函数()()()F x f x g x =-的零点个数为6个 综上所述,故选B 。

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二次函数的识别】 (1)【考点二二次函数中各项的系数】 (2)【考点三利用二次函数的定义求参数】 (3)【考点四已知二次函数上一点,求字母或式子的值】 (5)【考点五列二次函数的关系式】 (6)【过关检测】 (8)【典型例题】【考点一二次函数的识别】【变式训练】1.(2023·浙江·九年级假期作业)以下函数式二次函数的是()【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数221y x x =--+的二次项系数是( )A .1B .1-C .2D .2-【答案】B【分析】根据二次函数的定义“一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ¹)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数221y x x =--+的二次项系数是1-.故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2023·浙江·九年级假期作业)二次函数()32-=x x y 的二次项系数与一次项系数的和为( )A .2B .2-C .1-D .4-【答案】D 【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:()23622x y x x x --==,∴二次项系数是2,一次项系数是6-,∴264-=-,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键.2.(2022·全国·九年级假期作业)二次函数2(1)y x x =-的二次项系数是________.【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义,一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数()2231y m x mx =+++是二次函数,则( )A .2m ³-B .2m ¹C .2m ¹-D .2m =-【答案】C 【分析】根据二次函数的定义,即可求解.【详解】解:根据题意得20m +¹,解得2m ¹-,故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(a ,b ,c 是常数,0a ¹)的函数,叫做二次函数是解题的关键.【变式训练】【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数2y ax bx c =++的定义条件是:a 、b 、c 为常数,0a ¹,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线223y ax x =-+经过点(1,2)P ,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将(1,2)P 代入223y ax x =-+中,得:22=121+3a -´´,解得:=1a ,故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键.【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线23y ax bx =+-过点(2,4),则代数式84a b +的值为( )A .14B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax 2+bx -3关系式,再整体扩大2倍,即可求出代数式的值.【详解】解:将点(2,4)代入抛物线y=ax 2+bx -3得4a +2b -3=4,整理得8a +4b =14.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .20【答案】B【分析】先把点()2,3-代入解析式,得到2=7c b -,然后化简247=2c b --(c-4b )-7,整体代入即可得到答案.【详解】解:把点()2,3-代入2y x bx c =-++,得:2=7c b -,∵247=2c b --(c-2b )-7277=7=´-;故选择:B .【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】【变式训练】1.(2022秋·九年级单元测试)一台机器原价为50万元,如果每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式为_____.【答案】()2501y x =-【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为50万元,每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,∴y 与x 之间的函数关系式为()2501y x =-.故答案为:()2501y x =-.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格=原价()21x ´-.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当60x =时,8050y x ==;时,100y =.在销售过程中,每天还要支付其它费用450元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利润w (元)与销售单价x (元)之间的函数关系式.【答案】(1)2200y x =-+(3070x ££);(2)222606450w x x =-+-(3070x ££)【分析】(1)根据y 与x 写成一次函数解析式,设为y kx b =+,把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价´销售量列出w 关于x 的二次函数解析式即可.【详解】(1)设y 与x 的函数关系式为y kx b =+.60x =Q 时,80y =,50x =时,100y =,608050100k b k b +=ì\í+=î,解得2200k b =-ìí=î,2200y x \=-+,根据部门规定,得3070x ££.(2)22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数2=23y x x --中,当=1x -时,y 的值是________.【答案】0【分析】把=1x -代入2=23y x x --计算即可.【详解】解:当=1x -时,2=23=123=0y x x ---+,故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把=1x -代入2=23y x x --计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】23x - -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数||1(1)45m y m x x +=++-是关于x 的二次函数,则一次函;【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得()()2302050600y x x x x =++=++,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题。

函数与方程思想

函数与方程思想

=,求正整数1000【课堂练习】2.已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题: ① 存在实数k ,使得方程恰有2个不同的实根;② 存在实数k ,使得方程恰有4个不同的实根;③ 存在实数k ,使得方程恰有5个不同的实根;④ 存在实数k ,使得方程恰有8个不同的实根.其中真命题的序号是 .1.关于x 的方程(x 2-1)2-|x 2-1|+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根。

其中假命题的个数是 ( )A . 0B . 1C . 2D . 42.如果函数y ax b x =++21的最大值是4,最小值是-1,求实数a 、b 的值。

解:课后作业总结回顾3.已知函数的定义域和值域都是(其图像如下图所示),函数.定义:当且时,称是方程的一个实数根.则方程的所有不同实数根的个数是 .4.已知()()20,f x ax bx c a =++≠且方程()f x x =无实数根,下列命题:① 方程x x f f =)]([也一定没有实数根;② 若0>a ,则不等式x x f f >)]([对一切实数x 都成立;③ 若0<a ,则必存在实数0x ,使00)]([x x f f >;④ 若0=++c b a ,则不等式x x f f <)]([对一切实数x 都成立。

其中正确命题的序号是 .已知,若关于的方程有实根,则的取值范围是 .6.(普陀区一模文理科14) 已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 .)(x f y =]1,1[-],[,sin )(ππ-∈=x x x g ])1,1[(0)(11-∈=x x f ]),[()(212ππ-∈=x x x g 2x 0))((=x g f 0))((=x g f a ∈R x 2104x x a a ++-+=a。

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

(完整版)七种数学思想

(完整版)七种数学思想

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

专题01 二次函数(重点)(解析版)

专题01 二次函数(重点)(解析版)

专题01 二次函数(重点)一、单选题1.下列y 关于x 的函数中,属于二次函数的是( )A .y =(x +1)2﹣x 2B .y =ax 2+bx +cC .y =3x 2﹣1D .y =3x ﹣1【答案】C【分析】根据二次函数的定义逐项分析即可,二次函数的定义和概念 一般地,把形如²y ax bx c =++(0a ¹)(a b c 、、是常数)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项.【解析】A. y =(x +1)2﹣x 221x =+,不是二次函数,故该选项不正确,不符合题意;B. y =ax 2+bx +c (0a ¹),故该选项不正确,不符合题意;C. y =3x 2﹣1,是二次函数,故该选项正确,符合题意;D. y =3x ﹣1,是一次函数,故该选项不正确,不符合题意;故选C【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题的关键.2.二次函数y =2(x ﹣1)2+2图象的顶点坐标( )A .(-1,2)B .(2,1)C .(1,2)D .(1,-2)【答案】C【分析】根据二次函数2()y a x h k =-+ 顶点坐标是()h k ,进行解答即可.【解析】解:∵二次函数2()y a x h k =-+顶点坐标是()h k ,,∴二次函数2212y x +=(﹣)图象的顶点坐标为(1,2).故选:C .【点睛】此题考查了二次函数的性质,掌握二次函数顶点式的特点是解题的关键.3.把抛物线y =2(x ﹣1)2+3先向右平移3个单位,再向上平移1个单位,得到的抛物线的解析式是( )A .y =2(x +2)2+4B .y =2(x ﹣4)2+4C .y =2(x +2)2+2D .y =2(x ﹣4)2+2【答案】B【分析】根据平移的性质先得到平移后得到的抛物线的顶点坐标为()4,4 ,即可求解.【答案】B【分析】利用抛物线与x 轴的交点个数可对A 进行判断;利用抛物线的顶点坐标可对B 进行判断;由顶点坐标得到抛物线的对称轴为直线x =-3,则根据二次函数的性质可对C 进行判断;根据抛物线的对称性得到抛物线y =ax 2+bx +c 上的点(-1,-4)的对称点为(-5,-4),则可对D 进行判断.【解析】解:A 、图象与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2﹣4ac >0,所以b 2>4ac ,故A 选项不符合题意;B 、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax 2+bx +c ≥﹣6,故B 选项符合题意;C 、抛物线的对称轴为直线x =﹣3,因为﹣4离对称轴的距离等于﹣2离对称轴的距离,所以m =n ,故C 选项不符合题意;D 、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x 的一元二次方程ax 2+bx +c =﹣4的两根为﹣5和﹣1,故D 选项不符合题意.故选B .【点睛】本题考查了二次函数图象与系数的关系,二次函数与一元二次方程的关系,熟练运用数形结合是解题的关键.9.如图,ABC V 中,90C Ð=°,15AC =,20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止,过点D 作DE AB ^,垂足为E .设点D 运动的路径长为x ,BDE △的面积为y ,若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x ,在图中表示出来,设,25AE z BE z ==-,在直角三角形中,找到等量关系,求出未知数的值,得到BDE △的值.【解析】解:当10x =时,由题意可知,10,5AD CD ==,故选:B.【点睛】本题主要考查勾股定理,根据勾股定理列出等式是解题的关键,运用了数形结合的思想解题.10.如图,二次函数2y ax=+上移动,MN∥y轴,NR∥x轴,标的最大值为3,则a -b +c 的最大值是( )A .15B .18C .23D .32【答案】C 【分析】先求出N ,R 的坐标,观察图形可知,当顶点在R 处时,点B 的横坐标为3,由此求出a 值,当=1x -时y a b c =-+,当顶点在M 处时y a b c =-+取最大值,求此可解.【解析】解:(6,2)M --Q ,MN =2,NR =7,(6,4)N \--,(1,4)R -,由题意可知,当顶点在R 处时,点B 的横坐标为3,则抛物线的解析式为2(1)4y a x =--,将点B 坐标(3,0)代入上式得,20(31)4a =--,解得,1a =,当=1x -时,y a b c =-+,观察图形可知,顶点在M 处时,y a b c =-+取最大值,此时抛物线的解析式为:2(6)2y x =+-,将=1x -代入得,2(16)223y a b c =-+=-+-=,故选:C .【点睛】本题考查二次函数2y ax bx c =++图像的性质,解题关键时利用数形结合的思想,判断出抛物线顶点在R 处时点B 的横坐标取最大值,由此求出a 值.二、填空题【答案】41x -££【分析】根据图象,写出抛物线在直线上方部分的【解析】解:∵抛物线2y ax c =+∴不等式2ax c kx m +³+的解集是故答案为41x -££.所以当直线y x m =-+与新图象有4个交点时,m 的取值范围为62m -<<-.故答案为:62m -<<-.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ¹)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数图象与几何变换.(1)求A 、B 两点的坐标;(2)根据图象直接写出当21y y <时x 的取值范围.【答案】(1)()1,0A -,()3,0B(1)求点B的坐标和抛物线的表达式.(2)将抛物线顶点向上平移m的值.【答案】(1)B点坐标为(5,0)(2)254 m=(1)求直线AC 的函数表达式;(2)若将直线AC 沿y 轴的正方向向上平移【答案】(1)1y x =+(2)9n 4=(1)求抛物线的表达式;(2)如图1,点E 是抛物线上的第一象限的点,求ACE S V 的最大值,并求(3)如图2,在抛物线对称轴上是否存在一点P ,使ACP △是等腰三角形?若存在,直接写出点若不存在请说明理由.【答案】(1)抛物线解析式为:213222y x x =-++设点213(,2)22E x x x -++,则DE x =,213222DO x x =-++ACE AOC DCEAODE S S S S \=--V V V 梯形211311(4)(2)(22222x x x x =+-++--∵一次函数过定点(3,6)--,∴一次函数36y nx n =+-与n y x=-联立方程组得,36y nx x n y x =+-ìïí=-ïî,整理得,2(3nx n +∵有一个交点,(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点①求B的坐标;②点P足抛物线上的动点,当【答案】(1)抛物线的表达式为(2)①点B的坐标为(2,6-设直线OA 与抛物线对称轴交于点()2BH m \=--.10OAB S =Q △,125102m \´+´=,6m \=-(正值已舍).即点B 的坐标为()2,6-.设直线AB 的解析式为y nx =把()()5,5,2,6A B --分别代入,得解得1;320.3n d ì=ïïíï=-ïî\直线AB 的解析式为13y =令2120433x x x -+=-,解得。

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件
目录
|技法点拨| 此题是一道典型的求离心率的题目,一般需要通过a,b,c之间的关系, 得出关于a,c的方程,经过恒等变形就可以求出离心率.
目录
在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知△ABC 的面积为
3 15,b-c=2,cos A=-14,则 a=____8____.
目录
构造函数关系解决问题 在高考试题中,综合问题的比较大小、求最值等,一般均需利用构 造函数法才能完成.如何正确的构造出恰当的函数,是解决此类问题的 关键,因此充分挖掘原问题的条件与结论间的隐含关系,通过类比、联 想、抽象、概括等手段,构造出恰当的函数,在此基础上利用函数思想 和方法使原问题获解,这是函数思想解题的更高层次的体现.
目录
|技法点拨| 挖掘、提炼多变元问题中变元间的相互依存、相互制约的关系,反客为 主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解, 是解题人思维品质高的表现.本题主客换位后,利用新建函数 y=x1+ln x 的 单调性巧妙地求出实数 k 的取值范围.此法也叫主元法.
目录
已知函数 f(x)=33xx- +11+x+sin x,若存在 x∈[-2,1],使得 f(x2+x)+f(x-k) <0 成立,则实数 k 的取值范围是__(_-__1_,__+__∞__)__. 解析:由题意知,函数f(x)的定义域为R,且f(x)是奇函数. 又 f′(x)=(2l3nx+3·1)3x2+1+cos x>0 在 x∈[-2,1]上恒成立,函数 f(x)在 x∈[- 2,1]上单调递增.若存在 x∈[-2,1],使得 f(x2+x)+f(x-k)<0 成立,则 f(x2+x)<-f(x-k)⇒f(x2+x)<f(k-x)⇒x2+x<k-x,故问题转化为存在 x∈[-2,1],k>x2+2x,即 k>(x2+2x)min,当 x∈[-2,1]时,y=x2+2x= (x+1)2-1 的最小值为-1.故实数 k 的取值范围是(-1,+∞).

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。

初中数学思想方法(函数与方程思想)

初中数学思想方法(函数与方程思想)

初中数学思想方法(函数与方程思想)函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

方程思想是:实际问题→数学问题→代数问题→方程问题。

宇宙世界,充斥着等式和不等式。

我们明白,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,紧密相关。

而函数和多元方程没有什么本质的区别,如函数y=f(x),就能够看作关于x、y的二元方程f(x)-y=0.能够说,函数的研究离不开方程.列方程、解方程和研究方程的特性,差不多上应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特点,建立函数关系型的数学模型,从而进行研究。

它表达了“联系和变化”的辩证唯物主义观点。

一样地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f (x)的单调性、对称性、最大值和最小值、图像变换等,要求我们熟练把握的是一次函数、反比例函数、二次函数等的具体特性。

在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。

对所给的问题观看、分析、判定比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。

另外,方程问题、不等式问题和某些代数问题也能够转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、明白得性都有一定的要求,因此是中考考查的重点。

我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;如列表、规律探究等都能够看成n的函数,用函数方法解决。

专题01 一元二次方程重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题01 一元二次方程重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题01 高分必刷题-一元二次方程重难点题型分类(解析版)专题简介:本份资料包含一元二次方程这一章除韦达定理之外的所有重要题型,具体包含的题型有一元二次方程的概念、一元二次方程的解、解普通的一元二次方程、解含有参数的一元二次方程、一元二次方程的整数解问题、应用题的四类主流题型(利润类、面积类、握手或循坏赛类、连续两次增长或降低类)。

题型一:一元二次方程的概念题1.有下列关于x的方程是一元二次方程的是()A.3x(x﹣4)=0B.x2+y﹣3=0C.+x=2D.x3﹣3x+8=0【解答】解:A、是一元二次方程,故此选项正确;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、不是一元二次方程,故此选项错误;故选:A.2.已知关于x的方程,(1)ax2+bx+c=0;(2)x2﹣4x=0;(3)1+(x﹣1)(x+1)=0;(4)3x2=0中,一元二次方程的个数为()个.A.1B.2C.3D.4【解答】解:(1)ax2+bx+c=0中a可能为0,故不是一元二次方程;(2)x2﹣4x=0符合一元二次方程的定义,故是一元二次方程;(3)1+(x﹣1)(x+1)=0,去括号合并后为x2=0,是一元二次方程;(4)3x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,故选:C.3.若方程(a﹣2)x2+x+3=0是关于x的一元二次方程,则a的取值范围是()A.a≠2B.a≥0C.a≥0且a≠2D.任意实数【解答】解:因为(a﹣2)x2+x+3=0是关于x的一元二次方程,所以a﹣2≠0,即a≠2,又因为中a≥0,所以a≥0且a≠2,故选:C.4.关于x的方程(m+2)x|m|+2mx+2=0是一元二次方程,则m的值为.【解答】解:∵关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,∴|m|=2且m+2≠0,解得m=2.故答案是:2.题型二:一元二次方程的解5.已知关于x 的方程x 2+3x +a =0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣5【解答】解:∵关于x 的方程x 2+3x +a =0有一个根为﹣2,设另一个根为m ,∴﹣2+m =, 解得,m =﹣1,故选:B . 6.关于x 的一元二次方程ax 2+bx ﹣=0,满足2a ﹣b =,则该方程其中的一个根一定是( )A .x =﹣2B .x =﹣3C .x =1D .x =2 【解答】解:当把x =﹣2代入方程ax 2+bx ﹣=0,得能得出4a ﹣2b ﹣=0,即2a ﹣b =,所以方程一定有一个根为x =﹣2,故选:A . 7.若关于x 的一元二次方程(m ﹣1)x 2+2x +m 2﹣1=0有一个根为0,则m 的值是( )A .1B .﹣1C .±1D .±2【解答】解:根据题意,将x =0代入方程,得:m 2﹣1=0,解得:m =1或m =﹣1,又m ﹣1≠0,即m ≠1,∴m =﹣1,故选:B .8.若a 是方程x 2﹣2x ﹣1=0的解,则代数式﹣2a 2+4a +2020的值为 .【解答】解:∵a 是方程x 2﹣2x ﹣1=0的解,∴a 2﹣2a ﹣1=0,即a 2﹣2a =1,∴﹣2a 2+4a +2020=﹣2(a 2﹣2a )+2020=﹣2×1+2020=2018.故答案为:2018.题型三:解一元二次方程考向1:不含参数的一元二次方程9.(1)(雅礼)解方程:2212x x x --= (2)(广益)解方程:22350x x --=(3)(雅礼)解方程:04522=-+x x (4)(麓山) ()2325x -= 【解答】解:(1)511+=x ,512-=x ; (2)251=x ,12-=x ; (3)457451+-=x ,457452--=x ; (4)81=x ,22-=x 。

2022届高考数学一轮专题复习_函数与方程思想(含解析)

2022届高考数学一轮专题复习_函数与方程思想(含解析)
3.已知点A是椭圆 + =1上的一个动点,点P在线段OA的延长线上,且 · =48,则点P的横坐标的最大值为( )
A.18 B.15 C.10D.
答案:C 当点P的横坐标最大时,射线OA的斜率k>0,设OA:y=kx,k>0,与椭圆 + =1联立解得xA= .又 · =xAxP+k2xAxP=48,解得xP= = = ,令9+25k2=t>9,即k2= ,则xP= = ×25 =80 ≤80× =10,当且仅当t=16,即k2= 时取等号,所以点P的横坐标的最大值为10,故选C.
10.已知函数f(x)= ,x∈[0,1].
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
解:(1)f′(x)= =- .
令f′(x)=0,解得x= 或x= (舍去).
从而当x∈[0,1]时,有g(x)∈[g(1),g(0)].又g(1)=1-2a-3a2,g(0)=-2a,
即当x∈[0,1]时,有g(x)∈[1-2a-3a2,-2a].对于任意x1∈[0,1],f(x1)∈[-4,-3],
存在x0∈[0,1]使得g(x0)=f(x1)成立,则[1-2a-3a2,-2a]⊇[-4,-3].即
当x变化时,f′(x),f(x)的变化情况如下表:
x
0
1
f′(x)
不存在

0

不存在
f(x)

-4
-3
∴函数f(x)的单调增区间是 ,单调减区间是 .
当x∈[0,1]时,f(x)的值域为[-4,-3].
(2)g′(x)=3(x2-a2).∵a≥1,当x∈(0,1)时,g′(x)<3(1-a2)≤0,因此当x∈(0,1)时,g(x)为减函数,

函数与方程的思想详解

函数与方程的思想详解

专题函数与方程思想一、考点回顾函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

二、经典例题剖析(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个)1. (湖北卷)关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( ).A. 0B. 1C. 2D. 4解析:本题是关于函数、方程解的选择题,考查换元法及方程根的讨论,属一题多选型试题,要求考生具有较强的分析问题和解决问题的能力.思路分析:1. 根据题意可令|x 2-1|=t(t≥0),则方程化为t 2-t +k =0,(*)作出函数t =|x 2-1|的图象,结合函数的图象可知①当t =0或t >1时,原方程有两上不等的根,②当0<t <1时,原方程有4个根,③当t =1时,原方程有3个根.(1)当k =-2时,方程(*)有一个正根t =2,相应的原方程的解有2个;(2)当k =14时,方程(*)有两个相等正根t =12,相应的原方程的解有4个; (3)当k =0时,此时方程(*)有两个不等根t =0或t =1,故此时原方程有5个根;(4)当0<k <14时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相应的满足方程|x 2-1|=t 的解有8个,故选A.2. 由函数f(x)=(x 2-1)2-|x 2-1|的图象(如下图)及动直线g(x)=k 可得出答案为A.3. 设t =|x 2-1|(t≥0),t 2-t +k =0,方程的判别式为Δ=1-4k ,由k 的取值依据Δ>0、△=0、△<0从而得出解的个数.4. 设函数f(x)=,利用数轴标根法得出函数与x 轴的交点个数为5个,以及函数的单调性大体上画出函数的图象,从而得出答案A. 答案:A点评:思路1、思路2、思路4都是利用函数图象求解,但研究的目标函数有别,思路2利用函数的奇偶性以及交轨法直观求解,很好地体现了数形结合的数学思想,是数形结合法中值得肯定的一种方法;思路3利用方程的根的个数问题去求解,但讨论较为复杂,又是我们的弱点,有利于培养我们思维的科学性、严谨性、抽象性、逻辑推理能力等基本素质.2. (广东卷)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ). A. 5 B. 4 C. 3 D. 2解析:设等差数列的首项为a 1,公差为d 据题意得:答案:C点评:运用等差、等比数列的基本量(a 1,d ,q)列方程,方程组是求解数列基本问题的通法.3. (安徽卷)已知<α<π,tanα+cotα=-.(1)求tanα的值;(2)求的值.解析:(1)由tanα+cotα=-103得3tan2α+10tanα+3=0,即tanα=-3或tanα=-13, 又3π4<α<π,所以tanα=-13=为所求.答案: 点评:第(1)问是对方程思想方法灵活考查,能否把条件tanα+cotα=-103变形为关于tanα的一元二次方程,取决于解题的目标意识和是否对方程思想方法的深刻把握和理解.4. (江西卷)若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值是( ).A. 0 B. -2 C. -52D. -3 解析:与x 2+ax +1≥0在R上恒成立相比,本题的难度有所增加.思路分析:1. 分离变量,有a≥-(x +1x ),x ∈(0,12]恒成立.右端的最大值为-52,故选C.2. 看成关于a 的不等式,由f(0)≥0,且f(12)≥0可求得a 的范围. 3. 设f(x)=x 2+ax +1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.4. f(x)=x 2+1,g(x)=-ax ,则结合图形(象)知原问题等价于f(12)≥g(12),即a≥-52.5. 利用选项,代入检验,D不成立,而C成立.故选C.答案:C点评:思路1~4具有函数观点,可谓高屋建瓴.思路5又充分利用了题型特点.5. (全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F,A、B是抛物线上的两动点,且(λ>0).过A 、B两点分别作抛物线的切线,设其交点为M.(1)证明为定值; (2)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值.解:(1)证明:由已知条件,得F(0,1),λ>0.设A(x 1,y 1),B(x 2,y 2).由,得(-x 1,1-y 1)=λ(x 2,y 2-1),即将①式两边平方并把代入得 ③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4,抛物线方程为y =14x 2,求导得y′=12x.所以过抛物线上A 、B 两点的切线方程分别是y =12x 1(x -x 1)+y 1,y =12x 2(x -x 2)+y 2, 即. 解出两条切线的交点M 的坐标为,所以= .所以为定值,其值为0. (2)由(1)知在△ABM 中,FM ⊥AB ,因而S =12|AB| |FM|. |FM|=====.因为|AF|、|BF|分别等于A 、B 到抛物线准线y =-1的距离,所以|AB|=|AF|+|BF|=y 1+y 2+2=λ+1λ+2=()2.于是S =12|AB| |FM|=12()3由≥2知S≥4,且当λ=1时,S 取得最小值4.点评:在解析几何中考查三角形面积最值问题是高考的重点和热点,求解的关键是建立面积的目标函数,再求函数最值,至于如何求最值应视函数式的特点而定,本题是用均值定理求最值的.6. 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x <0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( ).A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C. (-∞,-3)∪(3,+∞) D. (-∞,-3)∪(0,3)解析:以函数为中心,考查通性通法,设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R 上的奇函数和偶函数,所以F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)为奇函数.又当x <0时,F′(x)=f ′(x)g(x)+f(x)g′(x)>0,所以x <0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F(x)也为增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3),所以选D.答案:D点评:善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.题中就是构建函数F(x)=f(x)g(x),再根据题意明确该函数的性质,然后由不等式解集与函数图象间的关系使问题获得解决的.7. 函数f(x)是定义在[0,1]上的增函数,满足f(x)=2f(x 2)且f(1)=1,在每一个区间(](i =1,2……)上,y =f(x)的图象都是斜率为同一常数k 的直线的一部分.(1) 求f(0)及f(12),f(14)的值,并归纳出f()(i =1,2,……)的表达式; (2)设直线x =,x =,x 轴及y =f(x)的图象围成的梯形的面积为a i (i =1,2,……),记S(k)=lim n→∞(a 1+a 2+…a n ),求S(k)的表达式,并写出其定义域和最小值. 解析:以函数为细节,注重命题结构网络化,(1)由f(0)=2f(0),得f(0)=0.由f(1)=2f(12)及f(1)=1,得 f(12)=12f(1)=12.同理,f(14)=12f(12)=14. 归纳得f()=(i =1,2,……).(2)当<x≤=时,所以{a n }是首项为12(1-k 4),公比为14的等比数列,所以.S(k)的定义域为{k|0<k≤1},当k =1时取得最小值12. 点评:高考命题寻求知识网络化已是大势所趋,而函数是把各章知识组合在一起的最好的“粘合剂”.高考试题注重知识的联系,新而不偏,活而不怪.这样的导向,就要求在学习中必须以数学思想指导知识、方法的运用,注意培养我们用联系的观点去思考问题的习惯.8. 对任意实数k ,直线:y =kx +b 与椭圆:(0≤θ<2π)恒有公共点,则b 取值范围是 .解析:方法1,椭圆方程为,将直线方程y =kx +b 代入椭圆方程并整理得. 由直线与椭圆恒有公共点得化简得由题意知对任意实数k,该式恒成立,则Δ′=12(b-1)2-4[16-(b-1)2]≤0,即-1≤b≤3方法2,已知椭圆与y轴交于两点(0,-1),(0,3).对任意实数k,直线:y=kx+b与椭圆恒有公共点,则(0,b)在椭圆内(包括椭圆圆周)即有≤1,得-1≤b≤3.点评:方法1是运用方程的思想解题,这是解析几何变几何问题为代数问题的方法.方法2运用数形结合的思想解题,是相应的变代数问题为几何问题的方法.高考试题中设置一题多解的试题就是为了考查学生思维的深度和灵活运用数学思想方法分析问题和解决问题的能力.评判出能力与素养上的差异.三、方法总结与2008年高考预测(一)方法总结1.函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。

函数与方程思想在中学数学解题上的应用

函数与方程思想在中学数学解题上的应用

函数与方程思想在中学数学解题上的应用
张学晖
【期刊名称】《克拉玛依学刊》
【年(卷),期】1999(0)3
【摘要】函数与方程是中学数学课程的重要的内容,它是解决某些数学问题的工具。

(1)函数思想: 所谓函数思想就是运用变化的观点分析和研究具体问题中的数量关系,通过函数这一形式,把数量关系表示出来并加以研究,从而使问题得以解决。

如果变量间的数量关系是用解析式的形式表示出来的,那么就可以把解析式看作是一个方程,通过解方程,或对方程的研究,使问题得以解决。

可以看出,函数思想和方程思想
是不可分的、是解题过程中互相依赖的两个环节。

若题目本身就已是函数问题,则直接解决即可;若题目本身不是函数问题,则须先列函数式再进行解决。

【总页数】2页(P31-32)
【关键词】函数与方程;数学解题;函数思想;函数问题;数量关系;中学数学课程;二次
函数;解析式;方程思想;函数式
【作者】张学晖
【作者单位】新疆克拉玛依文理学院基础部
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.浅谈函数与方程思想在中学数学中的应用 [J], 周步彩
2.浅谈函数与方程思想在中学数学中的应用 [J], 王玉琴
3.浅谈函数与方程思想在中学数学中的应用 [J], 豆贵学
4.妙法函数号令天下,方程不出谁与争锋——函数与方程的思想在解三角形的应用问题中的教学研究 [J], 柳汉伟
5.函数与方程思想在中学数学中的应用 [J], 张莉
因版权原因,仅展示原文概要,查看原文内容请购买。

函数与方程思想专题

函数与方程思想专题

函数与方程思想专题淮南三中 蔡田1 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函 数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。

2方程的思想,是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

3函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x 轴交点问题,方程f(x)=a 有解,当且仅当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。

函数与方程都是中学数学中最为重要的内容。

而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点。

例1.若a 、b 是正数,且满足ab=a+b+3,求ab 的取值范围。

解析:方法一:(看成函数的值域)∵3++=b a ab,∴()31+=-a a b ∵1=a 不满足上式,∴1≠a∴13-+=a ab ,由于0>b ,∴013>-+a a 可得1>a 或3-<a (舍) ∴514)1(14)1(5)1(131322+-+-=-+-+-=-+=-+⋅=a a a a a a a a a a a ab∵1>a ,∴01>-a 由基本不等式得9≥ab当且仅当14)1(-=-a a,即3=a 时,等号成立. ∴ab 的取值范围是[9,+∞). 方法二(看成不等式的解集) ∵a 、b 为正数, ∴ab b a 2≥+,又因为3-=+ab b a∴ab ab 23≥- 即032)(2≥--ab ab解得3≥ab 或1-≤ab (舍去)∴9≥ab ,即ab 的取值范围是[9,+∞).例2:已知a ,b ,c R ∈,0=++c b a ,01=-+bc a ,求a 的取值范围。

专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(解析版)

专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(解析版)

专题一 “四招”判断函数零点个数函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕函数零点个数的判断问题,例题说法,高效训练.【典型例题】第一招 应用函数性质,判定函数零点个数 例1.已知偶函数()()4log ,04{8,48x x f x f x x <≤=-<<,且()()8f x f x -=,则函数()()12xF x f x =-在区间[]2018,2018-的零点个数为( )A. 2020B. 2016C. 1010D. 1008 【答案】A 【解析】当08x <<时,函数()f x 与函数12xy =图象有4个交点201825282=⨯+由()4211122242f log ==>=知,当02x <<时函数()f x 与函数12xy =图象有2个交点故函数()F x 的零点个数为()2524222020⨯+⨯= 故选A .第二招 数形结合,判定函数零点个数例2.【2018届福建省永春一中、培元、季延、石光中学四校高三上第二次联考】定义在R 上的函数()f x 满足()()21f x f x +=+,且[]0,1x ∈时, ()4xf x =; (]1,2x ∈时, ()()1f f x x=. 令()()[]24,6,2g x f x x x =--∈-,则函数()g x 的零点个数为( )A. 7B. 8C. 9D. 10 【答案】B∵函数f (x )满足f (x+2)=f (x )+1,即自变量x 每增加2个单位,函数图象向上平移1个单位,自变量每减少2个单位,函数图象向下平移1个单位, 分别画出函数y=f (x )在x ∈[﹣6,2],y=12x+2的图象,∴y=f(x)在x∈[﹣6,2],y=12x+2有8个交点,故函数g(x)的零点个数为8个.故选:B.第三招应用零点存在性定理,判定函数零点个数例3.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研】已知函数.(1)讨论的单调性;(2)讨论在上的零点个数.【答案】(1)见解析;(2)见解析∴当时,在上单调递增.当时,在上单调递减,在上单调递增.(2)设,则由(1)知①当时,即,当时,,在单调递减,∴当,即,时,在上恒成立,∴当时,在内无零点.当,即,时,,根据零点存在性定理知,此时,在内有零点,∵在内单调递减,∴此时,在有一个零点.②当时,即,当时,,在单调递增,,.∴当,即时,,根据零点存在性定理,此时,在内有零点. ∵在内单调递增,∴此时,在有一个零点.当时,,∴此时,在无零点.③当时,即,当时,;当时,;则在单调递减,在单调递增.∴在上恒成立,∴此时,在内无零点.∴综上所述:当时,在内有1个零点;当时,在有一个零点;当时,在无零点.第四招构造函数,判定函数零点个数例4.【山东省菏泽市2019届高三上学期期末】已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.【答案】(1);(2)详见解析.f’(x)min=f(a)=lna,令,得.当a≥3时,f’(x)<0在(1,3)上恒成立,这时f(x)在[1,3]上为减函数,∴,令得a=4﹣3ln3<2(舍去).综上知.(2)∵函数,令g(x)=0,得.设,,当x∈(0,1)时,φ'(x)>0,此时φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ’(x)<0,此时φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是(x)的最大值点,φ(x)的最大值为.又φ(0)=0,结合φ(x)的图象可知:①当时,函数g(x)无零点;②当时,函数g (x )有且仅有一个零点;③当时,函数g (x )有两个零点;④a≤0时,函数g (x )有且只有一个零点; 综上所述,当时,函数g (x )无零点;当或a ≤0时,函数g (x )有且仅有一个零点;当时,函数g (x )有两个零点.【规律与方法】函数零点个数的求解与判断:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.(4)构造函数模型,判断零点个数.构造函数可根据题目不同,直接做差构造函数、分离参数后构造函数、先求导数再构造函数、先换元再构造函数等.【提升训练】1.【浙江省杭州地区(含周边)重点中学2019届高三上期中】已知定义在R 上的奇函数,满足当时,则关于x 的方程满足A .对任意,恰有一解B .对任意,恰有两个不同解C .存在,有三个不同解D .存在,无解【答案】A 【解析】 当时,,,时,;时,,在上递减,在上递增,,在上递增,又x 大于0趋近于0时,也大于0趋近于0;x 趋近于正无穷时,也趋近于正无穷,又为R上的奇函数,其图象关于原点对称,结合图象知,对任意的a,方程都恰有一解.故选:A.2.【吉林省延边州2019届高三2月复检测】已知函数在上可导且,其导函数满足,对于函数,下列结论错误的是( )A.函数在上为单调递增函数B.是函数的极小值点C.函数至多有两个零点D.时,不等式恒成立【答案】D若,则有2个零点,若,则函数有1个零点,若,则函数没有零点,故正确;由在递减,则在递减,由,得时,,故,故,故错误,故选D.3.已知函数()y f x =的图像为R 上的一条连续不断的曲线,当0x ≠时,()()'0f x f x x+>,则关于x 的函数()()1g x f x x=+的零点的个数为( ) A .0 B .1 C .2 D .0或2 【答案】A4.【新疆乌鲁木齐市2019届高三一模】已知函数.(Ⅰ)若的图像在点处的切线与直线平行,求的值;(Ⅱ)若,讨论的零点个数. 【答案】(Ⅰ)(Ⅱ)1个【解析】 (Ⅰ)函数, 导数为,, 图象在点处的切线斜率为,由切线与直线平行,可得,解得; (Ⅱ)若,可得,由,可得(舍去),即的零点个数为; 若,由,即为,可得,,设,, 当时,,递减;当时,,递增,可得处取得极大值,且为最大值,的图象如图:由,即,可得和的图象只有一个交点,即时,的零点个数为,综上可得在的零点个数为.5.【辽宁省大连市2019届高三下学期第一次(3月)双基测试】已知函数f(x)=lnx+ax2-x(x>0,a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)求证:当a≤0时,曲线y=f(x)上任意一点处的切线与该曲线只有一个公共点.【答案】(Ⅰ)见解析;(Ⅱ)见解析【解析】(Ⅰ)f′(x)=+2ax-1=(x>0),设g(x)=2ax2-x+1(x>0),(1)当0<a<时,g(x)在(0,),(,+∞)上大于零,在(,)上小于零,所以f(x)在(0,),(,+∞)上递增,在(,)上递减,(2)当a≥时,g(x)≥0(当且仅当a=,x=2时g(x)=0),所以f(x)在(0,+∞)上单调递增,(3)当a=0时,g(x)在(0,1)上大于零,在(1,+∞)上小于零,所以f(x)在(0,1)上单调递增,在(1,+∞)单调递减,(4)当a<0时,g(x)在(0,)上大于零,在(,+∞)上小于零,所以f(x)在(0,)上递增,在(,+∞)上递减;(Ⅱ)曲线y=f(x)在点(t,f(t))处的曲线方程为:y=(+2at-1)(x-t)+lnt+at2-t,曲线方程和y=f(x)联立可得:lnx+ax2-(+2at)x-lnt+at2+1=0,设h(x)=lnx+ax2-(+2at)x-lnt+at2+1(x>0),h′(x)=,当a≤0时,在(0,t)h′(x)>0,在(t,+∞)h′(x)<0,故h(x)在(0,t)递增,在(t,+∞)递减,又h(t)=0,故h(x)只有唯一的零点t,即切线与该曲线只有1个公共点(t,f(t)).6.【四川省成都石室中学2019届高三第二次模拟】已知函数,. (Ⅰ)当,函数图象上是否存在3条互相平行的切线,并说明理由?(Ⅱ)讨论函数的零点个数.【答案】(Ⅰ)存在;(Ⅱ)详见解析.【解析】(Ⅰ),,,则函数在单调递减,上单调递增,上单调递减,因为,,,,,所以存在切线斜率,使得,,,,所以函数图象上是存在3条互相平行的切线.(Ⅱ),当,有;,在上单调递增;所以函数存在唯一一个零点在内;当,有,;,在上单调递增;所以函数存在唯一一个零点在内;当,有,∴在上单调递增,在上单调递减,在上单调递增,,,,,,所以函数一个零点在区间内,一个零点在区间内,一个零点在内.所以函数有三个不同零点.综上所述:当函数一个零点;当函数三个零点.7.【浙江省金华十校2019届高三上学期期末】已知,,其中,为自然对数的底数.若函数的切线l经过点,求l的方程;Ⅱ若函数在为递减函数,试判断函数零点的个数,并证明你的结论.【答案】Ⅰ;Ⅱ见解析Ⅱ判断:函数的零点个数是0,下面证明恒成立,,故,若在递减,则,因此,要证明对恒成立,只需证明对恒成立,考虑等价于,记,,先看,,令,解得:,令,解得:,故在递减,在递增,,再看,.令,解得:,令,解得:,故在递增,在递减,.,且两个函数的极值点不在同一个x处,故对恒成立,综上,对恒成立,故函数函数零点是0个.8.【辽宁省丹东市2019届高三总复习质量测试(一)】已知函数.(1)当时,讨论的单调性;(2)证明:当且时,只有一个零点.【答案】(1)详见解析;(2)详见解析.【解析】(1).当时,由得,由得,在单调递减,在单调递增.当时,由得,由得或,在单调递减,在和单调递增.令,,当时,,故在单调递增,所以,在单调递增,所以,因此.因为在单调递增,所以在有唯一零点.所以只有一个零点.综上,当且时,只有一个零点.9.【云南师范大学附属中学2019届高三上学期第一次月考】已知函数.求的单调区间和极值;当时,证明:对任意的,函数有且只有一个零点.【答案】(1)见解析;(2)见解析【解析】解:函数的定义域为,,当时,,在定义域上单调递增,无极值;当时,由,得,当时,,得的单调递增区间是;当时,,得的单调递减区间是,故的极大值为,无极小值.由,得,当时,,则在上单调递增;当时,,则在上单调递减,所以,于是,则在上单调递减.设,则,由,得,当时,,则在上单调递减;当时,,则在上单调递增,所以,即当时,,所以当时,,对任意的,有当时,,有;当时,有,又在上单调递减,所以存在唯一的,有;当时,,有,当时,有,又在上单调递减,所以存在唯一的,有,综上所述,对任意的,方程有且只有一个正实数根,即函数有且只有一个零点.10.【2019届高三第一次全国大联考】已知函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数的极值点;(3)讨论函数零点的个数.【答案】(1)在上单调递增;在上单调递减;(2)函数无极大值点,有2个极小值点,分别为和;(3)详见解析.(2)先考虑时的情况,当时,则;所以当时,;当时,;所以函数在上单调递减,在上单调递增.又因为函数的图象关于直线对称,所以在和上单调递减,在和上单调递增.所以函数无极大值点,有2个极小值点,分别为和.令,则.由,解得;由,解得,所以在上递增,在上递减,所以,当时,注意到,知此时在上单调递减,在上单调递增,且,这表明的图象与轴相切,所以此时函数在上只有1个零点,且为;当或时,,又当或时,,所以此时函数在上有2个零点,一个零点是,另一个零点在区间或内.又由函数的图象关于直线对称,综上可得,当或时,函数有2个零点;当或时,函数有4个零点.11.【2019年四川省达州市高考一诊】已知,函数,.求证:;讨论函数零点的个数.【答案】(1)见解析;(2)见解析解:,,,,,方程有两个不相等的实根,分别为,,且,,当时,,递减,当时,,递增,,,,即,.设,则,是减函数,当,即时,,函数只有一个零点,当,即时,,函数没有零点,当,即时,,且,由知,,若,则有,,函数有且只有一个大于的零点,又,即函数在区间有且只有一个零点,综上,当时,函数有两个零点;当时,函数只有一个零点,当时,函数没有零点.12.【北京延庆区2019届高三一模】已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)当时,求函数在上区间零点的个数.【答案】(1)(2)在区间上单调递增,在区间上单调递减(3)见解析【解析】(1)当时,,,,,切点,所以切线方程是.(2),令,、及的变化情况如下增减所以,在区间上单调递增,在区间上单调递减.(3)由(2)可知的最大值为,(1)当时,在区间单调递增,在区间上单调递减.由,故在区间上只有一个零点 .(2)当时,,,,且 .因为,所以,在区间上无零点.综上,当时,在区间上只有一个零点,当时,在区间上无零点.13.【广东省江门市2019届高考模拟(第一次模拟)】设函数,是自然对数的底数,是常数.(1)若,求的单调递增区间;(2)讨论曲线与公共点的个数.【答案】(1)的单调递增区间为(或);(2)或时,两曲线无公共点;或时,两曲线有一个公共点;时,两曲线有两个公共点 .(I)时,有一个零点 .(II)时,由解得,.当时,;当时,,在取最小值 ,①时,,有一个零点.②时,,无零点 .③时,,由知,在有一个零点,即在有一个零点;由指数函数与幂函数单调性比较知,当且充分大时,,所以在有一个零点,即在有一个零点.从而有两个零点 .(III)时,,单调递减,,,所以在有一个零点,从而在定义域内有一个零点 .(IIII)时,无零点 .14.【安徽省六安市毛坦厂中学2019届高三3月联考】设函数.(1)试讨论函数的单调性;(2)若,证明:方程有且仅有3个不同的实数根.(附:,,)【答案】(1)详见解析;(2)详见解析.【解析】(1)由,得,令,所以,所以当时,,恒成立,即恒成立,所以单调递增;即,所以单调递减;当时,,即,所以单调递增.综上,当时,在上单调递增;当时,的单调递增区间为,;的单调递减区间为.(2)当时,,由(1)知,函数在上单调递增,在上单调递减,在上单调递增,所以当时,函数有极大值,且,当时,函数有极小值,且.又因为,,所以直线与函数的图象在区间上有且仅有3个交点,所以当时,方程有且仅有3个不同的实数根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01 函数与方程思想思想方法诠释1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想.2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想.【典例讲解】要点一 函数与方程思想在函数、方程、不等式中的应用[解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2-1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪t 2-ln t 2+1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2=0有两个不等正实根,所以⎩⎪⎨⎪⎧Δ=1-4t 2>0,t 2>0,解得-12<t <12,且t ≠0,所以实数t 的取值范围是⎝⎛⎭⎫-12,0∪⎝⎛⎭⎫0,12. [答案] (1)D (2)C函数与方程思想在函数、方程、不等式中的应用技巧(1)求字母(式子)的值的问题往往要根据题设条件构建以待求字母(式子)为元的方程(组),然后由方程(组)求得.(2)求参数的取值范围一般有两种途径:其一,充分挖掘题设条件中的不等关系,构建以待求字母为元的不等式(组)求解;其二,充分应用题设中的等量关系,将待求参数表示成其他变量的函数,然后,应用函数知识求值域.(3)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.一般地,已知存在范围的量为变量,而待求范围的量为参数.【训练】1.若正数a ,b 满足:1a +2b =1,则2a -1+1b -2的最小值为( ) A .2 B.322 C.52 D .1+324[解析] 由a ,b 为正数,且1a +2b =1,得b =2a a -1>0,所以a -1>0,所以2a -1+1b -2=2a -1+12a a -1-2=2a -1+a -12≥2 2a -1·a -12=2,当且仅当2a -1=a -12和1a +2b =1同时成立,即a =b =3时等号成立,所以2a -1+1b -2的最小值为2,故选A. [答案] A【训练】2.(2017·豫南九校联考)若关于x 的方程2-2-|x +2|=2+a 有实根,则实数a 的取值范围是________. [解析] 令f (x )=2-2-|x +2|,要使方程f (x )=2+a 有实根,只需2+a 是f (x )值域内的值,又可知f (x )的值域为[1,2),∴1≤2+a <2,解得-1≤a <0.[答案] [-1,0)要点二 函数与方程思想在数列中的应用[思维流程] (1)由已知递推关系式―→求a n ―→(2)由已知方程构造函数―→研究所构造函数的性质―→得结果 [解析] (1)∵a n +1-a n =2n ,∴当n ≥2时,a n -a n -1=2(n -1),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -2)+(2n -4)+…+2+33=n 2-n +33(n ≥2). 又a 1=33=1-1+33,故a 1满足上式,∴a n =n 2-n +33(n ∈N *),∴a n n =n +33n-1, 令f (x )=x +33x -1(x >0),则f ′(x )=1-33x 2. 令f ′(x )=0,得x =33,易知当x ∈(0,33)时,f ′(x )<0,当x ∈(33,+∞)时,f ′(x )>0,∴f (x )在区间(0,33)上递减,在区间(33,+∞)上递增,又5<33<6,且f (5)=5+335-1=535,f (6)=6+336-1=212,f (5)>f (6), ∴当n =6时,a n n 有最小值212. (2)构造函数f (x )=x 5+2016x ,则f (x )是奇函数,且在R 上递增,依题意得, f (1-a 1008)=-f (1-a 1009),又-f (1-a 1009)=f (a 1009-1),则f (1-a 1008)=f (a 1009-1),所以1-a 1008=a 1009-1,即a 1008+a 1009=2,所以S 2016=a 1+a 20162×2016=a 1008+a 10092×2016=2016,排除B ,D ; 由f (1-a 1008)>f (1-a 1009),得1-a 1008>1-a 1009,所以a 1008<a 1009,故选C.[答案] (1)212(2)C 函数与方程思想在数列中的应用技巧(1)数列的通项与前n 项和是自变量为整数的函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数或一元二次方程来解决.(2)解本例(2)的关键:一是会构造函数,即会通过观察已知等式的特点,构造函数,并判断所构造的函数的奇偶性与单调性;二是会利用函数的单调性,得出数列的单调性,从而比较大小;三是能灵活运用等差数列的性质.【训练】3.设等差数列{a n }的前n 项和为S n ,且满足S 15>0,S 16<0,则S 1a 2,S 2a 2,S 3a 3,…,S 15a 15中最大的项为( ) A.S 8a 8 B.S 7a 7 C.S 6a 6 D.S 9a 9[解析] 由S 15=15(a 1+a 15)2>0,得a 1+a 15>0,则a 8>0,由S 16=16(a 1+a 16)2<0,得a 1+a 16<0,则a 8+a 9<0, ∴a 9<0,∴公差d <0,所以{a n }单调递减,易知S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9<0,S 10a 10<0,…,S 15a 15<0, 且S 1<S 2<…<S 8,a 1>a 2>…>a 8,所以在S 1a 1,S 2a 2,…,S 15a 15中最大的是S 8a 8.故选A. [答案] A【训练】4.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[解析] 设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a a =a n 1q 1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2 =2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n ), 结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64.[答案] 64要点三 函数与方程思想在解析几何中的应用[解] (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32, 所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则AP 方程为kx -y +12k +14=0. 由题意BQ ⊥AP .故BQ 的直线方程为x +ky -94k -32=0. 联立直线AP 与BQ 的方程⎩⎨⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1), |PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3,因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减, 因此当k =12时,|P A |·|PQ |取得最大值2716. (1)求圆锥曲线的方程、离心率,通常利用方程的思想建立a ,b ,c 的关系式求解.(2)解决解析几何中范围、最值问题的一般思路为:在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数值域、最值的探求来使问题得以解决.【训练】5.已知圆M :x 2+y 2=r 2(r >0)与直线l 1:x -3y +4=0相切,设点A 为圆上一动点,AB ⊥x 轴于B ,且动点N 满足AB →=2NB →,设动点N 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线l 与直线l 1垂直且与曲线C 交于P ,Q 两点,求△OPQ (O 为坐标原点)面积的最大值.[解] (1)设动点N (x ,y ),A (x 0,y 0),因为AB ⊥x 轴于B ,所以B (x 0,0),由题意得,r =|4|1+3=2,所以圆M 的方程为M :x 2+y 2=4.因为AB →=2NB →,所以(0,-y 0)=2(x 0-x ,-y ),即⎩⎪⎨⎪⎧x 0=x ,y 0=2y , 将A (x,2y )代入圆M :x 2+y 2=4中,得动点N 的轨迹方程为x 24+y 2=1. (2)由题意,设直线l :3x +y +m =0,P (x 1,y 1),Q (x 2,y 2),联立直线l 与椭圆C 的方程得⎩⎨⎧y =-3x -m ,x 2+4y 2=4,消去y ,得13x 2+83mx +4m 2-4=0,Δ=192m 2-4×13(4m 2-4)=16(-m 2+13)>0,解得m 2<13,x 1+x 2=-83m 13,x 1·x 2=4(m 2-1)13. 又点O 到直线l 的距离d =|m |2,|PQ |=2|x 1-x 2|=813-m 213, 所以S △OPQ =12·|m |2·813-m 213=2m 2(13-m 2)13≤1,当且仅当m 2=13-m 2,即m =±262时,等号成立. 故△OPQ 面积的最大值为1.【思想方法总结】1.函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来解决,方程问题也可以转化为函数问题加以解决,如解方程f (x )=0,就是求函数y =f (x )的零点,再如方程f (x )=g (x )的解的问题可以转化为函数y =f (x )与y =g (x )的交点问题,也可以转化为函数y =f (x )-g (x )与x 轴的交点问题,方程f (x )=a 有解,当且仅当a 属于函数f (x )的值域.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.【强化训练】一、选择题1.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94[解析] ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0, 解得t =-4.故选B.[答案] B2.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8[解析] 解法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项a 1=13可推知数列{a n }递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.故选C.解法二:设{a n }的公差为d ,由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大.故选C.解法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和先是单调递增然后单调递减,根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,得只有当n =3+112=7时,S n 取得最大值.故选C. [答案] C3.已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( )A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)[解析] 依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1,故选A.[答案] A4.方程m +1-x =x 有解,则m 的最大值为( )A .1B .0C .-1D .-2[解析] 由原式得m =x -1-x ,设1-x =t (t ≥0),则m =1-t 2-t =54-⎝⎛⎭⎫t +122, ∵m =54-⎝⎛⎭⎫t +122在[0,+∞)上是减函数. ∴t =0时,m 的最大值为1,故选A.[答案] A5.已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-∞,0)∪(0,1)C .(-1,1)D .(-1,0)∪(0,1)[解析] 因为g (x )=x 2f (x ),所以g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )],由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1)得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,则x ∈(-1,0)∪(0,1).故选D. [答案] D6.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22 D .1 [解析] 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 202p. 设M (x ′,y ′),由PM →=2MF →,得⎩⎪⎨⎪⎧ x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧ x ′=p +x 03,y ′=y 03.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号). [答案] C二、填空题7.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于________. [解析] y ′=(x -1)-(x +1)(x -1)2=-2(x -1)2,将x =3代入,得曲线y =x +1x -1在点(3,2)处的切线斜率k =-12,故与切线垂直的直线的斜率为2,即-a =2,得a =-2.[答案] -2 8.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[解析] 利用双曲线的性质建立关于a ,b ,c 的等式求解.如图,由题意知|AB |=2b 2a,|BC |=2c . 又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac , ∴2(c 2-a 2)=3ac ,两边同除以a 2并整理,得2e 2-3e -2=0,解得e =2(负值舍去).[答案] 29.已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________. [解析] 如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h. 则其侧棱长为l =⎝⎛⎭⎫2a 22+h 2=16h +h 2. 令f (h )=16h+h 2,则f ′(h )=-16h 2+2h =2h 3-16h 2, 令f ′(h )=0,解得h =2.显然当h ∈(0,2)时,f ′(h )<0,f (h )单调递减;当h ∈(2,+∞)时,f ′(h )>0,f (h )单调递增.所以当h =2时,f (h )取得最小值f (2)=162+22=12, 故其侧棱长的最小值l =12=2 3.[答案] 2 3三、解答题10.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围.[解] (1)∵a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,∵sin A ≠0,∴sin B =12, 又△ABC 为锐角三角形,∴B =π6. (2)∵B =π6, ∴cos A +sin C =cos A +sin ⎝⎛⎭⎫π-π6-A =cos A +sin ⎝⎛⎭⎫π6+A=cos A +12cos A +32sin A =3sin ⎝⎛⎭⎫A +π3.由△ABC 为锐角三角形知,A +B >π2, ∴π3<A <π2,∴2π3<A +π3<5π6, ∴12<sin ⎝⎛⎭⎫A +π3<32, ∴32<3sin ⎝⎛⎭⎫A +π3<32, ∴cos A +sin C 的取值范围为⎝⎛⎭⎫32,32. 11.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. [解] (1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数.又S n ≤S 5,∴a 5≥0,a 6≤0,于是9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95. ∵d 为整数,∴d =-2.故{a n }的通项公式为a n =11-2n .(2)证明:由(1),得1a n a n +1=1(11-2n )(9-2n )=12⎝⎛⎭⎫19-2n -111-2n , ∴T n =12⎣⎡⎦⎤⎝⎛⎭⎫17-19+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫19-2n -111-2n =12⎝⎛⎭⎫19-2n -19. 令b n =19-2n ,由函数f (x )=19-2x的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝⎛⎭⎫1-19=49. 12.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1→·PF 2→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.[解] (1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),半焦距为c . ∵椭圆E 的离心率等于223, ∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2,∴PF 2⊥F 1F 2.∴|PF 2|=b 2a. ∵9PF 1→·PF 2→=1,∴9|PF 2→|2=9b 4a2=1. 由⎩⎨⎧ b 2=a 29,9b 4a 2=1得⎩⎪⎨⎪⎧a 2=9,b 2=1, ∴椭圆E 的方程为y 29+x 2=1. (2)∵直线2x +1=0与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直, ∴设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N ,∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2km k 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0. 即⎩⎪⎨⎪⎧ m 2-k 2-9<0,-2km k 2+9+1=0,得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0. ∵k 2+9>0,∴k 2+94k 2-1<0, ∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.。

相关文档
最新文档