展开与折叠的练习题

合集下载

四年级上数学8、展开与折叠(练习)

四年级上数学8、展开与折叠(练习)

八、展开与折叠 ——正方体展开图的规律1. 判断下列平面图形能折叠成正方体吗?( ) ( ) ( ) ( ) ( ) ( )1.在下面的12个展开图中,哪些可以做成没有顶盖的小方盒?()()()()()()()()()()()()2. 将下图中左边的图形折叠起来围成一个正方体,应该得到右图中的( ),先想一想,再做一做。

3.(1)如果“你”在前面,那么谁在 (2)“坚”在下,“就”在后,胜后面? 利在哪里?4.如下图是一个正方体的展开图,图中已标出三个滚动思考组号 学号 姓名利胜持是就坚太了你棒!们AB CDFR实践百花园面在正方体中的位置,F :前面;R :右面;D :下面。

试判定另外三个面A 、B 、C 在正方体中的位置。

5.如右图是一个正方体的展开图,每个面内部都标注了字母, 请根据要求填空: (1)如果D 面在左面,那么F 面在( );(2)如果B 面在后面,从左面看是D 面,那么上面是()。

6.将下面两幅图沿虚线折成一个正方体,图1相交于一个顶点处的三个面上的数字之和的最大值是多少?图2相对两个面上的数字之和最大是几?653432452611图1 图21. 在下图中所示的一个立方体的六个面上分别写有A 、B 、C 、D 、E 五个字母,其中两个面写有相同的字母。

下面是它的三种放置图,请问:哪个字母写了两遍?AC B(1)BCD(2)DEC(3)2.有四枚相同的骰子,展开图如下,将这四枚骰子 依次码好,由上往下数,第二、三、四枚骰子的上 顶面的点数之和是多少?想做就做怪味豆七嘴八舌说说你的收获!生活随处课件几何形体,我们会根据展开图判断各个面的位置,还能确定正方体展开图上各个面的位置。

我还知道六连方图中能折成正方体的规律是我觉得这节课我的表现可以评 ( ) ( ) ( )A BC DEF。

正方体的展开与折叠(通用版)(含答案)

正方体的展开与折叠(通用版)(含答案)

正方体的展开与折叠(小学五、六年级)单选题(共12道,每道8分)1.如图是一个正方体的表面展开图,把它折叠成一个正方体时,与点M重合的点是( )A.点A和点HB.点K和点HC.点B和点HD.点B和点L2.如图是一个正方体的表面展开图,把它再折回成正方体后,则下列说法:①点H与点C重合;②点D与点M、点R重合;③点B与点Q重合;④点A与点S重合.其中正确说法的序号是( )A.②④B.①④C.②③D.①③3.如图是一个正方体的表面展开图,如果将它折叠成原来的正方体,那么与边LK重合的边是( )A.ABB.FJC.IJD.NM4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是( )A. B.C. D.5.如图,有一个无盖的正方体纸盒,下底面挖去了一个小洞,沿图中粗线将其剪开展成平面图形,这个平面图形是( )A. B.C. D.6.如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同( )A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)7.明明用如图所示的硬纸片折成了一个正方体的盒子,里面装了一瓶墨水,只凭观察,选出墨水在哪个盒子中( )A. B.C. D.8.将下图正方体的相邻两面各划分成九个相同的小正方形,并分别标上“○”、“×”两符号.若下列有一图形为此正方体的展开图,则此图为( )A. B.C. D.9.如图是一个正方体的表面展开图,这个正方体是( )A. B.C. D.10.如图是一个正方体的表面展开图,这个正方体是( )A. B.C. D.11.如图是一个正方体的表面展开图,这个正方体是( )A. B. C. D.12.有一个正方体和四个展开的正方体表面图形,其中可以折叠成如图正方体的是( )A. B.C. D.正方体的展开与折叠答案与解析1答案:C解题思路:一条棱被剪开,变成了两条边,折叠以后这两条边是重合的.该图EC与EN重合,CB和NM重合,GH和GM重合,因此M与H重合,C与N重合,B与M重合,故与点M重合的点是点B和点H,故选C.试题难度:三颗星知识点:几何体的展开与折叠找重合的点2答案:A解题思路:1.解题思路:本题主要考查正方体的展开与折叠找重合的点,一条棱被剪开,变成了两条边,折叠以后这两条边是重合的;一个顶点连着三条棱,当一条棱被剪开时,该顶点还是一个点,当两条棱被剪开时,该顶点变成两个点,当三条棱都被剪开时,该顶点变成了三个点.2.解题过程:根据正方体展开图的特征,ED与EM重合,NM与NR重合,故点D,M,R重合,②正确;FG与FC重合,GH与CB重合,故点C与点G重合,点H与点B重合,①、③错误;DA与RS重合,点D与点R重合,点A与点S重合,故④正确.综上,正确的为②④,故选A.3.易错点:由正方体的表面展开图不会判断哪些棱重合,哪些点重合.4.方案:如果此题有问题,建议观看:初中数学图形的展开与折叠拔高课.视频链接:/course/1127.html试题难度:三颗星知识点:几何体的展开与折叠找重合的点3答案:C解题思路:一条棱被剪开,变成了两条边,折叠以后这两条边是重合的,AB与IH重合,FK与FJ重合,KL和JI重合,故与边LK重合的边是IJ,故选C.试题难度:三颗星知识点:几何体的展开与折叠找重合的边4答案:B解题思路:面M的相对面是空的,即展开之后面M没有相对面,排除选项A,D;根据图中的粗线将其剪开之后,与M相连的面是展开的四个面中的第二个或第三个,故选B.试题难度:三颗星知识点:无盖模型的展开与折叠5答案:D解题思路:根据无盖的位置及展开后的平面图形,面“○”展开之后没有相对面,排除选项B;按图中的粗线将其剪开之后与面“○”相连的四条棱均没有被剪开,排除选项A和C,故选D.试题难度:三颗星知识点:无盖模型的展开与折叠6答案:D解题思路:既然折叠成正方体后两个图形完全相同,那么它们对应的平面图形的相对面必须完全一样.根据正方体11种展开图的相对面:(1)中面“△”与面“#”相对,(2)中面“△”与面“+”相对,排除选项A;(2)中面“#”与面“○”相对,(3)中面“#”与面“×”相对,排除选项B;(3)中面“#”与面“×”相对,(4)中面“#”与面“○”相对,排除选项C;故选D.我们也可以看一下(2)和(4)中的相对面确实是一样的:(2)中面“△”与面“+”相对,面“#”与面“○”相对,面“☆”与面“×”相对;(4)中面“△”与面“+”相对,面“#”与面“○”相对,面“☆”与面“×”相对.试题难度:三颗星知识点:正方体的展开与折叠7答案:B解题思路:此题可以通过棱来判断.如下图,折叠之后AB与EF重合,因此可以判断面“ABCD”与面“EFGH”折起来之后阴影部分相连,因此排除选项A和D;DA与DI重合,JI与HE重合,因此两个阴影的面与面“○”相连的部分都是空白三角形,排除选项C,故选B.试题难度:三颗星知识点:正方体的展开与折叠8答案:C解题思路:此题可以通过棱来判断.如下图,面“ABCD”和面“ABEF”有一条重合的棱AB,并且“×”与棱AB的距离是1个网格,“○”与棱AB的距离是2个网格,可以排除选项B和D;并且“×”和“○”距离上下底面的高度不同,排除选项A,故选C.试题难度:三颗星知识点:正方体的展开与折叠9答案:A解题思路:根据图中正方体的三个带图案的面是相邻的,可以排除选项C和D,正方体中两个带阴影三角形的面的相邻部分是空白的,可以排除选项B,故选A.试题难度:三颗星知识点:正方体的展开与折叠10答案:C解题思路:根据示正方体的展开图,三个带竖线的面有两个是相对的,因此三个面不可能同时出现,也不可能都不出现,排除选项A和D;三个带竖线的面与面“○”相邻,竖线与“○”垂直,排除选项B,故选C.试题难度:三颗星知识点:正方体的展开与折叠11答案:B解题思路:1.解题思路:本题主要考查正方体的展开与折叠,先根据相对面、相邻面排除,然后再根据一条棱剪开变成两条边,两相邻面与公共棱的关系进一步排除.2.解题过程:观察正方体的展开图,三个带竖线的面有两个是相对的,因此三个面不可能同时出现,也不可能都不出现,排除选项D;三个带竖线的面与面“△”相邻,竖线与“△”垂直,排除选项A;如下图,带竖线的面“ABCD”与“CEFG”相邻,面“CEFG”与面“GHIJ”相邻,并且竖线都与重合的棱平行,排除选项C,故选B.3.易错点:①相对面、相邻面判断错误;②一条棱剪开变成两条边,不知道哪两条边折叠之后重合成一条棱;③不会根据两相邻面与公共棱的关系判断.4.方案:如果此题有问题,建议观看:初中数学图形的展开与折叠拔高课.视频链接:/course/1127.html试题难度:三颗星知识点:正方体的展开与折叠12答案:C解题思路:正方体的三个带阴影的直角三角形有公共边,并且有一个公共的直角顶点,所以选项中图形折叠之后应该满足这两条特征。

展开与折叠

展开与折叠

图中的两个图形经过折叠能否围成棱柱?
(1)
(2)
同学们猜一猜,这个图 形能围成什么?
把圆柱的侧面展开,会得到什么图形?
圆柱展开动画演示
把圆锥的侧面展开,会得到什么图形?
圆锥侧面展开演示
巩固练习
达标练习
正三棱柱底面边长都是5cm,侧棱长为7cm,
此三棱柱共有多少个侧面?
侧面展开图的面积是多少?
2. 上底 面 下底 面的形 状和大小完全相同. 3. 所有侧棱长都相等.
新课探究1
将图中的棱柱沿某些棱剪开,展成一个平面图
形,你能得到哪些形状的平面图形?
展开
展开
侧面的 个数和底 面图形 的边数相 等.
展开
以下哪些图形经过折叠可以围成一个棱柱?




拓展:你能将图形(1)、(3)修改后使其能折叠成 棱柱吗?
把圆柱侧面展开会得到什么图形?
若圆柱的底面半径为5cm,圆柱的高为7cm,
求侧面展开图的面积。
1、求下面各图形的体积。(单位:分米)
10
6
6 6
9

4
d=8
2、求下面各立体图形的表面积和体积。
r=1cm 3m
5cm r=2m
只求体积
3、下面是一种圆柱形茶叶罐的侧面展 开图,请你选择与它相对应的底面。
知识回顾
1、说出下列几何体的名称






3、将如图所示的图形绕虚线旋转
一周,可以得到的几何体是( C)
有些立体图形
展开
平面图形
有些平面图形
折叠
立体图形
第一类,1,4, 1型,共六种。

《展开与折叠》专题训练

《展开与折叠》专题训练

1.2 展开与折叠专题一正方体的展开与折叠1.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B. C.D.2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图,有一正方体的房间,在房间内的一角A处有一只蚂蚁,它想到房间的另一角B处去吃食物,试问它采取怎样的行走路线是最近的?如果一只蜜蜂,要从A到B 怎样飞是最近呢?请同学们互相讨论一下.BA专题二三棱柱、圆柱与圆锥的展开与折叠5.左图是一个三棱柱,下列图形中,能通过折叠围成该三棱柱的是()A.B.C.D.6.如下图所示的平面图形中,不可能围成圆锥的是()A. B.C.D.状元笔记:【知识要点】1.掌握正方体的展开与折叠,能根据所给平面图形判断是否能折叠成正方体.2.根据简单立体图形的形状画出它的展开图,根据展开图判断立体图形的形状.【温馨提示】1.长方体有8个顶点,12条棱,6个面,且每个面都是长方形(正方形是特殊的长方形).长方体是四棱柱,但四棱柱不一定是长方体,四棱柱的两个底面是四边形,不一定是长方形.2.一个平面展开图,折成立体图形的方式有两种:一种是向里折,一种是向外折,一般易忽略其中一种,造成漏解.3.棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图;圆柱的表面展开图是由两个相同的圆形和一个长方形连成的;圆锥的表面展开图是由一个圆形和一个扇形连成的.【方法技巧】确定正方体展开图的方法以口诀的方式总结出来:正方体经7刀剪,可得六面十四边;中间并排达四面,两旁各一随便站;三面并排在中间,单面任意双面偏;三层两面两层三,好似阶梯入云天;再问邻面何特点,“间二”“拐角”是关键;“隔1”、“Z端”是对面,识图巧排“七”“凹”“田”.参考答案:1.D 解析:选项A 、B 、C 都可以折叠成一个正方体;选项D ,有“田”字格,所以不能折叠成一个正方体.故选D .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.2.B 解析:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.3.A 解析:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE .考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题,注意找准红心“”标志所在的相邻面.4.解:如图(1)所示,线段AB 是蚂蚁行走的最近路线;如图(2)所示,线段AB 是蜜蜂飞的最近路线.(1)(2)5.B 解析:A .折叠后有二个侧面重合,不能得到三棱柱; B .折叠后可得到三棱柱;C .折叠后有二个底面重合,不能得到三棱柱; D .多了一个底面,不能得到三棱柱.6.D 解析:根据圆锥的侧面展开图是扇形,可以直接得出答案,D 选项不符合要求.。

几何图形的折叠与展开题目

几何图形的折叠与展开题目

几何图形的折叠与展开题目1. 下列哪个图形通过折叠可以得到一个正方形?A. 三角形B. 圆形C. 矩形D. 正方形2. 一个正方形纸片沿着对角线折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形3. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形4. 下列哪个图形通过折叠可以得到一个三角形?A. 正方形B. 圆形C. 矩形D. 菱形5. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形6. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形7. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形8. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形9. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形10. 下列哪个图形通过折叠可以得到一个菱形?A. 正方形B. 三角形C. 圆形D. 矩形11. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形12. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形13. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形14. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形15. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形C. 矩形D. 圆形16. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形17. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形18. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形19. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形20. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形21. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形22. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形23. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形24. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形25. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形26. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形C. 圆形D. 菱形27. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形28. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形29. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形30. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形31. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形32. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形33. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形34. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形35. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形36. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形37. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形38. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形39. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形40. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形D. 菱形41. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形42. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形43. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形44. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形B. 三角形C. 矩形45. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形46. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形47. 一个长方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形48. 下列哪个图形通过折叠可以得到一个圆形?A. 正方形C. 矩形D. 菱形49. 一个正方形纸片沿着一条边折叠,展开后形成的图形是:A. 三角形B. 菱形C. 矩形D. 圆形50. 下列哪个图形通过折叠可以得到一个矩形?A. 正方形B. 三角形C. 圆形D. 菱形。

立体图形的折叠与展开

立体图形的折叠与展开

立体图形的折叠与展开一.选择题(共3小题)1.下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.2.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.3.将如图所示的正方体展开,可能正确的是()A.B.C.D.二.填空题(共3小题)4.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=.5.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是.6.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).三.解答题(共3小题)7.(1)请写出对应几何体的名称:①;②;③.(2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积.(结果保留π)8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是点;2点的对面是点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是点;连续完成2016次翻转后,骰子朝下一面的点数是点(直接填空).9.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列A、B分别是题(2)中长方体的一种表面展开图,已知求得图A的外围周长为52,请你帮助求出图B的外围周长;(4)第(2)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.参考答案一.选择题(共3小题)1.下列展开图中,不能围成一个封闭的几何体的是()A.B.C.D.【解答】解:A、是圆柱的展开图,能围成封闭几何体,不符合题意;B、是三棱柱的展开图,能围成封闭几何体,不符合题意;C、不能围成封闭几何体,符合题意;D、是三棱柱的展开图,能围成封闭几何体,不符合题意.故选:C.2.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.【解答】解:根据正方体展开图的特点可得:两个三角形相邻.故选:D.3.将如图所示的正方体展开,可能正确的是()A.B.C.D.【解答】解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B、D都不符合,所以能得到的图形是C.故选:C.二.填空题(共3小题)4.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c= 14.【解答】解:∵长方体的表面展开图,相对的面之间一定相隔一个长方形,∴“﹣1”与“a”是相对面,“3”与“c”是相对面,“2”与“b”是相对面,又∵相对的两个面上的数字之和等于6,∴a=7,b=4,c=3,∴a+b+c=7+4+3=14,故答案为:14.5.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是乐.【解答】解:“新”字一面的相对面上的字是:乐,故答案为:乐.6.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).【解答】解:答案不唯一,如图所示:三.解答题(共3小题)7.(1)请写出对应几何体的名称:①圆锥;②三棱柱;③圆柱.(2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积40π.(结果保留π)【解答】解:(1)请写出对应几何体的名称:①圆锥;②三棱柱;③圆柱,故答案为:圆锥,三棱柱,圆柱;(2)圆柱的表面积为πr2+πr2+2πrh=4π+4π+32π=40π,故答案为:40π.8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是3点;连续完成2016次翻转后,骰子朝下一面的点数是4点(直接填空).【解答】解:(1)根据正方体的表面展开图,相对的面之间一定相隔一个正方形,所以在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点;故答案为:6、5;(2)正方体的表面展开图,相对的面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,∵2016÷4=504,∴完成2016次翻转为第504组,∴骰子朝下一面的点数是4.故答案为:3、4.9.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是B(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有①②③(填序号)(3)下列A、B分别是题(2)中长方体的一种表面展开图,已知求得图A的外围周长为52,请你帮助求出图B的外围周长;(4)第(2)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.【解答】解:(1)A折叠后不可以组成正方体;B折叠后可以组成正方体;C都是“2﹣4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;D折叠后不可以组成正方体;故答案为B.(2)可能是该长方体表面展开图的有①②③.故答案为①②③.(3)图B的外围周长=3×6+4×4+4×6=58.(4)观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.。

展开与折叠的练习题

展开与折叠的练习题

展开与折叠的练习题一、选择题1、在下面的图形中,()是正方体的表面展开图.2、下面的图形通过折叠不能围成一个长方体的是()3、如图1–10所示的立方体,若是把它展开,能够是以下图形中的()4、圆锥的侧面展开图是()A、三角形B、矩形C、圆D、扇形二、填空题1、人们通常依照底面多边形的_将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_____棱柱2、若是一个棱往是由12个面围成的,那么那个棱柱是____棱柱.3、一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,那么它的所有侧面的面积之和为______.4、哪一种立体图形的表面能展开成下面的图形?5、一个直棱柱共有n个面,那么它共有______条棱,______个极点三、想一想.1、底面是三角形、四边形、八边形的棱柱各有多少条棱?2、下面10个图形中哪些能够折成没有盖子的五个面的小方盒?请指明.长方体表面积的练习题一、填空。

一、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个极点。

二、因为正方体是长、宽、高都()的长方体,因此正方体是()的长方体。

3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,那个正方体的棱长总和是()厘米。

4、相交于一个极点的()条棱,别离叫做长方体的()、()、()。

五、一根长96厘米的铁丝围成一个正方体,那个正方体的棱长是()厘米。

六、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是()厘米。

7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

八、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

九、一个长方体最多能够有()个面是正方形,最多能够有()条棱长度相等。

二、应用题。

一、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?二、用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深米,在游泳池的周围和池底砌瓷砖,若是瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,能够切割成多少块?五、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,能够做如此的硬纸盒多少个?(不计接口)六、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?7、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?八、.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?九、一只无盖的长方形鱼缸,长米,宽米,深米,做这只鱼缸至少要用玻璃多少平方米?10、.用36厘米的铁丝焊接成一个正方体框架,那个正方体棱长是多少?若是用纸糊满框架的表面,至少需要纸多少平方厘米?1二、.用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?13、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做如此一对鱼缸需要多少平方厘米的玻璃?14、楼房外壁用于流水的水管是长方体。

七年级数学展开与折叠练习

七年级数学展开与折叠练习

七年级数学展开与折叠练习(1)
1.圆柱的侧面展开图是形;圆锥的侧面展开图是形,棱柱的侧面展开图是形。

2.在如图所示的棱柱中,
(1)有条棱,有条侧棱,侧棱长都;
(2)有个面,有个侧面,上下底面是边形,
侧面个数与底面边数的关系是;
(3)这个棱柱共有个顶点。

3.下面每个图片由六个大小相同的正方形组成,其中不是正方体展开图的是( )
4.下列平面图形中,不是棱柱展开图的是()
5.下面的4个图形中,棱柱的侧面展开图是()
6.下列图形经过折叠后能围成一个三棱柱的图形是()
A.2个
B.3个
C.4个
D.5个
7.下列图形都是几何体的平面展开图,在各图形下方的括号中写出相应几何体的名称。

()()()()
8.将三棱锥沿某些棱展开,可以得到如图所示的展开图。

(1)下面的两个图形能否折成三棱锥?
()()
(2)将原几何体改为四棱锥,请画出它的两种展开图。

9.如图是一个几何体的展开图,每个面内都标注了1-6中的一个数字,根据下列要求回答问题:
(1)若“1”面是几何体的左面,则“3”面是几何体
的面。

(2)若“2”面在前面,“4”在上面,则“1”面在
几何体的面。

(3)若“3”面在右面,从下面看到“5”面在下,
则“6”面在在几何体的面。

(4)若“4”面在左面,“1”面在前面,则“2”
面在在几何体的面。

5.3 图形的展开与折叠课时训练(含答案)

5.3 图形的展开与折叠课时训练(含答案)

5.3展开与折叠姓名_____________班级____________学号____________分数_____________一、选择题1 .如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( )A.和B.谐C.社D.会2.下列各图中,( )是长方体的展开图A、B、C、D、3 .圆锥侧面展开图可能是下列图中的()4 .下列图形中,是正方体表面展开图的是( ).(A) (B) (C) (D)A.B.C.D.图1图25.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )二、填空题6.一个长、宽、高分别为15cm ,10cm ,5cm 的长方体包装盒的表面积为________cm 2. 7.将一个立方体展开后如图所示 ,请在空格处填上适当的整数,使相对的面的两数积为-24(要求数字不能重复使用)。8.如图,长方体的长BE =5cm ,宽AB =3cm ,高BC =4cm ,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是___________cm 。EDCBA9.如图是一个正方体的表面展开图,已知正方体相对两个面上的数字互为倒数,则a =_______,b =_______,c =_________.三、解答题10.如图是一个多面体展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A 在多面体的底部,那么在上面的一面是_____ (2)如果面F 在前面,从左面看面B ,那么在上面的一面是___OOO OABCD图4 abc12.53A B CDEF13cm14cm高长 宽(3)从右面看是面C ,面D 在后面,那么在上面的一面是____11.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm ,求这个包装盒的体积.。

五年级数学展开与折叠试题

五年级数学展开与折叠试题

五年级数学展开与折叠试题1.下面的图形是哪个图形的展开图?( )A.B.C.【答案】B【解析】由分析知:黑白点面相对,且两个阴影三角形面相邻,锐角端点相接。

2.下图中四个立方体,只有一个是用纸片折成的,请指出是( )A.B.B.C.C.D.D.【答案】C【解析】由分析知:黑点、白点和三角形依次位于立方体侧面的的三个面上,而不再上下底面上。

3.将下图折成一个正方体后,下面关于相对的面的说法,正确的是( )A.l-6,2-5,3-4B.1-3,2-5,4-6C.1-6,2-4,3-5【答案】C【解析】是立方体展开图的“141”结构,所对于 1面6面相对,2面4面相对,3面5面相对。

4.下面()号图形是正方体的展开图.A.B.C.D.【答案】D【解析】选项D折叠后可以围成正方体,而A,B,C折叠后有两个面无法折起来,而且下边没有面,不能折成正方体。

5.下面图形折叠后能围成正方体的有()A.B.C.【答案】C【解析】图A、图B不能围成正方体;图C纵着的四个正方形可以围成正方体的四个面,另外两个在这四正方形的两旁,能围成正方体的另外两个面,所以它能围成正方体。

6.边长是6分米的正方形纸围成一个圆柱形纸筒(接头处不计),这个纸筒的侧面积是______。

【答案】36平方分米【解析】6×6=36(平方分米)。

7.把一个圆柱体的侧面展开,得到一个正方形,已知正方形的周长是50.24厘米,那么圆柱体的表面积是______平方米。

【答案】0.01828736【解析】正方形的边长(圆柱的底面周长):50.24÷4=12.56(厘米);侧面积:12.56×12.56=157.7536(平方厘米);底面半径:12.56÷3.14÷2=2(厘米);底面积(两个相等的圆):3.14×22×2=25.12(平方厘米);表面积:157.7536+25.12=182.8736(平方厘米);182.8736平方厘米=0.01828736平方米。

展开与折叠训练题(含答案)

展开与折叠训练题(含答案)

展开与折叠训练一、选择题1.在下面的图形中,()是正方体的表面展开图.2.下列各图经过折叠不能围成一个正方体的是()A. B. C. D.3.如果有一个正方体,它的展开图可能是下面四个展开图中的()4.下面的图形经过折叠不能围成一个长方体的是()5.六棱柱的棱数有()A.6条B.12条C.18条D.24条6.圆锥的侧面展开图是()A.圆B.扇形C.三角形D.长方形7.能把表面依次展开成如图所示的图形的是()A.球体、圆柱、棱柱B.球体、圆锥、棱柱C.圆柱、圆锥、棱锥D.圆柱、球体、棱锥8.下列平面图形,不能沿虚线折叠成立体图形的是( )A .B .C .D .9.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“数”相对的字是( ) A .喜 B .欢 C .学 D .我10.如图是一个正方体的表面展开图,把它折叠成一个正方体时,与点M 重合的点是( )A .点A 和点HB .点K 和点HC .点B 和点HD .点B 和点L二、填空题11. 人们通常根据底面多边形的边数将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_______棱柱.12.n 棱柱有_____条棱,______个顶点,________个面.13. 如果一个棱往是由10个面围成的,那么这个棱柱是 棱柱,它共有______条棱,______个顶点. 14.一个直棱柱共有n 个面,那么它共有______条棱,______个顶点.15.如右图,若要使得图中平面图按虚线折叠成正方体后对面上的两个数之和为8,图中的x ,y 的值应分别为x =________,y =________.三、解答题16.如右图,将一块长方形铁皮的四个角分别剪去一个边长 为4cm 的正方形,正好可以折成一个无盖的铁盒,这个铁盒 表面积是多少?(可尝试两种计算方法)17.用一根铁丝刚好焊成一个棱长10厘米的正方体框架,如果用这样长的一根铁丝焊成一个长12厘米、宽10厘米的长方体框架,它的高应该是多少厘米?这个框架形成的长方体的体积是多少?我 喜欢 学数 学123x y展开与折叠训练参考答案二、填空题 11.四;12.3n ,2n ; 13.8,24,16;14.3(2)n -,2(2)n -; 15.7x =,5y =.三、解答题 16.21136cm .17.8cm ;3960V cm =.。

展开与折叠同步习题有答案和解析

展开与折叠同步习题有答案和解析

2展开与折叠第1课时正方体展开预习要点:1.(2016•)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.2.(2016•一模)将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.3.(2016•大东区二模)下列各图不是正方体表面展开图的是()A.B.C.D.4.(2016•模拟)小红制作了一个对面图案均相同的正方体礼品盒,(如图所示),则这们礼品盒的平面展开图是()A.B.C.D.5.(2016•区一模)如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是.6.(2015•模拟)如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是.7.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.同步小题12道一.选择题1.(2016•校级一模)下列图形是正方体表面积展开图的是()A.B.C.D.2.(2015•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.3.(2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.4.(2016•达州)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来5.(2016•二模)如图,将正方体相邻的两个面上分别画出3×3的正方形网格,并分别用图形“”和“○”在网格的交点处做上标记,则该正方体的表面展开图是()A.B.C.D.6.(2015•)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.二.填空题7.(2016春•潮南区月考)一个正方形的平面展开图如图所示,将它折成正方体后,“保”字对面的字是.8.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.9.(2016•市南区一模)如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.10.(2014秋•泗阳县校级期末)要把一个正方体的表面展开成平面图形,至少需要剪开条棱.三.解答题11.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).第2课时其他立体图形的展开预习要点1.(2016•校级模拟)下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.2.(2016•市北区一模)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个3.(2016•惠安县二模)下列四个图形中,是三棱锥的表面展开图的是()A.B.C.D.4.(2016•海曙区一模)如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.5.一个几何体的表面展开图如图所示,则这个几何体是.6.如图是某几何体的展开图,那么这个几何体是.7.如图是一个几何体的展开图,则这个几何体是.同步小题12道一.选择题1.(2016•富顺县校级二模)下列不是三棱柱展开图的是()A.B. C.D.2.如图是一个长方体包装盒,则它的平面展开图是()A. B. C.D.3.(2015•)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(2015•金溪县模拟)下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B. C.D.5.如图是一个直三棱柱,则它的平面展开图中,错误的是()A.B.C.D.6.下面图形经过折叠不能围成棱柱的是()A.B.C.D.二.填空题7.如图是三个几何体的展开图,请写出这三个几何体的名称:、、.8.圆锥有个面,有个顶点,它的侧面展开图是.9.如图所示的四幅平面图中,是三棱柱的表面展开图的有.(只填序号)10.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面,(字母朝外),那么在上面的字母是.三.解答题11.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.12.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm,高2cm,求这个包装盒的体积.答案:2展开与折叠第1课时正方体展开预习要点:1.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B2.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、B、上底面不可能有两个,故不是正方体的展开图;D、出现了田字格,故不能;C、可以拼成一个正方体.故选C3.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A,C,D是正方体的平面展开图,B有田字格,不是正方体的平面展开图,故选:B4.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,观察各选项,A、C、D都有同一个图案是相邻面,只有B选项的图案符合.故选B5.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“考”是相对面,“中”与“顺”是相对面.答案:顺.6.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.答案:4.7.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴做成一个无盖的盒子,盒子的底面的字母是B,周围四个字母分别是AECD,答案:B同步小题12道1.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、无法围成立方体,故此选项错误;B、无法围成立方体,故此选项错误;C、无法围成立方体,故此选项错误;D、可以围成立方体,故此选项正确.故选:D2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.故选:B3.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C4.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D5.【分析】根据正方体的平面展开图,与正方体的各部分对应情况,实际动手操作得出答案.【解答】解:观察图形可知,该正方体的表面展开图是.故选:C6.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B7.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“低”与“绿”是相对面,“碳”与“保”是相对面,“环”与“色”是相对面.答案:碳.8.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.答案:C9.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.答案:4.10.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12-5=7条棱,答案:7.11.【分析】根据题意可知,结合展开图中“1,4,1”格式作图,即可得出答案.【解答】解:答案如下:或或等.12.【分析】根据平面图形的折叠及正方体的展开图的特点分别画出图形即可.【解答】解:根据题意画图如下:第2课时其他立体图形的展开预习要点1.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、是三棱柱的平面展开图;B、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱,故此选项错误;C、围成三棱柱时,缺少一个底面,故不能围成三棱柱,故此选项错误;D、围成三棱柱时,没有底面,故不能围成三棱柱,故此选项错误.故选:A2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C3.【分析】根据三棱锥的四个面都是三角形,还要能围成一个立体图形,进而分析得出即可.【解答】解:A、能组成三棱锥,是;B、不组成三棱锥,故不是;C、组成的是三棱柱,故不是;D、组成的是四棱锥,故不是;故选A4.【分析】长方体的表面展开图的特点,有四个长方形的侧面和上下两个底面组成.【解答】解:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C5.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;答案:四棱锥.6.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:这个几何体是圆柱,答案:圆柱7.【分析】根据侧面为n个长方形,底边为n边形,原几何体为n棱柱,依此即可求解.【解答】解:侧面为5个长方形,底边为5边形,故原几何体为五棱柱,答案:五棱柱.同步小题12道1.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:∵三棱柱展开图有3个四边形,2个三角形,∴C选项不是三棱柱展开图,故选:C2.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A3.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥.故选:A4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确;D、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.故选C5.【分析】根据最宽的侧面的宽与上底的最长边相应,最窄的侧面的宽与上底的最短边相应,可得答案.【解答】解:最宽的侧面的宽与上底的最长边相应,故D错误.故选:D6.【分析】根据棱柱的特点作答.【解答】解:A、能围成四棱柱;B、能围成五棱柱;C、能围成三棱柱;D、经过折叠不能围成棱柱.故选D7.【分析】由平面展开图的特征作答.【解答】解:由平面展开图的特征可知,从左向右的三个几何体的名称分别为:五棱柱,圆柱,圆锥.8.【分析】根据圆锥的概念和特性即可求解.【解答】解:圆锥有二个面组成,有一个顶点,它的侧面展开图是扇形.答案:二,一,扇形.9.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个矩形,可得答案.【解答】解:三棱柱的两底展开是三角形,侧面展开是三个矩形,答案:①②③.10.【分析】根据展开图,可的几何体,F、B、C是邻面,F、B、E是邻面,根据F面在前面,B面在左面,可得答案.【解答】解:由组成几何体面之间的关系,得F、B、C是邻面,F、B、E是邻面.由F面在前面,B面在左面,得C面在上,E面在下,答案:C11.【分析】观察图形根据几何体和展开图的形状判定即可.【解答】解:如图所示:12.【分析】要求长方体的体积,需知长方体的长,宽,高,结合图形可知2个宽+2个高=14,依此可求长方体盒子的宽;再根据长方体盒子的长=宽+4,可求长方体盒子的长;再根据长方体的体积公式即可求解.【解答】解:(14-2×2)÷2=(14-4)÷2=10÷2=5(cm),5+4=9(cm),9×5×2=90(cm3).答:这个包装盒的体积是90cm3.。

展开与折叠练习卷(含答案)

展开与折叠练习卷(含答案)

展开与折叠练习卷一、填空题1.矩形绕其一边旋转一周形成的几何体叫__________,直角三角形绕其中一个直角边旋转一周形成的几何体叫__________.2.将一个无底无盖的长方体沿一条棱剪开取得的平面图形为_____________________.3.将一个无底无盖的圆柱剪开取得一个矩形,其中圆柱的_____________________等于矩形的一个边长,矩形的另一边长等于_______________.4.长方体共有________________个极点______________个面,其中有___________对平面彼此平行.5.球面上任一点到球心的距离__________.6.如图1,由6个边长相等的正方形组成的长方形ABCD中,包括*在内的正方形与长方形共____个.7.若是长方体从一点动身的三条棱长别离为二、3、4,那么该长方体的面积为______,体积为__________.8.用一个宽2cm,长3cm的矩形卷成一个圆柱,那么此圆柱的侧面积为_______________.9.现实生活中的油桶、水杯等都给人以__________的形象.二、解答题10.如图2,ABCD为边长为4的正方形,M、N别离是DA、BC上的点,MN∥AB,MN交AC于O,且MD=1,沿MN折起,使∠AMD=90°制作模型,并画出折起后的图形.11.如图3,是边长为1m的正方体,有一蜘蛛暗藏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,猜想蜘蛛爬行的最短线路.12.如图4,在长方形ABB1A1中,AB=6cm,BB1=3cm,CC1、DD1是A1B、AB三等分线段,A1B交C1C、D1D于M、N,把此图以C1C、D1D为折痕且A1A与B1B重合折成一个三棱柱侧面,制作出相应的模型,并观看折成棱柱前后A1B的转变.图413.如图5,为一扇形,将此扇形卷起使AB与AC重合,制作相应模型,并观看卷起以后,形成一个什么样的几何体及BC的转变,你能画出卷起后的几何体吗?碰运气.14.如图6,折叠长方形的一边AD,点D落在BC边的点F处,当AB=8 cm,BC=10 cm 时量出FC的长.参考答案一、1.圆柱圆锥2.矩形3.高圆柱的底面周长4.8 6 3 5.相等6.7 7.52 24 8.6 9.圆柱二、略。

展开与折叠综合练习

展开与折叠综合练习

展开与折叠综合练习
1、下图中的图形经过折叠能围成正方体的有。

2、将一个正方体的表面沿某些棱剪开,能展成下面平面图形的有。

3、在下图中增加两个小正方形,使所的图形经过折叠能围成一个正方体。

4、下图中的图形经过折叠能围成棱柱的有。

5、右上图中是圆锥表面展开图的有。

6、下面的实物图中,是圆柱体的有。

7、若“进”表示“前面”,“步”表示“右面”,“习”表示“下面”。

则,“祝”表示面,“你”表示面,“学”表示面。

8、下面的图形可以折成一个正方体形的盒子,折好以后,与1相邻的数是,相对的数是。

9、将正方体的表面分别标上数字1、2、3、4、5、6,使它的任意两个相对面的数字之和为7,将它沿某些棱剪开,能展成下面的平面。

10、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____.
11、如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是。

12、如图所示的立方体,如果把它展开,可以是下列图形中的()
13、如图,把左边的图形折叠起来,它会变成右边的正方体()。

立体图形的展开与折叠综合测试题

立体图形的展开与折叠综合测试题

立体图形的展开与折叠综合测试题一、选择题(每小题3分,共30分)1. 【导学号31100748】下列几何图形中为圆柱体的是()A B C D2. 【导学号31100613】在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱C.圆锥D.球3. 【导学号31100765】如图是一个三棱柱笔筒,则该物体的主视图是()A B C D 第3题图4. 【导学号31100997】如图是一个正方体,则它的表面展开图可以是()A B C D 第4题图5. 【导学号31100764】下列选项中的图形,绕其虚线旋转一周能得到如图所示的图形的是()A B C D 第5题图6. 【导学号31100217】房间窗户的边框形状是矩形,在阳光的照射下边框在房间地面上形成了投影,则投影的形状可能是()A.三角形B.平行四边形C.圆D.梯形7. 【导学号31100750】我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()A.y=x B.y=x+3C.y=3xD.y=(x-3)2+3第7题图8. 【导学号31100769】一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3πC.2π+4 D.3π+4第8题图第10题图9. 【导学号31100752】一个直角三角形的三条边分别为3,4,5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是()A.12π B.16πC.12π或16π D.36π或48π10. 【导学号31100742】如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个二、填空题(每小题4分,共32分)11. 【导学号31100759】把如图形状的硬纸板折成一个四棱锥,那么与E点重合在一起的是_____________.第11题图第12题图12. 【导学号31100996】如图是一个三棱柱,它的正投影是下图中的________(填序号).13. 【导学号31100763】星期天,小明和小华在村后的小山岭上玩,突然,小明说“我捡到了一块非常好看的石头,它类似于我们刚学过的棱柱.”小华问:“几棱柱啊?”小明说:我说不上来,只知道它有9个面,14个顶点,21条棱.小华说:“我知道了,它是_______棱柱.”14. 【导学号31100957】图①是一个正方体的展开图,该正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.①②第14题图15.【导学号31100751】如图,一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为____________cm.第15题图第16题图16. 【导学号31100757】如图是由若干个棱长为1cm的小正方体堆砌而成的几何体,那么其三视图中面积最小的是_________cm217. 【导学号31100745】如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为__________cm3;表面积为__________cm2.第17题图第18题图18. 【导学号31100744】如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:_____________.三、解答题(共58分)19.【导学号31100741】(10分)画出下面几何体的三种视图.第19题图20.【导学号31100755】(12分)在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学(BC)的影长BA为1.1米,与此同时,测得教学楼DE的影长DF为12.1米,如图.(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).第20题图21.【导学号31100369】(12分)如图,某同学想测量旗杆的高度,他在某一时刻测得1m长的竹竿竖直放置时影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影高为2m,求旗杆的高度.第21题图22.【导学号31100304】(12分)如图是一个包装纸盒的三视图(单位:cm)(1)该包装纸盒的几何形状是__________;(2)画出该纸盒的平面展开图.,精确到个位)(3)计算制作一个纸盒所需纸板的面积.(3 1.73第22题图23.【导学号31100879】(12分)如图,某光源下有三根杆子,甲杆GH的影子GM,乙杆EF的影子一部分是照在地面上的EA,一部分是照在斜坡AB上的AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子.(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF的高度.(结果保留根号)第23题图立体图形的展开与折叠综合测试题一、1.C 2.C 3.C 4.B 5.C 6.B 7.D 8.D 9.C 10.A二、11. A和C 12. ②13. 七14. 我15.81316. 3 17. 3318+2318. ①②③三、19. 解:20.解:(1)连接AC,过点E作EF∥AC交AD于点F,则DF即为所求,如图所示.第20题图(2)由题意,得1.121.165.1DE =,解得DE=18.15≈18.2.所以教学楼DE 的高度约为18.2米. 21.解:过C 作CE ⊥AB 于E ,如图.∵CD ⊥BD ,AB ⊥BD ,∴∠EBD=∠CDB=∠CEB=90°.∴四边形CDBE 为矩形,则BD=CE=21,CD=BE=2. 设AE=xm ,则1:1.5=x:21,解得x=14. 故旗杆高AB=AE+BE=14+2=16(m ).第21题图 第22题图22. 解:(1)正六棱柱(2)如图所示:(3)由图可知正六棱柱的侧面是边长为5的正方形,上、下底面是边长为5的正六边形, 侧面面积:6×5×5=150(cm 2),底面积:2×6×21×5×235=753,制作一个纸盒所需纸板的面积:150753+≈280(cm 2). 23. 解:(1)如图,QN 即为PQ 在地面的影子.(2)分别延长FD 、EA 交于点S.在Rt △ADS 中,∠ADS=90°,∠DAS=60°,所以∠S=30°. 又AD=1,∴AS=2.∴ES=AS+AE=2+2=4.在Rt △EFS 中,∠FES=90°,EF=ES•tan ∠FSE=4•tan30°=4×33=433(米). 所以乙杆EF 的高度为433米.第23题图。

人教版七年级上册数学几何体的展开与折叠(习题)

人教版七年级上册数学几何体的展开与折叠(习题)

几何体的展开与折叠(习题)➢ 巩固练习1. 下列图形经过折叠不能围成一个棱柱的是()A .B .C .D .2. 下列图形中,是三棱柱的表面展开图的有()A .1 个B.2 个C .3 个D .4 个3.如图是一个正方体纸盒的表面展开图,则这个正方体是()A.B.C.D.4.如图是一个正方体纸盒,这个正方体的表面展开图可能是()A.B.C.D.思路分析首先根据“相对面不可能相邻”,排除.其次研究棱的对应,排除,应选.5.如图是一个表面带有图案的正方体,则其表面展开图可能是A.B.C.D.6.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,则其展开图可能为()A.B.C.D.7. 如图是一个正方体纸盒的表面展开图,当折叠成纸盒时,标号为 1 的点与标号为 的点重合,标号为 10 的点与标号为的点重合. 11 10 238. 图 1 是一个正方体,△EFG 表示用平面截正方体的截面.请在图 2 中的表面展开图上画出△EFG 的三条边.'图 1图 29. 将棱长为 a cm 的小正方体组成如图所示的几何体,已知该几何体共由 5个小正方体组成.(1)画出这个几何体的三视图;(2)求该几何体的表面积.12 9 87 14 5610.在平整的地面上,由10 个完全相同的棱长为1 cm 的小正方体堆成一个几何体,如图所示.(1)画出这个几何体的三视图;(2)求该几何体的表面积.➢思考小结1.图形是由_、、构成的,而我们研究几何体特征的思考顺序是先研究面(、),再研究和.2.正方体的面、棱、顶点的特征:①面:一个面与个面相邻,与个面相对;②棱:一条棱与个面相连,一条棱被剪开成为条边;③顶点:一个顶点连着条棱,一个点属于个面.【参考答案】➢巩固练习1.B2.B3.C4.B思路分析:A、D;C;B 5.C6.B7.2 和6,88.略9.(1)略;(2)22a2 cm210.(1)略;(2)38 cm2➢思考小结1.点、线、面底面、侧面棱顶点2.①4,1;②2,2;③3,3。

《展开与折叠》同步练习1

《展开与折叠》同步练习1

2.张开与折叠一.填空:1.如 1,折叠后是一个体;2.在棱柱中,任何相的两个面的交都叫做______,相的两个面的交叫做 _______;3.从一个多形的某个点出,分接个点和其余各点,能够把个多形切割成十个三角形,个多形的数_____;4.若是一个棱往是由12 个面成的,那么个棱柱是____棱柱;5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面都是5cm,棱 4cm,它的所有面的面之和______;6.三棱柱有 5 个面 6 个点 9 条棱,四棱柱有 6 个面 8 个点 12 条棱,五棱柱有 7 个面 10 个点 15 条棱,⋯⋯,由此能够推n棱柱有 _____个面,____个点, _____条棱;7.张开一个棱柱的面是,分棱柱和棱柱;8.如 2 是一个几何体的表面展成的平面形,个几何体是;9.把一个方形卷起来,可卷成个不相同柱;10.一个六棱柱有个面、条棱和个点;二.:11.的面张开是〔〕图 2〔 A〕三角形〔B〕矩形〔C〕〔D〕扇形12.如,四个三角形均等三角形,将形折叠,获取的立体形是〔〕〔A〕三棱〔B〕体〔C〕棱体〔D〕六面体13.柱的面张开是〔〕〔A〕形〔B〕扇形〔C〕三角形〔D〕四形14.下面的形中,是三棱柱的面张开的〔〕〔A〕〔B〕〔C〕〔D〕15.棱柱的侧面都是〔〕〔A〕正方形〔B〕长方形〔C〕五边形〔D〕菱形16.以以下图的立方体,若是把它张开,能够是以以下图形中的〔〕17.以下平面图形中不能够围成正方体的是〔〕〔A〕〔B〕〔C〕〔D〕18.下面几何体的表面不能够张开成平面的是〔〕〔A〕正方体〔B〕圆柱〔C〕圆锥〔D〕球19.下面几何体中,表面都是平的是〔〕〔A〕圆柱〔B〕圆锥〔C〕棱柱〔D〕球20.以以下图形经过折叠不能够围成棱柱的是〔〕〔A〕〔B〕〔C〕〔D〕三.解答题:BC21.如图,沿长方形纸片上的边线剪下的阴影部D分,恰好能围成一圆柱,中间的四边形恰好是正方形,设圆半径为 r〔 1〕用含 r 的代数式表示圆柱的体积;〔 2〕当 r=3 cm,圆周率取时,求圆柱的体积〔保存整数〕。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展开与折叠的练习题
一、选择题
1、在下面的图形中,( )是正方体的表面展开图.
2、下面的图形经过折叠不能围成一个长方体的是( )
3、如图1–10所示的立方体,如果把它展开,可以是下列图形中的( )
4、圆锥的侧面展开图是( )
A 、三角形
B 、矩形
C 、圆
D 、扇形
二、填空题
1、 人们通常根据底面多边形的_将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体
和正方体都是_____棱柱
2、 如果一个棱往是由12个面围成的,那么这个棱柱是____棱柱.
3、一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm ,侧棱长4cm ,则它的所有侧面的面积之和为______.
4、哪种立体图形的表面能展开成下面的图形?
5、一个直棱柱共有n 个面,那么它共有______条棱,______个顶点
三、想一想.
1、底面是三角形、四边形、八边形的棱柱各有多少条棱?
2、下面10个图形中哪些可以折成没有盖子的五个面的小方盒?请指明.
长方体表面积的练习题
一、填空。

1、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个顶点。

2、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。

4、相交于一个顶点的()条棱,分别叫做长方体的()、()、()。

5、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。

6、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。

高是()厘米。

7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

8、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

9、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。

二、应用题。

1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
3、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?
4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?
5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)
6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?
7、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?
8、.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?
9、一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?
10、.用36厘米的铁丝焊接成一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
12、.用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?
13、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一对鱼缸需要多少平方厘米的玻璃?
14、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米。

15、一个游泳池,长25米,宽10米,深2.4米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是2分米的正方形,那么至少需要这种瓷砖多少块?
16、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?
17、做一个长方体的浴缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米玻璃4元钱,至少需要多少钱买玻璃?
18、一个长方体通风管,长4米,宽和高都是20厘米。

做100根这样的通风管,至少需要铁皮多少平方米?
19、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?
20、一个长方体的水池的长是18米,宽是12米,深是2.5米,在它的四周和底面抹上水泥,水泥的面积多少平房米?。

相关文档
最新文档