离子选择性电极法
离子选择性电极法
3)灵敏度高,测定范围宽, 氟离子选择电极法的检测范围
10-1~10-6mol/L
4)易实现连续分析和自动分析。
2020/6/15
4
氟离子选择性电极测定法
Ag/AgCl内参比电极
测定F-的浓度时
0.1mol/LKF-0.1mol/LNaCl LaF3单晶片 参比电极 试液 F-选择性电极
2020/6/15
17
2020/6/15
15
6 计算 GBZ159将采样体积换算成标准采样体积; 按下式计算空气中氟的浓度:
m
C =―――――
Vo 式中:C - 空气中氟的浓度,mg/m3; m - 测得样品溶液中氟的含量, μg ; Vo- 标准采样体积,L。 时间加权平均容许浓度按GBZ 159规定计算。
2020/6/15
2020/6/15
12பைடு நூலகம்
3 试剂 实验用水为蒸馏水。
3.1 盐酸,ρ20=1.18g/ml。 3.2 氨水,ρ25=0.9g/ml。 3.3 浸渍液:溶解8g 氢氧化钠于水中,加入20ml丙三醇,用水稀释
至1L。 3.4 盐酸溶液,0.5mol/L:4.2ml盐酸加水至100ml。 3.5 氨水溶液,6mol/L:取42ml氨水加水至100ml。 3.6 指示剂:0.1g 溴甲酚绿和3ml 氢氧化钠溶液(2g/L)一起研磨均匀,
2020/6/15
8
总离子强度调节缓冲溶液(total ionic strength adjustment buffer, TISAB):
直接电位法中加入的一种不含被测离子、不污损电 极的浓电解质溶液,有固定离子强度、保持液接电位稳 定的离子强度调节剂、起pH缓冲作用的缓冲剂、掩蔽干 扰离子的掩蔽剂组成。
离子选择性电极法测定水中微量氟
实验一 离子选择性电极法测定水中微量氟实验日期:______ 同组人:________________ 成绩:____一、实验目的(1)掌握离子选择性电极法测定离子含量的原理和方法; (2)掌握标准曲线法和标准加入法的适用条件; (3)了解使用总离子强度调节缓冲溶液的意义和作用; (4)熟悉氟电极和饱和甘汞电极的结构和使用方法; (5)掌握酸度计的使用方法。
二、实验原理饮用水中氟含量的高低对人体健康有一定影响,氟的含量太低易得龋齿,过高则会发生氟中毒现象,适宜含量为0.5mg ·L -1左右。
因此,监测饮用水中氟离子含量至关重要。
氟离子选择性电极法已被确定为测定饮用水中氟含量的标准方法。
离子选择性电极是一种电化学传感器,它可将溶液中特定离子的活度转换成相应的电位信号。
氟离子选择性电极的敏感膜为LaF 3单晶膜(掺有微量EuF 2,利于导电),电极管内装有0.1mol ·L -1 NaCl-NaF 组成的内参比溶液,以Ag-AgCl 作内参比电极。
当氟离子选择电极(作指示电极)与饱和甘汞电极(参比电极)插入被测溶液中组成工作电池时,电池的电动势正在一定条件下与F -离子活度的对数值成线性关系:--=F S K E αlg式中,K 值在一定条件下为常数;S 为电极线性响应斜率(25℃时为0.059V)。
当溶液的总离子强度不变时,离子的活度系数为一定值,工作电池电动势与F -离子浓度的对数成线性关系:--=F c S K E lg '为了测定F -的浓度,常在标准溶液与试样溶液中同时加入相等的足够量的惰性电解质以固定各溶液的总离子强度。
试液的pH 对氟电极的电位响应有影响。
在酸性溶液中H +离子与部分F -离子形成HF 或HF 2-等在氟电极上不响应的形式,从而降低了F -离子的浓度。
在碱性溶液中,OH -在氟电极上与F -产生竞争响应,此外OH -也能与CaF 3晶体膜产生如下反应:CaF3+3OH-—→La(OH)3+3F-由此产生的干扰电位响应使测定结果偏高。
离子选择性电极法测定水样中氟离子的含量
离子选择性电极法测定水样中氟离子的含量一、测定目的掌握离子选择电极法的测定原理及测定方法学会正确使用氟离子选择性电极二、测定原理1. 氟电极与饱和甘汞电极组成的电池可以表示为:NaCl(0.3 mol·L-1) ︱AgCl‖F-试液︱LaF3(10-3mol·L-1), NaF(10-3mol·L-1),2. 电池电动势E与氟离子浓度度的关系式为:E=Eo-2.303RT/F·lgc-=Eo-0.059 lgc-E 和lgc-成直接关系,2.303RT/F为直线的斜率,即电极的斜率。
3. 电动势E与lg[F-]成线性关系。
因此作出E对lg[c-]的标准曲线,即可由水样测得的E, 从标准曲线上求得水样中氟离子浓度。
三.仪器与试剂1. 仪器(1)离子计或pH/mV计(PHS-25型酸度计),(2)氟离子选择性电极,(使用前用去离子水浸泡)(3)饱和甘汞电极。
(4)100ml聚乙烯杯每组7个(5)移液管10ml,5ml各一个(6)容量瓶1000ml,100ml,50ml2. 试剂(1)盐酸2mol/L(2)硫酸1.84g/L(3)总离子强度缓冲液(TASBI)。
量取约500ml水于1L烧杯内,加入57毫升冰乙酸,58克氯化钠,和4.0g环乙二胺四乙酸,搅拌溶解,置于冷水浴中并搅拌加入6mol/L氢氧化钠,使pH为5.0---5.5之间,转入1000毫升容量瓶中,稀释至刻线,摇匀。
(4)氟化钠标准溶液,称取0.2210g氟化钠(预先在105—110摄氏度处理2小时或500—650摄氏度处理40分钟,在干燥器内冷却)用去离子水溶液溶解并稀释至1L,摇匀。
储存于聚乙烯瓶中,备用为100ug/mL。
(5)氟化物标准溶液用无分度吸管吸取氟化钠标准储备液10.00ml于100ml容量瓶加去离子水至标线,摇匀储存于聚乙烯瓶中,浓度为10.0ug/L。
(6)NaF(10-3mol·L-1),四、测定步骤1. 将氟电极和甘汞电极接好,开通电源,预热2. 清洗电极:取去离子水50~60mL至100mL的烧杯中,放入搅拌磁子,开启搅拌器,直到读数大于规定值260mV。
第八节离子选择性电极法要点
8
总离子强度调节缓冲溶液(total ionic strength adjustment buffer, TISAB):
直接电位法中加入的一种不含被测离子、不污损电 极的浓电解质溶液,有固定离子强度、保持液接电位稳 定的离子强度调节剂、起pH缓冲作用的缓冲剂、掩蔽干 扰离子的掩蔽剂组成。 NaCl: 0.1mol/L, HAc:0.25mol/L, NaAc0.75 mol/L, 柠檬酸钠 0.001 mol/L pH=5.8, 总离子强度为1.75
离子选择电极法
02:13
1
离子选择性电极
1)概念:是一类电化学传感器,又称膜电极。利用膜材
料对溶液中某种离子产生选择性响应,来指示该离子 的离子活度。 2)结构:敏感膜、内参比电极、内参比溶液。 敏感膜、内参比溶液均含与待测离子相同的离子。 内参比电极:Ag/AgCl 内参液:待测离子+Cl敏感膜
02:13
2
膜电位:电极置于溶液中时,膜电极和溶液界面发生离子 交换及扩散作用,改变了两相界面原有的电荷分布,形成 了双电层,产生了膜电位 由于内参比电极电位恒定,内参比溶液的有关离 子活度恒定,所以离子选择电极电位只随待测离子活度的 变化而变化 两者关系符合能斯特方程
02:13
3
离子选择电极的测量原理 离子选择电极电位不能直接测出,通常以离子选择电极 为指示电极,饱和甘汞电极为参比电极,两者插入待测溶 液中组成原电池,测量原电池的电动势以求得待测离子的 活度(稀溶液中近似等于浓度)。在一定条件下,原电池 的电动势与待测离子活度的对数呈线性关系。 离子选择电极的特点 1)选择性好。对被测离子具有较高选择性响应的离子选择电 极,共存离子干扰小,样品不需复杂的预处理,不受试样 颜色、浑浊、悬浮物、或粘度的影响。 2)操作简单,分析速度快。单次分析只需几分钟。 3)灵敏度高,测定范围宽, 氟离子选择电极法的检测范围 10-1~10-6mol/L 4)易实现连续分析和自动分析。
离子选择电极法 氟 标准
离子选择电极法氟标准
离子选择电极法(Ion-selective electrode method)是一种常用
于测量水样中特定离子浓度的方法。
离子选择电极是一种特殊的电极,能够选择性地响应特定离子的存在。
对于氟(Fluoride)离子的测量,标准的离子选择电极法可以
包括以下步骤:
1. 准备标准溶液:通过称取适量的氟化钠(NaF)固体,并溶
于已知体积(例如100 mL)的去离子水中,制备一定浓度的
氟标准溶液。
通常情况下,将500 mg的氟化钠溶解在500 mL
去离子水中可以制备出浓度约为1000 mg/L的氟标准溶液。
2. 标定离子选择电极:将离子选择电极连接到离子测量仪器上,对其进行标定。
标定时,将氟标准溶液逐步加入测量器槽中,记录下测量仪器所显示的电位值。
3. 测量样品:取待测水样,将其放入测量器槽中,并记录下测量仪器显示的电位值。
4. 构建标准曲线:根据所标定的标准溶液浓度和对应的电位值,绘制标准曲线。
通常情况下,浓度与电位之间符合一定的线性关系。
5. 根据样品的测量电位值,使用标准曲线进行定量计算,得到样品中氟离子的浓度。
需要注意的是,离子选择电极在使用时需要遵循一定的操作规范,比如保持电极的清洁和干燥,避免电极与样品接触的时间过长等。
另外,应注意采样和测量过程中的环境因素,如温度、pH值等,以保证测量结果的准确性。
具体的操作步骤和注意
事项可以参考离子选择电极的仪器说明书。
离子选择性电极法测定水中微量氟
离子选择性电极法测定水中微量氟实验目的:了解电化学在分析中的应用;了解氟电极测定氟离子的原理和方法;学会离子计的使用;掌握标准曲线法和标准加入法。
实验结果:根据标准曲线法做出E-lgC 线性曲线,得到C 水样=2.764mg ·ml -1。
根据标准加入法C 水样=0.255mg ·ml -1。
背景介绍:无机氟化物的水溶液含有F −和氟化氢根离子HF 2−。
氟化物矿物比较重要的是萤石和氟磷灰石。
在天然饮用水和食物中都有低浓度的氟化物存在,而地下水中的氟含量则要高一些。
氟化物的毒性与其反应活性和结构有关,对盐而言,则是离解出氟离子的能力。
虽然聚四氟乙烯是化学惰性且无毒的,但在炊具温度超过260 °C 后就会变性,并且在350 °C 以上分解。
氟化物主要用于有机合成、无机材料、玻璃刻蚀、口腔病防治等。
氟是牙齿及骨骼不可缺少的成分,少量氟可以促进牙齿珐琅质对细菌酸性腐蚀的抵抗力。
但氟含量过高则会发生氟中毒:主要表现为氟骨症和氟斑牙。
人体每日摄入量4mg 以上会造成中毒,损害健康。
饮用水中氟含量的高低对人体健康有一定影响,氟的含量太低易得龋齿,过高则会发生氟中毒现象,适宜含量为0.5mg ·L-1左右。
因此,监测饮用水中氟离子含量至关重要。
氟离子选择性电极法已被确定为测定饮用水中氟含量的标准方法。
实验原理:离子选择性电极是一种电化学传感器,将离子的活度转换成相应的电位。
氟电极和甘汞电极、待测溶液组成一个电池,通过测量其电位来指示氟离子的活度。
电池组成:Hg|Hg 2Cl 2,KCl(饱和)||试液|LaF 3|NaF,NaCl,AgCl|Ag 其电动势和氟离子活度的关系式为:--=F a FRT K E lg 303.2',在固定条件下,K 为常数,在加入适量惰性电解质(TISAB ),保证离子强度不变,近似把浓度当做活度,代入得:---=-=F F c K c FRT K E lg 0591.0lg 303.2'。
离子选择性电极法测定氯离子
离子选择性电极法测定氯离子
离子选择性电极法是一种测定溶液中特定离子浓度的重要分析技术。
它利用离子选择性电极测定样品中目标离子的浓度。
本文将介绍离子选择性电极法测定氯离子的原理、优点和步骤。
一、原理
氯离子选择性电极是一种有机薄膜电极,其极性反应式为:
AgCl(s) + e^- ⇌ Ag(s) + Cl^-
该电极的膜材料一般是聚氯乙烯或聚乙烯基丙烯酸酯。
电极内部填充了含有壳聚糖或氨基磺酸等选择性载体的溶液,可以选择对氯离子具有高选择性的载体,以达到准确测定氯离子浓度的目的。
二、优点
1、对氯离子具有高度选择性;
2、测量灵敏度高,响应迅速;
3、操作简便,仪器设备简单,易于操作;
4、可在线监测氯离子浓度,无需样品处理。
三、步骤
1、准备工作:将氯离子选择性电极校准好,准备好样品和标准溶液;
2、校准电极:将氯离子选择性电极放在500mL 0.1mol/L NaCl溶液中,分别记录电极电势值和温度。
然后将电极放在1.0×10^-3mol/L NaCl溶液中,测量电极电势。
将以上两组数据带入电极响应函数,求出氯离子浓度;
3、测定样品中氯离子浓度:将氯离子选择性电极放入要测试的样品中,记录电极电势值和温度,带入电极响应函数求出氯离子浓度。
在实际应用中,需要根据具体测量要求选择合适的氯离子选择性电极型号和电极响应函数,同时注意电极的维护和保养。
离子选择性电极法除了测定氯离子浓度外,还可用于测定其他离子的浓度,如钙离子、氟离子等。
离子选择电极法原理
离子选择电极法原理一、引言离子选择电极法(ISE)是一种用于测量溶液中离子浓度的分析方法。
它是基于离子选择性电极(ISE)的原理而发展起来的。
本文将详细介绍ISE法的原理。
二、离子选择性电极的构成ISE由三部分组成:电极体、内部参比电极和外部参比电极。
其中,电极体是最关键的部分,它由一个半透膜覆盖在玻璃或塑料管上,并在其表面涂上一层选择性膜。
这个膜可以通过化学反应与待测离子发生选择性作用,使得只有特定种类的离子能够穿过半透膜进入到电极体内部。
三、ISE法的原理当一个具有特定离子选择性膜的ISE放置在含有待测离子的溶液中时,这些待测离子会通过半透膜进入到电极体内部,并与内部参比电极反应,产生一个微小但稳定的电位差。
这个微小但稳定的电位差可以用来计算溶液中待测离子的浓度。
四、Nernst方程根据Nernst方程,ISE的电势与待测离子的浓度之间存在一个线性关系:E=E0+(RT/zF)ln[a]其中,E是ISE的电势,E0是参比电极的电势,R是气体常数,T是温度,z是离子的电荷数,F是法拉第常数,a是待测离子的活度。
五、ISE法的优缺点ISE法具有以下优点:1.选择性强:由于膜对特定离子有选择性作用,因此只有特定种类的离子能够进入到电极体内部。
2.灵敏度高:由于反应在半透膜表面上进行,并且只有特定种类的离子能够进入到电极体内部,因此可以检测非常低浓度的离子。
3.操作简单:与其他分析方法相比,ISE法操作简单、快速、便捷。
但是ISE法也存在以下缺点:1.响应时间长:由于反应在半透膜表面上进行,并且只有特定种类的离子能够进入到电极体内部,在某些情况下响应时间较长。
2.容易受干扰:由于膜对特定离子有选择性作用,在某些情况下容易受到其他离子的干扰。
六、总结ISE法是一种基于离子选择性电极的分析方法,其原理是利用半透膜上的选择性膜与待测离子发生选择性作用,并通过Nernst方程计算出待测离子的浓度。
ISE法具有选择性强、灵敏度高、操作简单等优点,但也存在响应时间长、容易受干扰等缺点。
离子选择性电极法测定水样中氟离子的含量
四、数据处理
标准曲线法:
绘制E~ 曲线 查出pFx, 则 绘制E~pF曲线,查出 E~ 曲线, pF= pFx-1,求出 -的浓度。 求出F 的浓度。 = - 一次标准溶液加入法:
Cx= CsVs Vx+Vs (10△E/S-1)-1 (mol/L)
总离子强度调节缓冲溶液(total ionic strength 总离子强度调节缓冲溶液 adjustment buffer, TISAB):
五、思考题
1. 什么是离子选择性电极? 什么是离子选择性电极? 2. 为什么可以使用氟离子选择性电极测定氟离子的含量? 为什么可以使用氟离子选择性电极测定氟离子的含量? 3. 测定过程中用到几支电极,分别起什么作用? 测定过程中用到几支电极,分别起什么作用? 4. 简述总离子强度调节缓冲溶液的组成及作用。 简述总离子强度调节缓冲溶液的组成及作用。 5. 自来水样品能否直接测定? 自来水样品能否直接测定? 6. 实验用到的定量分析方法有哪几种? 实验用到的定量分析方法有哪几种?
4. 用一次标准溶液加入法进行测定
在干燥的烧杯中分别加入样品25.00mL、 、 在干燥的烧杯中分别加入样品 TISAB5.00mL、二次水 、二次水20.00mL,搅拌均匀,放入搅拌 ,搅拌均匀, 磁子,插入洗净的两支电极,待读数不变稳定2min后记 磁子,插入洗净的两支电极,待读数不变稳定 后记 录电动势的值。再向此烧杯中准确加入1.00mL pF=1.00 录电动势的值。再向此烧杯中准确加入 标准溶液, 的NaF标准溶液,搅拌均匀,再次记录电动势的值。两 标准溶液 搅拌均匀,再次记录电动势的值。 次差值用△ 表示。 次差值用△E表示。
三、实验步骤
1、仪器的连接 将氟离子选择性电极与饱和甘汞电极分别与酸 度计的接口相连接,开启仪器开关,预热仪器。 度计的接口相连接,开启仪器开关,预热仪器。 2、清洗电极 取二次水50mL置于烧杯中,放入搅拌磁子, L置于烧杯中,放入搅拌磁子, 取二次水 插入氟离子选择性电极与饱和甘汞电极, 插入氟离子选择性电极与饱和甘汞电极,开动电磁 搅拌器,清洗至读数恒定。 搅拌器,清洗至读数恒定。
离子选择性电极测定法——矿物质的测定方法
离子选择性电极测定法——矿物质的测定方法一、概述 [H+]的测量关键性的问题是电位计是否能被用来测定其他离子。
最近几年这个问题已引起了广泛的重视。
事实上,许多电极已经进展为可挺直对多种阳离子和阴离子举行测定,如溴化物、钙、氯化物、氟化物、钾、钠和硫,甚至有可以测定可溶性气体的电极,如氨、CO2和O2。
因为其他离子的干扰,使得一些办法在应用上有一定的限制,通常这一问题的解决可以通过调整pH来削减干扰或通过络合作用、沉淀反应来去除干扰。
转变玻璃电极的组成可转变玻璃膜对其他离子的敏感性,一种对钾敏感的电极的膜组成为:71% SiO2、11% Na2O和18% Al2O3。
一种典型的钠离子电极可在0.000001一1mol/L或0.023一23000mg/kg范围内举行测定。
但是可能会受到银离子、锂离子,钾离子,铵离子的干扰,反应时光少于30s。
在这个系统中也可用法复合钠离子挑选性电极,其中包含了甘汞参比电极。
固态离子挑选性电极也同样牢靠。
这些电极不用法玻璃传感膜,其活性膜是由单一的经稀土元素处理的无机结晶体组成,氟电极就是一个很好的例子,其电极是由经铕处理过的氟化镧组成,转变了电荷通透性并且降低了电阻,用这种电极可以测出浓度达到0.02mg/kg浓度的氟化物。
其他普遍用法的固态离子挑选性电极同样牢靠,例如溴电极可以测定的浓度极限为0.04mg/kg,氯电极为0.178mg/kg;相应地,全部固态离子挑选性电极的响应时光都少于30s,但这些电极同样碰到其他干扰离子的干扰问题。
除了各种玻璃膜电极和固态电极外,值得强调的是,还有许多其他类型的电极,如沉淀一渗透膜,液一液膜,甚至酶电极一气体感应电极的应用也日益增强,这些电极具有气体渗透性膜和与内部缓冲溶液相衔接的pH复合电极,透过这层膜,气体能溶解于小包着复合电极的pH缓冲溶液的薄膜层中,溶解的气体引起了溶液pH的变幻,同时复合电极也能探测到这种变幻,氨、CO2、SO2和O2都能由该类电极举行测定。
离子选择电极法
离子选择电极法
离子选择电极法是一种分析离子浓度的分析方法,原理是利用离子选择性与离子浓度
之间的反比关系来测定离子浓度。
它是一种密闭系统,离子无法流失,这将影响离子的浓度,但电极传感器不受影响,这样就可以以测量离子选择性与离子浓度变化的比值作为离
子浓度的标准。
仪器包括电极电源,电极反应池,电极,变送器,零件等。
电极反应池是一种容纳离
子扩散的容器,它有两个电极,一个总是处于阳极模式的离子选择性电极,另一个是处于
阴极模式的离子选择性电极。
在反应池中,阳极电极会吸收离子,而阴极电极则传递电流
反应产生的离子,变送器将电流转换成离子浓度,从而反映离子浓度的变化。
如果要检测准确的离子浓度,必须首先准备若干溶液,分别加入相同量的离子溶液,
然后将它们设置在探针中,并将探针放入电极反应池中,建立电荷平衡。
之后,利用变送
器检测每种离子的浓度,并由此得出离子的浓度比值。
由于每种离子的离子选择电极有不
同的电位,所以离子浓度比值是与离子浓度正比的,因此可以通过测量离子选择性与离子
浓度比值来实现离子浓度的准确测定。
离子选择电极法在医学领域有着广泛的应用,例如在血液检测和尿检时常用这种方法
来测量血钠、血磷、血糖等离子。
此外,离子选择电极法还常用于水质检测,在水源中监
测有害离子,如氰化物和硫化物的浓度,确保水质的活性和安全用途。
在食品行业,离子
选择电极法也被广泛应用,常用于测量水果汁中的离子浓度,监测食物的品质及安全控制。
离子选择电极法测定水中的微量氟离子
离子选择电极法测定水中的微量氟离子
离子选择电极法测定水中的微量氟离子,是一种快速、准确、非
破坏性的分析方法。
该方法的原理是利用选择性电极,仅对氟离子产
生电势响应,从而测定水中微量氟离子的浓度。
首先,制备氟离子选择性电极。
通常使用甲基丙烯酸甲酯缩水甘
油酯共聚物为基材,加入三丙酮基叔丁基酰胺、氢氧化铯和氟络合剂,制成离子选择性膜。
将该膜涂在银-银氯化银电极上即可得到氟离子选
择性电极。
接着,进行样品的预处理。
将水样过滤、蒸干后加入少量无水乙
醇和三乙胺,使pH值保持在8-9之间。
待反应平衡后,将氟离子选择
性电极插入样品中,记录电极电位变化。
根据标准曲线,计算出样品
中氟离子的浓度。
该方法具有快速、选择性高、灵敏度高等优点。
但在实验中需注
意氟离子选择性电极的使用条件,避免电极受污染、受干扰等影响。
此外,水样的预处理和分析条件的控制也会影响分析结果。
因此,在进行氟离子选择电极法测定时,需认真准备实验,标准
化操作,并参照相关的规范进行分析。
这样才能保证测量结果的准确
性和可靠性,为水质分析和环境监测提供有力的技术支持。
第八节离子选择性电极法
参 恒定
5
♣ 电池电动势:
E= Φ –Φ参 ={ Φ0 — 2.303RT/Flga(F-)} –Φ参 = k – 0.0592 lg aF- (25℃) =K + 0.0592 pF
活度系数一定时,E与F离子浓度的对数呈线性关系
♣ 适用pH范围: 5 ~ 6(最佳5.8)
碱性体系: LaF3 + 3OH- = La(OH)3 + 3F膜表面aF-↑,结果偏高, 损坏电极
*
7
标准曲线法的特点
➢ 1操作简单,适合简单体系的样品,但要求标准 溶液和待测溶液的组成相近,溶液的离子活度 相同,温度相同。一般需要加入适当的“离子 强度缓冲剂”,以确保标准溶液和试样的离子 活度一致,同时控制溶液的PH和掩蔽干扰离子。
➢ 2可测范围广,适合批量样品分析
➢ 3即使电极响应不完全服从Nernst方程,也可得 到满意结果
离子选择电极的特点
1)选择性好。对被测离子具有较高选择性响应的离子选择电 极,共存离子干扰小,样品不需复杂的预处理,不受试样 颜色、浑浊、悬浮物、或粘度的影响。
2)操作简单,分析速度快。单次分析只需几分钟。
3)灵敏度高,测定范围宽, 氟离子选择电极法的检测范围
10-1~10-6mol/L
4)易实现连续分析和自动分析。
酸性体系: 2F-+H+=HF-2 aF-降低,结果偏低
*
6
三分析方法
1标准曲线法
配制一系列浓度不同的F标准溶液, 并分别与氟离子选择性电极和饱和甘汞 电极组成化学电池,测定其电动势,绘 制E~ loga曲线;在相同条件下,测定由 试样溶液和电极组成电池的电动势Ex, 并从标准曲线上查出对应的logax, 求出 待测离子浓度。
离子选择性电极法在碘测定中的应用
离子选择性电极法在碘测定中的应用
离子选择性电极法是一种常用的分析方法,它可以用来测定溶液中的离子浓度。
它的原理是,在电极表面上形成一层电荷屏障,使得某些离子可以通过,而其他离子则不能通过。
因此,可以通过测量电极上的电位来测定溶液中的离子浓度。
离子选择性电极法在碘测定中有着重要的应用。
碘是一种重要的微量元素,它
可以用来检测水中的污染物,也可以用来检测食品中的污染物。
碘的测定一般采用离子选择性电极法,因为它可以精确测定碘的浓度。
离子选择性电极法在碘测定中的应用非常广泛,它可以用来测定水中的碘浓度,也可以用来测定食品中的碘浓度。
此外,它还可以用来测定其他离子的浓度,如氯离子、硫酸根离子等。
离子选择性电极法在碘测定中的应用非常重要,它可以提供准确、可靠的测定
结果,为环境保护和食品安全提供重要的参考依据。
离子选择性电极法要点
碱性体系: LaF3 + 3OH- = La(OH)3 + 3F膜表面aF-↑,结果偏高, 损坏电极
酸性体系: 2F-+H+=HF-2 aF-降低,结果偏低
23:29
6
三分析方法
1标准曲线法
配制一系列浓度不同的F标准溶液, 并分别与氟离子选择性电极和饱和甘汞 电极组成化学电池,测定其电动势,绘 制E~ loga曲线;在相同条件下,测定由 试样溶液和电极组成电池的电动势Ex, 并从标准曲线上查出对应的logax, 求出 待测离子浓度。
用水稀释至250ml。 3.7 总离子强度缓冲液:称取59g 柠檬酸钠和11.6g 氯化钠,溶于水
中,加入2ml 指示剂和11.4ml冰乙酸,用氢氧化钠溶液(240g/L) 中和至溶液刚变为蓝色;加1~2 滴盐酸溶液,使溶液呈蓝绿色 (pH约为5.8);用水稀释至1L。 3.8 标准溶液:称取0.2210g 氟化钠(于110℃干燥2h),溶于水,定量 转移入1000ml 容量瓶中,稀释至刻度。贮存在塑料瓶中。此溶 液为0.10mg/ml 标准贮备液。临用前,用水稀释成10.0ug/ml 氟 标准溶液。或用国家认可的标准溶液配制。
离子选择电极的特点
1)选择性好。对被测离子具有较高选择性响应的离子选择电 极,共存离子干扰小,样品不需复杂的预处理,不受试样 颜色、浑浊、悬浮物、或粘度的影响。
2)操作简单,分析速度快。单次分析只需几分钟。
3)灵敏度高,测定范围宽, 氟离子选择电极法的检测范围
10-1~10-6mol/L
4)易实现连续分析和自动分析。
不需测标准曲线,也不需要调节离子强度,仅需标准 溶液,操作简单、快速、准确度高,适合复杂体系、离子强度 比较大、与标准溶液差别较大时。
离子选择性电极法的特点
离子选择性电极法
通常所谓离子选择电极,是指带有敏感膜的、能对离子或分子态物质有选择性响应的电极,使用此类电极的分析法属于电化学分析中的电位分析法,其特点有:
优势:
1.操作方便,迅速,不损及试液体系,也适于一些不宜用其他方法分析的样品,如有色
或混浊样品等。
2.仪器比较简单,轻便。
3。
较易用于流动监测和自动化检测。
4.电极直接响应的是离子活度,不是浓度,故对生物,医学,化学更适合,尤其是现在
微电是样儿技术的发展,使得在细胞内检测也已成为可能。
发展:离子选择电极法是70年代发展起来的技术,国际纯粹化学与应用化学协会给它的定义是:“离子选择电极是一类化学传感器,它的电位对溶液中给定的离子的活度的对数呈线性关系。
”它主要的应用依赖能斯特方程式,如下
能斯特方程式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/18
8
总离子强度调节缓冲溶液(total ionic strength adjustment buffer, TISAB):
直接电位法中加入的一种不含被测离子、不污损电 极的浓电解质溶液,有固定离子强度、保持液接电位稳 定的离子强度调节剂、起pH缓冲作用的缓冲剂、掩蔽干 扰离子的掩蔽剂组成。
不需测标准曲线,也不需要调节离子强度,仅需标准 溶液,操作简单、快速、准确度高,适合复杂体系、离子强度 比较大、与标准溶液差别较大时。
CsVs
Cx=
(10△E/S-1)-1 (mol/L)
Vx+Vs
S-斜率,可用稀释法求:测E2后在保持总离子 强度不变的情况下,溶液稀释1倍,测E3.
S E2 E3 lg 2
用水稀释至250ml。 3.7 总离子强度缓冲液:称取59g 柠檬酸钠和11.6g 氯化钠,溶于水中,
加入2ml 指示剂和11.4ml冰乙酸,用氢氧化钠溶液(240g/L)中和 至溶液刚变为蓝色;加1~2 滴盐酸溶液,使溶液呈蓝绿色(pH 约为5.8);用水稀释至1L。 3.8 标准溶液:称取0.2210g 氟化钠(于110℃干燥2h),溶于水,定量 转移入1000ml 容量瓶中,稀释至刻度。贮存在塑料瓶中。此溶 液为0.10mg/ml 标准贮备液。临用前,用水稀释成10.0ug/ml 氟 标准溶液。或用国家认可的标准溶液配制。
16
7 说明
7.1 本法的检出限为0.06 μg/ml;最低检出浓度为 0.014mg/m3(以采集75L空气样品计)。测定 范围为0.06~5.5 μ g/ml;平均相对标准偏差为 4.6%。
7.2 本法的平均采样效率为96%。
7.3 溶液的pH应控制在5~8之间。测定要在同一 温度下进行。
7.4 若分别测定氟化氢和氟化物时,采样时,前 一张用玻璃纤维滤纸,用于采集氟化物,后 一张用浸渍滤纸,用于采集氟化氢。
离子选择电极法
2020/8/18
1
离子选择性电极 1)概念:是一类电化学传感器,又称膜电极。利用膜材
料对溶液中某种离子产生选择性响应,来指示该离子 的离子活度。 2)结构:敏感膜、内参比电极、内参比溶液。 敏感膜、内参比溶液均含与待测离子相同的离子。
内参比电极:Ag/AgCl
内参液:待测离子+Cl敏感膜
2020/8/18
17
2020/8/18
2
膜电位:电极置电荷分布,形成 了双电层,产生了膜电位
由于内参比电极电位恒定,内参比溶液的有关离 子活度恒定,所以离子选择电极电位只随待测离子活度的 变化而变化
两者关系符合能斯特方程
2020/8/18
3
离子选择电极的测量原理
离子选择电极电位不能直接测出,通常以离子选择电极 为指示电极,饱和甘汞电极为参比电极,两者插入待测溶 液中组成原电池,测量原电池的电动势以求得待测离子的 活度(稀溶液中近似等于浓度)。在一定条件下,原电池 的电动势与待测离子活度的对数呈线性关系。
离子选择电极的特点
1)选择性好。对被测离子具有较高选择性响应的离子选择电 极,共存离子干扰小,样品不需复杂的预处理,不受试样 颜色、浑浊、悬浮物、或粘度的影响。
2020/8/18
12
3 试剂 实验用水为蒸馏水。
3.1 盐酸,ρ20=1.18g/ml。 3.2 氨水,ρ25=0.9g/ml。 3.3 浸渍液:溶解8g 氢氧化钠于水中,加入20ml丙三醇,用水稀释
至1L。 3.4 盐酸溶液,0.5mol/L:4.2ml盐酸加水至100ml。 3.5 氨水溶液,6mol/L:取42ml氨水加水至100ml。 3.6 指示剂:0.1g 溴甲酚绿和3ml 氢氧化钠溶液(2g/L)一起研磨均匀,
用离子选择电极测定氟离子的含量。 2 仪器 2.1 浸渍玻璃纤维滤纸:用镊子夹住滤纸,在浸渍液中浸渍10s,稍
稍沥干,放在大滤纸上,于60~80℃下烘干;注意切勿烤焦! 2.2 采样夹,滤料直径为40mm。 2.3 小型塑料采样夹,滤料直径为25mm。 2.4 空气采样器,流量0~3L/min和0~10L/min。 2.5 塑料烧杯,50ml。 2.6 磁力搅拌器。 2.7 氟离子选择性电极。 2.8 离子活度计或电极电位仪或精密pH计。
4.3对照试验:将装好浸渍玻璃纤维滤纸的采样夹带至采 样点,除不连接空气采样器采集空气样品外,其余操 作同样品,作为样品的空白对照。
2020/8/18
14
5 分析步骤 5.1样品处理:将采过样的滤纸放入塑料烧杯中,加入16ml 盐酸溶液和
2ml 水;用玻璃棒将滤纸捣碎,放入1 根铁芯塑料套搅拌子,于磁力 搅拌器上搅拌3~5min,将滤纸打成浆状。供测定。若样品液中待测 物的浓度超过测定范围,可用盐酸溶液稀释后测定,计算时乘以稀 释倍数。 5.2 工作曲线的绘制:取8 只塑料烧杯,各放2张浸渍滤纸;分别加入0.0、 0.10、0.20、0.50、1.0ml 氟标准溶液和0.20、0.50、1.0ml 标准贮备 液,各加水至2.0ml,配成0.0、1.0、2.0、5.0、10.0、20.0、50.0、 100.0μg 氟标准系列。然后按样品处理操作。处理后,向标准系列各 杯加入1.3ml 氨水溶液和2~3 滴指示剂,在搅拌下用盐酸溶液和氨 水溶液调节溶液呈蓝绿色。加5ml 总离子强度缓冲液,插入氟电极 及饱和甘汞电极,继续搅拌4~5min,停止后,测量溶液的电位 (mV)值。再搅拌1~2min,停止后,再测量电位值(mv)。如此 操作直至读数不变为止。每个浓度重复测定3 次。在半对数坐标纸 上,以mV均值(等距离坐标)对相应的氟含量(μg,对数坐标)绘制 标准曲线。 5.3样品测定:用测定标准系列的操作条件测定样品溶液和样品空白对照 溶液。测得的样品电位值减去空白对照的电位值后,由标准曲线得 氟的含量( μ g)。
NaCl: 0.1mol/L, HAc:0.25mol/L, NaAc0.75 mol/L, 柠檬酸钠 0.001 mol/L pH=5.8, 总离子强度为1.75
作用:维持待测强度恒定,使活度系数固定,以减小 换算和保证测得值的准确
2020/8/18
9
2 标准加入法
将准确体积的标准溶液加入到已知体积的试样溶液中,根 据电池电动势的变化来求得待测离子的浓度(测E1、E2)。
活度系数一定时,E与F离子浓度的对数呈线性关系
♣ 适用pH范围: 5 ~ 6(最佳5.8)
碱性体系: LaF3 + 3OH- = La(OH)3 + 3F膜表面aF-↑,结果偏高, 损坏电极
酸性体系: 2F-+H+=HF-2 aF-降低,结果偏低
2020/8/18
6
三分析方法
1标准曲线法
配制一系列浓度不同的F标准溶液, 并分别与氟离子选择性电极和饱和甘汞 电极组成化学电池,测定其电动势,绘 制E~ loga曲线;在相同条件下,测定由 试样溶液和电极组成电池的电动势Ex, 并从标准曲线上查出对应的logax, 求出 待测离子浓度。
2020/8/18
10
3格式作图法
又称连续标准加入法。在测量过程中连续多次加入标 准溶液,根据一系列的△E所对应的VS作图求得待测 离子浓度。
准确度较一次加入法高。使用计算机计算在实际斜 率偏离理论斜率时仍能得到准确结果。
2020/8/18
11
氟化氢和氟化物的离子选择电极法
1 原理 空气中氟化氢和氟化物用浸渍玻璃纤维滤纸采集,洗脱后,
Ag |AgCl(s) | KF, NaCl(0.1mol/L) | LaF3膜| 待测液| | 饱和KCl | Hg2Cl2 | Hg
ΦF-= Φ0 — 2.303RT/Flga(F-) 能斯特方程
2020/8/18
参 恒定
5
♣ 电池电动势:
E= Φ –Φ参 ={ Φ0 — 2.303RT/Flga(F-)} –Φ参 = k – 0.0592 lg aF- (25℃) =K + 0.0592 pF
2020/8/18
13
4 样品的采集、运输和保存
现场采样按照GBZ 159执行。
4.1 短时间采样:在采样点,将装好2张浸渍滤纸的采样 夹,以5L/min 流量采集15min 空气样品。
4.2 长时间采样:在采样点,将装好2张浸渍滤纸的小型 塑料采样夹,以1L/min 流量采集2~8h 空气样品。 4.3 个体采样:在采样点,将装好2张浸渍滤纸的小 型塑料采样夹佩戴在采样对象的前胸上部,尽量接近 呼吸带,以1L/min 流量采集2~8h 空气样品。
2020/8/18
7
标准曲线法的特点
➢ 1操作简单,适合简单体系的样品,但要求标准 溶液和待测溶液的组成相近,溶液的离子活度 相同,温度相同。一般需要加入适当的“离子 强度缓冲剂”,以确保标准溶液和试样的离子 活度一致,同时控制溶液的PH和掩蔽干扰离子。
➢ 2可测范围广,适合批量样品分析
➢ 3即使电极响应不完全服从Nernst方程,也可得 到满意结果
2020/8/18
15
6 计算 GBZ159将采样体积换算成标准采样体积; 按下式计算空气中氟的浓度:
m
C =―――――
Vo 式中:C - 空气中氟的浓度,mg/m3; m - 测得样品溶液中氟的含量, μg ; Vo- 标准采样体积,L。 时间加权平均容许浓度按GBZ 159规定计算。
2020/8/18
2)操作简单,分析速度快。单次分析只需几分钟。
3)灵敏度高,测定范围宽, 氟离子选择电极法的检测范围
10-1~10-6mol/L
4)易实现连续分析和自动分析。
2020/8/18
4
氟离子选择性电极测定法
Ag/AgCl内参比电极
测定F-的浓度时
0.1mol/LKF-0.1mol/LNaCl LaF3单晶片 参比电极 试液 F-选择性电极