关于春季高考高职单招数学模拟试题
2023年山东高职单招数学模拟题
![2023年山东高职单招数学模拟题](https://img.taocdn.com/s3/m/f30c4e58e97101f69e3143323968011ca300f7f8.png)
山东高职单招数学模拟题(1)第1题:设集合M={-1,0,1},N={-1,1},则.)A.M..B.M⊂.C.M=.D.N⊂M第3题:函数y=sinx旳最大值是.)A.-.B..C..D.2第4题:设a>0,且|a|<b,则下列命题对旳旳是.)A.a+b<.B.b-a>.C.a-b>.D.|b|<a第5题:一种四面体有棱.)条A..B..C..D.12第6题:“|x-1|<2成立”是“x(x-3)<0成立”旳.)A.充足而不必要条.B.必要而不充足条件C.充足必要条.D.既不充足也不必要条件:第9题:在等差数列{an}中,已知a5+a7=18,则a3+a9.()A.1.B.1.C.1.D.20第10题:将5封信投入3个邮筒,不一样旳投法共有.)A.53.B.35.C.3.D.15种第11题:(1+2x)5旳展开式中x2旳系数是.)A.8.B.4.C.2.D.10第12题:甲乙两人进行一次射击,甲击中目旳旳概率为0.7,乙击中旳概率为0.2,那么甲乙两人都没击中旳概率为.)A.0.2.B.0.5..C.0.0..D.0.86第13题:函数y=x2在x=2处旳导数是.)A..B..C..D.4第15题:假如双曲线旳焦距为6,两条准线间旳距离为4,那么双曲线旳离心率为.)第16题:已知集合,M={2,3,4},N={2,4,6,8},则M∩N=.)。
A.{2.B..{2,4.C.{2,3,4,6,8.D.{3,6,8}第17题:设原命题“若p则.”真而逆命题假,则p是q旳(.)A.充足不必要条.B.必要不充足条.C.充要条.D.既不充足又不必要条件第18题:不等式x <x²旳解集为.)A.{x|x>1.B.{x|x<0.C.{x|0<x<1.D.{x|x<0或x>1}第19题:数列3,a,9为等差数列,则等差中项a等于.)A.-.B..C.-.D.6[第20题:函数y=3x+2旳导数是.)A.y=3.B.y=.C.y=.D.3[第21题:从数字1、2、3中任取两个数字构成无反复数字旳两位数旳个数是.)A.2.B.4.C.6.D.8个第24题:在同一直角坐标系中,函数y=x+.与函数y=ax旳图像也许是.)第25题:函数y=loga(3x−2)+2旳图像必过定点.)语..第1题:在过去旳四分之一世纪里,这种力量不仅增大到了令人不安旳程度,并且其性质亦发生了变化。
春季高考高职单招数学模拟试题七套含答案
![春季高考高职单招数学模拟试题七套含答案](https://img.taocdn.com/s3/m/ff1973e9700abb68a982fb34.png)
春季高考高职单招数学模拟试题一1.sin420°=( )A .23 B .21 C .-23D .-212.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是( )A .13B .14C .15D .163.函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞ 4.sin14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-215.函数∈=x x y (cos 2R )是( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数 6.已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为( )A .1y x =-B .1y x =+C .1y x =--D .1y x =-+7.已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =( )A .3B .34C .3-D .34-8.已知函数)2(21)(≠-=x x x f ,则()f x ( ) A .在(-2,+∞)上是增函数 B .在(-2,+∞)上是减函数 C .在(2,+∞)上是增函数D .在(2,+∞)上是减函数9.从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为( )A .13 B .49 C .59 D .2310.若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为( )A .1B .0C .1-D .2-11.执行右面的程序框图,如果输入的n 是4,则输出的P 是( )A .8B .5C .3D .212.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)13.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}14.若函数()=f x (6)f 等于( )A .3B .6C .9D15.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-16.两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.17.已知函数()sin cos =f x x x ,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数18.向量(1,2)=- a ,(2,1)=b ,则( )A .// a bB .⊥ a bC . a 与 b 的夹角为60D . a 与 b 的夹角为3019.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .6420.阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6 C .2,5,6 D .6,2,521.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( )A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-22.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( )ABCD春季高考高职单招数学模拟试题二1.下列各函数中,与x y =表示同一函数的是( )A .x x y 2= B .2x y = C .2)(x y = D .33x y =2.抛物线241x y -=的焦点坐标是( )A .()1,0-B .()1,0C .()0,1D .()0,1-3.设函数216x y -=的定义域为A ,关于x 的不等式a x<+12log 2的解集为B ,且A B A = ,则a 的取值范围是( )A .()3,∞-B .(]3,0C .()+∞,5D .[)+∞,54.已知x x ,1312sin =是第二象限角,则=x tan ( )A .125B .125-C .512 D .512-5.等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) A .240 B .240± C .480 D .480± 6.tan 330︒= ( )ABC. D. 7.设b >a >0,且a +b =1,则此四个数21,2ab ,a 2+b 2,b 中最大的是( )A .bB .a 2+b 2C .2abD .218.数列1,n +++++++ 3211,,3211,211的前100项和是:( ) A .201200 B .201100 C .101200 D .1011009.过椭圆1253622=+y x 的焦点1F 作直线交椭圆于B A 、两点,2F 是椭圆的另一焦点,则2ABF ∆的周长是( )A .12B .24C .22D .1010.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )A .(,0)12π-B .(,0)6π-C .(,0)6πD .(,0)3π11.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是 ( )12.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 ( )A .()()f x f x =-B .()1f x f x⎛⎫= ⎪⎝⎭C .()f x x >D .()2f x >13.如图,D 是△ABC 的边AB 的三等分点,则向量A .23CA AB + B .13CA AB +C .23CB AB +D .13CB AB +14.如果执行右面的程序框图,那么输出的S 等于( A .45 B .55 C .90 D .110A B C D春季高考高职单招数学模拟试题三1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )A .{}2B .{}3,2C .{}3,1D .{}5,4,3,2,12.复数1ii+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知命题2:,210,p x R x ∀∈+>则 ( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是( )A .2B .4C .6D .85.要得到函数2sin()6y x π=+的图象,只要将函数2sin y x =的图象( )A .向左平移6π个单位B .向右平移6π个单位C .向左平移3π个单位D .向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是( )A .3B .9C .27D .81 7.在空间中,下列命题正确的是( )A .平行于同一平面的两条直线平行B .垂直于同一平面的两条直线平行C .平行于同一直线的两个平面平行D .垂直于同一平面的两个平面平行8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概率等于( )A .54B .43C .21D .329.计算sin 240︒的值为( )A .23-B .21-C .21D .2310."tan 1"α=是""4πα=的 ( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件11.下列函数中,在),0(+∞上是减函数的是( )A .xy 1=B .12+=x yC .x y 2=D .x y 3log = 12.已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( )A .6π B .3π C .32π D .65π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( )A .0B .C .4D .514.设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A .22 B .212- C .22- D .12-春季高考高职单招数学模拟试题四1.下列说法正确的是( )A .*N φ∈B .Z ∈-2C .Φ∈0D .Q ⊆2 2.三个数0.73a =,30.7b =,3log 0.7c =的大小顺序为( ) A .b c a << B .b a c <<C .c a b <<D .c b a <<3.2sin cos 1212ππ⋅的值为( )A .12 BCD .14.函数4sin 2(R)y x x =∈是 ( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数5.已知(1,2)=, (),1x =,当2+与-2共线时,x 值为( )A .1B .2C .13D .126.某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A .5,10,15B .5,9,16C .3,9,18D .3,10,17正(主)视侧(左)俯视图7.在下列函数中:①12()f x x =, ②23()f x x =,③()cos f x x =,④()f x x =, 其中偶函数的个数是 ( )A .0B .1C .2D .38.某样本数据的频率分布直方图的部分图形如下图所示,则数据在[50,70)的频率约为( )A .0.25B .0.05C .0.5D .0.0259.把函数)34cos(π+=x y 的图象向右平移θ(θ>0)个单位,所得的图象关于y 轴对称,则θ的最小值为( )A .6πB .3π C .32π D .34π10.如图,大正方形的面积是13直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正 方形内的概率为( )A .113B .213C .313D .41311. 已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.3,0,05x y x y x 则y x 42+的最小值为( )A .6B .12C .6-D .12- 12.条件语句⑵的算法过程中,当输入43x π=时,输出的结果是( )A .2-B .12-C .12D .213.下列各对向量中互相垂直的是( )A .)5,3(),2,4(-==B .)4,3(-=,)3,4(=C .)5,2(),2,5(--==b aD .)2,3(),3,2(-=-=b a14.对于常数"0",,>mn n m 是方程122=+ny mx 的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件高考高职单招数学模拟试题五1.设全集U ,集合A 和B ,如图所示的阴影部分所表示的集合为( ) A .()u A C B ⋃ B .()u C A B ⋂ C .()u C A B ⋂ D .()u A C B ⋂ 2.已知命题p : 2,10,x R x x p ∃∈+-<⌝则为( )A .2,10x R x x ∃∈+->B .2,10x R x x ∀∈+-≥C .2,10x R x x ∃∉+-≥D .2,10x R x x ∀∈+-> 3. 统计某产品的广告费用x 与销售额y 的一组数据如下表: 广告费用 2 3 5 6 销售额y 7 9 12若根据上表提供的数据用最小二乘法可求得y 对x 的回归直线方程是,则数据中的的值应该是( )A .7.9B .8C .8.1D .94.一个几何体的三视图都是边长为2的正方形,则该几何体的表面积是( ) A .4 B .8 C .16 D .245.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,且2220a b c +-<,则ABC ∆是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6. 已知函数)(x f 的图象是一条连续不断的,)(,x f x 的对应值如下表:则在下列区间内,函数)(x f 一定有零点的是( )A .)1,2(--B .)1,1(-C .(1,2)D .(2,3)7.在直角坐标系中,直线l 的倾斜角30β= ,且过(0,1),则直线l 的方程是( )A .13y x =- B .13y x =+ C .1y =- D .1y =+ 8.已知定义在R )9. 双曲线22145x y -=的渐近线方程为( )A.4y x =± B .2y x =± C .5y x =± D .5y x =±10. 已知(,)2a ππ∈,4sin 5α=,则cos()πα+=( )A . 32B . 32-C . 23D . 23-11.已知圆221:1O x y +=,圆222:(1)(2)16O x y -+-=,则圆1O 和圆2O 的位置关系是( ) A . 内含 B . 内切 C . 相交 D . 外离12. 等于已知向量(1,2),(3,2),a b =-= 且,n xa yb =+ 则x=1,y=1是m //n的( )A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件13.函数2,(1)(),(1)x x f x x x ≤⎧=⎨>⎩且1()2f x =,则x =( )A . 12B .2 C .2- D .2或2-14. 某公司生产一种产品,每生产1千件需投入成本81万元,每千件的销售收入R (x )(单位:万元)与年产量x(单位:千件)满足关系:2()324(010)R x x x =-+<≤该公司为了在生产中获得最大利润(年利润=年销售收入—年总成本),则年产量应为( )A . 5千件B .C .9千件D . 10千件高考高职单招数学模拟试题六1.复数2i i +等于( )A .1i +B .1i -C .1i -+D .1i --2.已知函数()22xf x =+,则(1)f 的值为( )A .2B .3C .4D .6 3.函数y =) A .[)1,0- B .()0,+∞ C .[)()1,00,-+∞ D .()(),00,-∞+∞4.执行如图所示的程序框图,若输入的x 的值为3,则输出的y 的值为( ) A .4 B .5 C .8 D .10 5.若x R ∈,则“x =1”是“x =1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D . 既不充分又不必要条件 6.下列函数中,在其定义域内既是奇函数,又是减函数的是( )A .3y x =-B .sin y x =C .tan y x =D .1()2xy = 7. 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )8. 已知cos α=45,(,0)2απ∈-,则sin α+cos α等于( )A .-15B . 15C .-75D .759. 函数()23-+=x x f x的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若变量,x y 满足约束条件2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩则y x z +=2的最大值是( )A .2B .4C .5D .611.若双曲线方程为221916x y -=,则其离心率等于( ) A .53 B .54 C .45 D . 35 12.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )13.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-= C.y x = D .y x = 14. 已知()f x 是奇函数,且当0x ≥时,2()f x x x =-+,则不等式()0xf x <的解集为( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞高考高职单招数学模拟试题七1.若集合A ={}0,1,2,4,B ={}1,2,3,则B A =( )A .{}0,1,2,3,4B .{}0,4C .{}1,2D .{}3 2.不等式032<-x x 的解集是( )A .)0,(-∞B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.函数11)(-=x x f 的定义域为( ) A .}1|{<x x B . }1|{>x x C .}0|{≠∈x R x D .}1|{≠∈x R x 4.已知等差数列{}n a 的前n 项和n S ,若1854=+a a ,则8S =( ) A .72 B . 68C . 54D . 905.圆22(1)3x y -+=的圆心坐标和半径分别是( )A .(1,0),3-B .(1,0),3 C.(1- D.(16.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).A .,sin 1x R x ∃∈≥B .,sin 1x R x ∀∈≥C .,sin 1x R x ∃∈>D .,sin 1x R x ∀∈> 7.若a R ∈,则0a =是()10a a -=的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8.下列函数)(x f 中,在()+∞,0上为增函数的是( )A .xx f 1)(=B .2)1()(-=x x fC .x x f ln )(=D . xx f ⎪⎭⎫⎝⎛=21)(9.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f = ( ) A .3- B . 1- C .1 D .3 10.过点A (2,3)且垂直于直线052=-+y x 的直线方程为( )A .042=+-y xB .072=-+y xC .032=+-y xD .052=+-y x 11.0167cos 43sin 77cos 43cos +的值为( ) A .1 B .1-D .21- 12.函数2log ,(0,16]y x x =∈的值域是( )A .(]4,-∞-B .(]4,∞-C [)+∞-,4.D .[)+∞,4 13.已知函数()123+++=x x x x f ,则()x f 在(0,1)处的切线方程为( )A .01=--y xB .01=++y xC .01=+-y xD .01=-+y x14.如图,21F F 、是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若A F F F 121=,则2C 的离心率是( )A .31 B .32 C . 32或52 D .52春季高考高职单招数学模拟试题(一)ADDBB ADDBA CCCAB BABAA DC 春季高考高职单招数学模拟试题(二)春季高考高职单招数学模拟试题(三)CDACA DBCAA ACBD春季高考高职单招数学模拟试题(四)BDACD CCBBA CBBB春季高考高职单招数学模拟试题(五)春季高考高职单招数学模拟试题(六)CCCCA AABCD DBDD春季高考高职单招数学模拟试题(七)CBBAD CACAA DBCB。
春季高考高职单招数学模拟试题 (6) Word版含答案
![春季高考高职单招数学模拟试题 (6) Word版含答案](https://img.taocdn.com/s3/m/1ea41b260b4c2e3f572763c9.png)
春季高考高职单招数学模拟试题班级:姓名:座号:成绩:一、选择题:本大题共14个小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡上。
1.已知集合{1,2,3,4}M=,集合{1,3,5}N=,则M N等于().{2}A.{2,3}B.{1,3}C.{1,2,3,4D2.复数1ii+在复平面内对应的点在()A第一象限B.第二象限C.第三象限D3.已知命题2:,210,p x R x∀∈+>则()A.2:,210p x R x⌝∃∈+≤B.2:,210p x R x⌝∀∈+≤C.2:,210p x R x⌝∃∈+< D.2:,210p x R x⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是()A. 2B.4C.6D.85.要得到函数2sin()6y xπ=+的图象,只要将函数2siny x=的图象()(A)向左平移6π个单位(B)向右平移6π个单位(C)向左平移3π个单位(D)向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是().3A.9B.27C.81D7. 在空间中,下列命题正确的是()A.平行于同一平面的两条直线平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两个平面平行D.垂直于同一平面的两个平面平行8.若AD为ABC∆的中线,现有质地均匀的粒子散落在ABC∆内,则粒子在ABD∆内的概率等于()4.5A3.4B1.2C2.3D9. 计算sin240︒的值为().A1.2B-1.2C D⒑"tan1"α=是""4πα=的()(A)必要而不充分条件(B)充分而不必要条件(C)充要条件(D)既不充正(主)视侧(左)俯视图分也不必要条件11. 下列函数中,在),0(+∞上是减函数的是( ).A xy 1=.B 12+=x y .C x y 2= .D x y 3l o g =⒓已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( ).6A π.3B π2.3C π 5.6D π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( ).0A .1B .4C .5D14、设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A 、22 B 、212- C 、22- D 、12-厦门市海沧中学高职高考 数学模拟试卷答题卡一、 请将选择题答案填入:题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案非选择题(共80分)二、 填空题:本大题共4个小题,每小题5分,共20分。
春季高考高职单招数学模拟试题 (3) Word版含答案
![春季高考高职单招数学模拟试题 (3) Word版含答案](https://img.taocdn.com/s3/m/9bd3084177232f60ddcca1ce.png)
春季高考高职单招数学模拟试题班级: 姓名: 座号:一、选择题:本题共22小题,1-10题,每小题2分,11-22题,每小题3分,共56分. (1)sin420°=A .23 B .21 C .-23D .-21(2)将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是(A )13(B )14(C )15(D )16(3)函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞(4)s in14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-21(5)函数∈=x x y (cos 2R )是(A )周期为π2的奇函数(B )周期为π2的偶函数(C )周期为π的奇函数 (D )周期为π的偶函数(6)已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为(A )1y x =- (B )1y x =+ (C )1y x =-- (D )1y x =-+(7)已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =(A )3(B )34(C )3- (D )34-(8)已知函数)2(21)(≠-=x x x f ,则()f x (A )在(-2,+∞)上是增函数 (B )在(-2,+∞)上是减函数 (C )在(2,+∞)上是增函数(D )在(2,+∞)上是减函数(9)若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为(A )1(B )0(C )1-(D )2-(10)从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为 (A )13 (B )49 (C )59 (D )23(11)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A )8 (B )5 (C )3 (D )2(12)已知函数|l g|,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10)(B )(5,6)(C )(10,12)(D )(20,24)(13)已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}(14)若函数()=f x (6)f 等于( )A .3B .6C .9D(15)直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-(16)两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.(17)已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数(18)向量(1,2)=- a ,(2,1)=b ,则( )A.//a b B.⊥a b C.a与b的夹角为60 D.a与b的夹角为30 (19)已知等差数列{}n a中,7916+=a a,41=a,则12a的值是()A.15 B.30 C.31 D.64(20)阅读下面的流程图,若输入的a,b,c分别是5,2,6,则输出的a,b,c分别是()A.6,5,2 B.5,2,6 C.2,5,6 D.6,2,5(21)已知函数2()2=-+f x x x b在区间(2,4)内有唯一零点,则b的取值范围是()A.R B.(,0)-∞C.(8,)-+∞D.(8,0)-(22)在ABC∆中,已知120=A,1=b,2=c,则a等于()A B D二、填空题:本大题共4小题,每小题3分,共12分.(23)把110010(2)化为十进制数的结果是.(24)给出下列四个命题①平行于同一平面的两条直线平行;②垂直于同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行;④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直.其中正确命题的序号是(写出所有正确命题的序号).(25)已知直线l:1y x=+和圆C:2212x y+=,则直线l与圆C的位置关系为.(26)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.三、解答题:本大题共4小题,共32分.解答应写出文字说明、证明过程或演算步骤.(27)(8分)如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的径叶图,(28) (8分)在等差数列{n a }中,已知a 2=2,a 4=4,(1)求数列{n a }的通项公式n a ; (2)设2n a n b ,求数列{n b }前5项的和S 5。
职教高考--春季高考数学模拟试卷三(后附答案解析)
![职教高考--春季高考数学模拟试卷三(后附答案解析)](https://img.taocdn.com/s3/m/a305575ef342336c1eb91a37f111f18583d00c0b.png)
3 ,短半轴长为 2 ,则该椭圆的长半轴长 2
为______.
24.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全
球共有 40 多个国家引种杂交水稻,中国境外种植面积达 800 万公顷.某村引进了甲、
乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的 6 块试验田中同时
()
A. DD1
B. AC
C. AD1
D. B1C
第 II 卷(非选择题)
二、填空题
21.若 tan = 2 ,则 cos + sin = ______. 3cos − sin
22.已知正四棱锥的底面边长为 4,侧棱长为 3,则此四棱锥的全面积为_______.
23.若椭圆
x2 a2
+
y2 b2
= 1(a b 0) 的离心率为
这就是著名的哈雷彗星,它的回归周期大约是 76 年.请你预测它在本世纪回归的年份( )
A.2042
B.2062
C.2082
D.2092
19.已知二项式
x
−
1 x
n
展开式的二项式系数和为
64,则展开式中常数项为(
)
A. −120
B. −20
C.15
D.20
20.如图,P 是正方体 ABCD − A1B1C1D1 边 A1C1 上的动点,下列哪条边与边 BP 始终异面 试卷第 3 页,共 5 页
D.存在一个奇数不是质数
17.图中阴影部分所表示的区域满足的不等式是( )
A. 2x + y − 2 0
B. 2x + y − 2 0
C. 2x + y − 2 0
福建省春季高考高职单招数学模拟试题(三)及答案
![福建省春季高考高职单招数学模拟试题(三)及答案](https://img.taocdn.com/s3/m/2f067abc69dc5022abea000d.png)
福建省春季高考高职单招数学模拟试题(三)班级: 姓名: 座号:一. 填空题(本大题满分36分)1. 函数2log (2)y x =+的定义域是2. 方程28x =的解是3. 抛物线28y x =的准线方程是 4. 函数2sin y x =的最小正周期是 5. 已知向量(1 )a k = ,,(9 6)b k =- ,。
若//a b ,则实数 k = 6. 函数4sin 3cos y x x =+的最大值是7. 复数23i +(i 是虚数单位)的模是 8. 在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B === ,,,则b= 9.在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为10. 从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为 。
11. 若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S 12. 36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为二.选择题(本大题满分36分) 13.展开式为ad-bc 的行列式是( )(A )a bd c (B)acb d(C)a d bc(D)b a dc14.设-1()f x为函数()f x = )(A) 1(2)2f-= (B) 1(2)4f -=(C) 1(4)2f-= (D) 1(4)4f -=15.直线2310x y -+=的一个方向向量是( ) (A) (2 3)-, (B) (2 3), (C) (3 2)-, (D) (3 2),16函数12()f x x -=的大致图像是( )17.如果0a b <<,那么下列不等式成立的是( ) (A)11a b < (B) 2ab b < (C) 2ab a -<- (D) 11a b-<- 18.若复数12 z z 、满足21z z =,则12 z z 、在复数平面上对应的点12 Z Z 、( ) (A) 关于x 轴对称 (B)关于y 轴对称 (C) 关于原点对称 (D)关于直线y x =对称19. 10(1)x +的二项展开式中的一项是( )(A )45x (B )290x (C ) 3120x (D )4252x 20.既是偶函数又在区间(0 )π,上单调递减的函数是( )(A )sin y x = (B )cos y x = (C )sin 2y x = (D )cos 2y x = 21.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) (A )1:2 (B )1:4 (C )1:8 (D )1:16 22.设全集U R =,下列集合运算结果为R 的是( )D 1 C 1 B 1A 1D CA B(A )N C Z U (B )N C Z U (C )}{φU C (D ){0}U C23.已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件24.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是( )(A )圆 (B ) 椭圆 (C ) 抛物线 (D )双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤。
福建省春季高考高职单招数学模拟试题(七)及答案
![福建省春季高考高职单招数学模拟试题(七)及答案](https://img.taocdn.com/s3/m/435d0fc50408763231126edb6f1aff00bed570a4.png)
福建省春季高考高职单招数学模拟试题(七)班级: 姓名: 座号:一、选择题(本题有26小题,1-20每小题2分,21-26每小题3分,共58分) 1.设全集U ={1,2,3,4},则集合A ={1, 3},则C U A = (A){1, 4} (B){2, 4} (C){3, 4} (D){2, 3} 2.sin4π= (A)21(B)22 (C)23(D)1 3.函数11)(-=x x f 的定义域为 (A) {x |x <1} (B){x |x >1|} (C){x ∈R |x ≠0} (D){x ∈R |x ≠1}4.若直线y =kx +2的斜率为2,则k =(A)-2(B)2(C)21- (D)215.若函数f (x )为,则f [f (1)]=(A)0 (B)1 (C)2 (D)36.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是 (A)球 (B)圆台 (C)圆锥 (D)圆柱 7.圆x 2+y 2-4x +6y +3=0的圆心坐标是 (A)(2, 3) (B)(-2, 3) (C)(2,-3) (D)( -2,-3)8.等比数列{a n }中,a 3=16,a 4=8,则a 1=( ) (A)64 (B)32 (C)4 (D)2 9.函数xx x f 2)(+=(A)是奇函数,但不是偶函数 (B)既是奇函数,又是偶函数(C)是偶函数,但不是奇函数(D)既不是奇函数,又不是偶函数10.函数)6cos(2)(π+=x x f ,x ∈R 的最小正周期为(A)4π (B)2π (C)π (D)2π11.右图是某职业篮球运动员在连续11场比赛中得分的茎叶统计图,则该组数据的中位数是 (A)31 (B)32 (C)35 (D)36 12.设a , b , c 是两两不共线的平面向量,则下列结论中错误..的是 (A)a +b =b +a(B)a ⋅b =b ⋅a(C)a +(b +c )=(a +b )+c(D) a (b ⋅c )=(a ⋅b )c13.若tan α=21,tan β=31,则tan(α+β)= (A)75 (B)65 (C)1 (D)2 14.若非零实数a , b 满足a >b ,则(A)ba11<(B)2211ba>(C)a 2>b 2 (D)a 3>b 315.在空间中,下列命题正确的是 (A)与一平面成等角的两直线平行 (B)垂直于同一平面的两平面平行 (C)与一平面平行的两直线平行 (D)垂直于同一直线的两平面平行16.甲,乙两位同学考入某大学的同一专业,已知该专业设有3个班级,则他们被随机分到同一个班级的概率为(A)91 (B) 61 (C) 31 (D) 211 2 3 4 52 5 5 46 5 1 97 7 1 (第11题)17.某几何体的三视图如图所示,则该几何体的体积是 (A)π34 (B)2π (C)π38 (D)π310 18.将函数)3sin(π-=x y 的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所对应的函数是 (A))32sin(π-=x y(B))322sin(π-=x y (C))321sin(π-=x y(D))621sin(π-=x y19.函数f (x )=log 2(1-x )的图象为20.如图,在三棱锥S -ABC 中,SA =SC =AB =BC ,则直线所成角的大小是 (A)30º (B)45º (C)60º (D)90º 21.若{a n }无穷等比数列,则下列数列可能不是.... (A){a 2n } (B){a 2n -1} (C){a n ⋅a n +1} (D){a n +a n +1} 22.若log 2x +log 2y =3,则2x +y 的最小值是(A)24 (B)8 (C)10 (D)12 23.右图是某同学用于计算S =sin1+sin2+sin3+…+sin2012值的程序框图,则在判断框中填写 (A)k >2011? (B)k >2012? (C)k <2011? (D)k <2012? 24.M 是空间直角坐标系Oxyz 中任一点(异于O ),若直线OM 与xOy平面,yoz 平面,zox 平面所成的角的余弦值分别为p , q , r ,则p 2+q 2+r 2=(A) 41(B) 1 (C) 2 (D) 4925.设圆C :(x -5)2+(y -3)2=5,过圆心C 作直线l 与圆交于A ,B 两点,与x 轴交于P 点,若A 恰为线段BP 的中点,则直线l 的方程为 (A)x -2y +1=0,x +2y -11=0 (B)2x -y -7=0,2x +y -13=0 (C)x -3y +4=0,x +3y -14=0(D)3x -y -12=0,3x +y -18=0 26.在平面直角坐标系xOy 中,设不等式组⎪⎪⎩⎪⎪⎨⎧≤+-≥+-≤+≤-002020b y ax y x y x y x ,所表示的平面区域为D ,若D的边界是菱形,则ab =(A)102-(B)102(C)52(D)52-二、选择题(本题分A 、B 两组,任选一组完成)A 组(A)正视图俯视图侧视图(第17题)(第23题)(第20题)27.i 是虚数单位,i12+=(A)1+i(B)1-i (C)2+2i (D)2-2i28.对于集合A ,B ,“A ∩B =A ∪B ”是“A =B ”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分又不必要条件29.在椭圆)0(12222>>=-b a by a x 中,F ,A ,B 分别为其左焦点,右顶点,上顶点,O 为坐标原点,M 为线段OB 的中点,若∆FMA 为直角三角形,则该椭圆的离心率为(A)25- (B)215- (C)552 (D)5530.设函数y =f (x ),x ∈R 的导函数为)(x f ',且f (-x )=f (x ),)()(x f x f <',则不等式成立的是(A)f (0)<e -1f (1)<e 2f (2) (B) e 2f (2)< f (0)<e -1f (1) (C) e 2f (2)<e -1f (1)<f (0) (D)e -1f (1)<f (0)<e 2f (2)B 组31.双曲线192522=-y x 的渐近线方程为(A)3x ±4y =0 (B) 4x ±3y =0 (C) 3x ±5y =0 (D)5x ±3y =0 32.若随机变量X ~B (100, p ),X 的数学期望EX =24,则p 的值是(A)52(B)53(C)256 (D)2519 33.将a , b , c , d , e 五个字母填入右图的五个方格中,每个方格恰好填一个字母,则a , b 不填在相邻两个格子(即它们有一条公共边)中的填法数为 (A)72 (B)96 (C)116 (D)12034.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方体内部及面上的两个动点,则PQ AM ⋅的最大值是(A)21(B) 1 (C)23(D)45三、填空题(本题有5小题,每小题2分,共10分) 35.不等式x 2-2x <0的解集是 .36.设S n 是等差数列{a n }的前n 项和,若a 1=-2,S 4=10,则公差d = .37.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 的样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时的人数为12人,则n = . 38.设点A (x 1,f (x 1)),B (x 2,f (x 2)),T (x 0,f (x 0))在函数f (x )=x 3-ax (a >0)的图象上,其中x 1,x 2是f (x )的两个极值点,x 0(x 0≠0)是f (x )的一个零点,若函数f (x )的图象在T 处的切线与直线AB 垂直,则a = . 39.在数列{a n }中,设S 0=0,S n =a 1+a 2+a 3+…+a n ,其中,,,,11k S k S k k a k k k ≥<⎩⎨⎧-=--1≤k ≤n ,k ,n ∈N *,当n ≤14时,使S n =0的n 的最大值为 . 四、解答题(本题有3小题,共20分)40.(本题6分)在锐角∆ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求∆ABC 的面积及a 的值.(第13题)41.(本题6分)设抛物线C:y=x2,F为焦点,l为准线,准线与Array y轴的交点为H. (I)求|FH|;(II)设M是抛物线C上一点,E(0, 4),延长ME,MF分别交C于点A,B.若A, B, H三点共线,求点M的坐标.42.(本题8分)设函数f(x)=(x-a)e x+(a-1)x+a,a∈R.(I)当a=1时,求f(x)的单调区间;(II)(i)设g(x)是f(x)的导函数,证明:当a>2时,在(0,+∞)上恰有一个x0使得g(x0)=0;(ii)求实数a的取值范围,使得对任意的x∈[0, 2],恒有f(x)≤0成立.注:e为自然对数的底数.福建省春季高考高职单招数学模拟试题(七)参考答案35、{}02x x << ; 36、3 ; 37、150 ; 38 ; 39、12 四、解答题 40、解:ks5u41、解:(Ⅰ)由抛物线方程2y x =知抛物线的焦点坐标为1(0,)4F ,准线方程为14y =-。
福建省春季高考高职单招数学模拟试题(一)及答案
![福建省春季高考高职单招数学模拟试题(一)及答案](https://img.taocdn.com/s3/m/8084968484868762cbaed50f.png)
福建省春季高考高职单招数学模拟试题(一)班级: 姓名: 座号:一、选择题(本大题有15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}0,1,2,0,1M N ==,则M N =A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2.某几何体的三视图如下图所示,则该几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥 3.当输入a 的值为1,b 的值为3-时,右边程序运行的结果是A .1B .2-C .3-D .2 4.函数2sin(2)6y x π=-的最小正周期是A .4πB .2πC .πD .2π 5.下列函数中,在()0,+∞上是减函数的是A .1y x =B .21y x =+C .2xy = D .()()00x x y x x >⎧⎪=⎨-≤⎪⎩6.不等式组101x y x -+≥⎧⎨≤⎩表示的平面区域是7.函数x y sin 1+=的部分图像如图所示,则该函数在[]π2,0的单调递减区间是A .[]0,πB .3,22ππ⎡⎤⎢⎥⎣⎦C .30,2π⎡⎤⎢⎥⎣⎦D .,22ππ⎡⎤⎢⎥⎣⎦2ππ 32π 2π8.方程320x -=的根所在的区间是A .()2,0-B .()0,1C .()1,2D .()2,3DC B A 俯视图侧视图正视图9.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ= A .6- B .6 C .32 D .32- 10.函数()2log 1y x =-的图像大致是11.不等式230x x ->的解集是A .{}03x x ≤≤B .{}0,3x x x ≤≥或C .{}03x x <<D .{}0,3x x x <>或 12.下列几何体的下底面面积相等,高也相等,则体积最大的是DC BA13.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是A .4πB .4πC .44π-D .π14.已知()3cos 5πα-=-,则cos 2a =A .1625B .1625-C .725D .725-15.在某五场篮球比赛中,甲、乙两名运动员得分的茎叶图如下.下列说法正确的是A .在这五场比赛中,甲的平均得分比乙好,且甲比乙稳定B .在这五场比赛中,甲的平均得分比乙好,但乙比甲稳定C .在这五场比赛中,乙的平均得分比甲好,且乙比甲稳定D .在这五场比赛中,乙的平均得分比甲好,但甲比乙稳定二、填空题(本大题有5小题,每小题3分,共15分。
春季高考高职单招数学模拟试题 (5) Word版含答案
![春季高考高职单招数学模拟试题 (5) Word版含答案](https://img.taocdn.com/s3/m/db637d4abe23482fb4da4cce.png)
春季高考高职单招数学模拟试题班级: 姓名: 座号:一、填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分. 1.函数()lg 2y x =-的定义域是 . 2.若集合{}1A x x =≥,{}24B x x =≤,则A B = .3.在ABC ∆中,若tan A =,则sin A =4.若行列式24012x=,则x =5.若1sin 3x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则tan x = 。
6.61x x ⎛⎫+ ⎪⎝⎭的二项展开式的常数项为 7.两条直线1:20l x +=与2:20l x y -+=夹角的大小是8.若n S 为等比数列{}n a 的前n 项和,2580a a +=,则63S S =9.若椭圆C 焦点和顶点分别是双曲线22154x y -=的顶点和焦点,则椭圆C 的方程是 10.若点O 和点F 分别为椭圆2212x y +=的中心和左焦点,点P 为椭圆上的任意一点,则22OP PF+的最小值为 11.根据如图所示的程序框图,输出结果i = 12.2011年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为13.有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD 所成角的大小是.DCBAG F EDC BA14.为求解方程510x-=的虚根,可以把原方程变形为()()432110x x x x x -++++=,再变形为()()()221110x x ax x bx -++++=,由此可得原方程的一个虚根为二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若向量()2,0a =,()1,1b =,则下列结论正确的是 ( )A.1a b ⋅= B.a b = C.()a b b-⊥ D.//a b16.函数()412x xf x -=的图象关于 ( ) A.原点对称 B.直线y x =对称 C.直线y x =-对称 D.y 轴对称17.直线1:2l y k x ⎛⎫=+ ⎪⎝⎭与圆22:1C x y +=的位置关系为 ( )A.相交或相切 B.相交或相离 C.相切 D.相交18.若123,,a a a均为单位向量,则133a ⎛⎫= ⎪ ⎪⎝⎭是123a a a ++= 的 ( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 三、解答题(本大题74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)向量()sin 21,cos a x x =-,()1,2cos b x = .设函数()f x a b =⋅ . 求函数()f x 的最小正周期及0,2x π⎡⎤∈⎢⎥⎣⎦时的最大值.20.(14分)某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm 的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计),求该蛋筒冰激凌的表面积和体积(精确到0.01)21.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知抛物线2:4F x y =.(1) ABC ∆的三个顶点在抛物线F 上,记ABC ∆的三边,,AB BC CA 所在直线的斜率分别为,,AB BC CA k k k ,若点A 在坐标原点,求AB BC CA k k k -+的值;(2) 请你给出一个以()2,1P 为顶点,且其余各顶点均为抛物线F 上的动点的多边形,写出多边形各边所在直线的斜率之间的关系式,并说明理由.说明:第(2)题将根据结论的一般性程度给与不同的评分.22.(本题满分16分)定义域为R ,且对任意实数12,x x 都满足不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭的所有函数()f x 组成的集合记为M .例如()f x kx b M=+∈.(1) 已知函数(),0,1,02x x f x x x ≥⎧⎪=⎨<⎪⎩证明:()f x M ∈;(2) 写出一个函数()f x ,使得()f x M∉,并说明理由;23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分, 第3小题满分6分.对于给定首项)00x a >>,由递推式112n n x x +⎛=+⎝()n +∈N 得到数列{}n x ,且对于任意的n +∈N ,都有n x >{}n x(1) 取05x =,100a =,计算123,,x x x 的值(精确到0.01),归纳出n x ,1n x +的大小关系;(2) 当1n ≥时,证明()1112n n n n x x x x +--<-;(3) 当[]05,10x ∈时,用数列{}n x4110nn x x -+-<,请你估计n ,并说明理由.需要高中数学的朋友请加QQ :182337727,有你想要的系统资料春季高考高职单招数学模拟试题(六)参考答案1、【解】()2,+∞.函数()lg 2y x =-的定义域满足20x ->,即2x >,所以函数()lg 2y x =-的定义域为()2,+∞.2、【解】{}12x x ≤≤.{}{}2422B x x x =≤=-≤≤,所以A B = {}12x x ≤≤.3、【解】11.因为tan 03A =>,则A ∠是锐角,于是2221111tan 199cos A A +=+==,则29cos11A =,cos A =,sin tan cos 311A A A =⋅==.(或由29cos 11A =得22sin 11A =,因为sin 0A >,则sin 11A =) 4、【解】1.242214012x x =⨯-⨯=,则22x =,1x =.5、【解】1arcsin3.因为1sin 3x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则1arcsin 3x =. 6、【解】20.61x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项为662166C C r r r r rr T x x x ---+==.令620r -=得3r =.所以61x x ⎛⎫+ ⎪⎝⎭的二项展开式的常数项为36C 20=.7、【解】12π.直线1l 的倾斜角为6π,直线2l 的倾斜角为4π,夹角为4612πππ-=.8、【解】7-.设公比为q ,则4118a q a q =-,所以38q =-.63633118171S q q S q -==+=-+=--.9、【解】22194x y +=.双曲线22154x y -=的顶点和焦点坐标分别是()和()3,0±. 设椭圆C 的方程为22221x y a b +=,则由题设,3a ==2b =,所以椭圆C 的方程为22194x y +=.10、【解】2设(),P x y ,由()1,0F -得()2222221OP PF x y x y +=++++①因为点P 为椭圆上的任意一点,则2212x y =-,于是①式化为2222221212x OP PF x x ⎛⎫+=+++- ⎪⎝⎭ 223x x =++()212x =++.因为x ≤,而()212x ++图象的对称轴1x ⎡=-∈⎣,所以当1x =-时,22OP PF +有最小值为2. 11、【解】7.根据如图所示的程序框图,所得的数据如下表所以输出的7i =.12、【解】168.第一步:从8所高校取2所高校的方法有28C 28=种,第二步:3位同学分配到2所高校的方法有2位同学被分配到同一所高校,所以有2132C C 6=种,所以录取方法的种数为286168⨯=种.13、【解】3π.AB 与CD 是正方形的边,则//AB EF ,//CD FG , 因为EF 和FG 是正三角形EFG 的两边,则AB 与CD 所成的角为3π.14、中的一个.由题设,有()()43222111x x x x x ax x bx ++++=++++,即()()()432432121x x x x x a b x ab x a b x ++++=+++++++,对应相应项的系数得1,21a b ab +=⎧⎨+=⎩解得a b ⎧=⎪⎪⎨⎪=⎪⎩或a b ⎧=⎪⎪⎨⎪=⎪⎩解210x x +=,因为0∆=<,所以i x =,同理,解210x x ++=得.所以原方程的一个虚根为,中的一个.15、【解】2a b ⋅= ,A不正确;2a =,b = a b ≠ ,B不正确;()1,1a b -=-,()()()1,11,10a b b -⋅=-⋅= ,所以()a b b -⊥,C正确;不存在实数λ,使a b λ= ,D不正确.故选C.16、【解】()41222x x xxf x --==-,则()()f x f x -=-,其图象关于原点对称.故选A. 17、【解】解法1.因为直线l 过点1,02⎛⎫-⎪⎝⎭,而点1,02⎛⎫- ⎪⎝⎭在圆22:1C x y +=的内部,所以直线与圆相交.故选D.解法2.圆心为()0,0,半径为1,圆心到直线的距离为11212kd k =≤=<,所以直线与圆相交.故选D.18、【解】若123a a a ++=,当123a a a ==时,得1a =⎝⎭,若133a ⎛⎫= ⎪⎪⎝⎭,当()231,0a a ==,则123a a a ++≠,所以1a =⎝⎭是123a a a ++=的必要不充分条件.故选B.19、【解】()2sin 212cos f x a b x x =⋅=-+ sin 2cos 2x x =+24x π⎛⎫=+ ⎪⎝⎭.所以,函数()f x 的最小正周期22T ππ==.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,444x πππ⎡⎤+∈⎢⎥⎣⎦, 当242x ππ+=,即8x π=时,函数有最大值max y20、【解】设圆锥的底面半径为r ,高为h .由题意,圆锥的侧面扇形的周长为121045ππ⋅⋅=()cm ,圆锥底面周长为2r π()cm ,则24r ππ=,2r =()cm .圆锥的=()cm ,圆锥的侧面扇形的面积为11410202S ππ=⨯⨯=()2cm ,半球的面积为 2214282S ππ=⨯⨯=.该蛋筒冰激凌的表面积122887.96S S S π=+=≈()2cm ;圆锥的体积为21123V π=⨯⨯()3cm ,半球的体积为3214162233V ππ=⨯⨯=()3cm ,所以该蛋筒冰激凌的体积为)1216157.803V V V π=+=≈()3cm .因此该蛋筒冰激凌的表面积约为287.96cm , 体积约为357.80cm . 21、【解】(1) 设(),B B B x y ,(),C C C x y .则B C CB AB BC CA B B C Cy y y y k k k x x x x --+=-+- ()2222444B C C BB BC C x x x x x x x x -=-+-()104B B C C x x x x =-++=⎡⎤⎣⎦.(2) ① 研究PBC ∆.B C C PB P PB BC CP B P B C C Py y y y y y k k k x x x x x x ----+=-+--- ()()()222222444B C C P B PB P BC C P x x x x x x x x x x x x ---=-+---()()()14BP B C C P x x x x x x =+-+++⎡⎤⎣⎦12P x ==. ② 研究四边形PBCD .4444B C C D B P D PPB BC CD DP x x x x x x x x k k k k ++++-+-=-+-0= ③ 研究五边形PBCDE .PB BC CD DE EP k k k k k -+-+44444B C C D B P D E E P x x x x x x x x x x +++++=-+-+12Px ==.④ 研究2n k =边形122k PP P (),2k k +∈≥N ,其中1P P =.()12233421211k k P P P P P P P P k k k k --+-+- ()233421122114444k k P P P P P P P P x x x x x x x x -++++=-+-+- ()1211104k P x -⎡⎤=+-=⎣⎦.⑤研究21n k =-边形1221k PP P - (),2k k +∈≥N ,其1P P =.()1223342112111k k P P P P P P P P k k k k ----+-+- ()23342111221114444k k P P P P P P P P x x x x x x x x ---++++=-+-+- ()12111114k P x --⎡⎤=+-=⎣⎦.⑥研究n 边形12n PP P (),3k n +∈≥N ,其中1P P =.()122334111n n P P P P P P P P k k k k --+-+-()2334121114444n P P P P P P Pn P x x x x x x x x -++++=-+-+- ()()111111142n n P x --+-⎡⎤=+-=⎣⎦.22、【解】(1) 当120x x ≤≤时,()()1212121202244f x f x x x x x x x f ++++⎛⎫-=-=⎪⎝⎭,则不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立;当120x x ≤≤时, ()()1212121202222f x f x x x x x x x f ++++⎛⎫-=-= ⎪⎝⎭,则不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭成立; 当120x x ≤≤,且1202x x +<时,()()1212121221120222224x xf x f x x x x x x f ++++⎛⎫-=-⋅=≥ ⎪⎝⎭,则 不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立; 当120x x ≤≤,且1202x x +≥时,()()12121212112022224x x f x f x x x x x x f ++++⎛⎫-=-=-≥ ⎪⎝⎭,则 不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立. 综合以上,不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立.所以()f x M ∈ (2) 例如函数()2f x x =-,取11x =-,21x =,则()()121222f x f x x x f ++⎛⎫-⎪⎝⎭()()()110102f f f -+=-=-<.所以()f x M ∉.也可以从()2f x x =-的图象看出,()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,不满足()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭.所以()2f x x M =-∉. (3) 例如函数()2,1,, 1.x x f x x x ⎧≥⎪=⎨<⎪⎩满足()f x M ∈,()222lim lim 1n n f n n n n →∞→∞==,()lim lim 1n n f n n n n →∞→∞--==--. 23、【解】(1) 1234.74, 4.67, 4.65x x x ===,猜想1n n x x +<; (2) ()1112n n n n x x x x +----1111222n n n n x x x x -⎛=--+ ⎝112n n x x -=111122n n x x --⎛= ⎝==①因为n x11110222n n n n n x x x x x +⎛⎛-=-==> ⎝⎝,所以1n n x x +>. 由①式,()11102n n n n x x x x +----=<,所以()1112n n n n x x x x +--<-. (3) 由(2)()()()()1121120121111102222n n n n n n n n x x x x x x x x x x +----<-<-<-<<-<- , 所以只要()4011102n x x --<即可,于是()401210n x x >-,因为01012x x x ⎛⎫-=- ⎝,所以4210log 1015.12n ⎛>⋅≈ ⎝⎭.所以16n =.。
福建省春季高考高职单招数学模拟试题(九)及答案
![福建省春季高考高职单招数学模拟试题(九)及答案](https://img.taocdn.com/s3/m/4fdb25e5856a561253d36f0d.png)
过椭圆的焦点作直线交椭圆于、两点,是椭圆另一焦x y F A B F 221236251+=福建省春季高考高职单招数学模拟试题(九)班级: 姓名: 座号:一、选择题(本大题共14个小题。
每小题5分,共70分) 1, 下列各函数中,与x y =表示同一函数的是( )(A)xx y 2= (B)2x y = (C)2)(x y = (D)33x y =2,抛物线241x y -=的焦点坐标是( ) (A) ()1,0- (B)()1,0 (C)()0,1 ( D)()0,1-3,设函数216x y -=的定义域为A,关于X的不等式a x <+12log 2的解集为B,且A B A = ,则a 的取值范围是( )(A)()3,∞- (B)(]3,0 (C)()+∞,5 (D)[)+∞,54,已知x x ,1312sin =是第二象限角,则=x tan ( ) (A)125 (B) 125- (C) 512 (D)512-5,等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) (A)240 (B)240± (C) 480 (D)480±6, tan 330︒= ( )(A(B(C) (D)7,设b >a >0,且a +b =1,则此四个数21,2ab ,a 2+b 2,b 中最大的是( ) (A )b (B )a 2+b 2(C)2ab (D )218,数列1,n +++++++ 3211,,3211,211的前100项和是:( ) (A)201200 (B)201100 (C)101200 (D1011009,点,则△ABF 2的周长是 ( )(A ).12 (B ).24 (C ).22 (D ).1010, 函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )(A )(,0)12π-(B )(,0)6π-(C )(,0)6π (D )(,0)3π11.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是 ( )12.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 ( )(A )()()f x f x =- (B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >13.如图,D 是△ABC 的边AB 的三等分点,则向量CD等于 ( )(A )23CA AB + (B )13CA AB +(C )23CB AB + (D )13CB AB +14.如果执行右面的程序框图,那么输出的S 等于()(A )45 (B )55 (C )90 (D )110 二,填空题(本大题共4个小题,每小题5分,共20分)15. 函数()ln 21y x =-的定义域是 . 16. 把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________.17. 某公司生产A 、B 、C 三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,样本中A 种型号的轿车比B 种型号的轿车少8辆,那么n = . 18. 已知函数1(0x y a a -=>且1)a ≠的图象恒过点A . 若点A 在直线 上, 则12m n+的最小值为 . 三,解答题(共六个大题,共60分)19.(10分)已知等差数列{}n a 的前n 项和为n S ,且1310a a +=, 424S =. (1)求数列{}n a 的通项公式;(2)令12111n nT S S S =+++ ,求证:34n T <.(A ) (B ) (C ) (D )C ADB ()100mx ny mn +-=>20. (本小题满分10分)编号分别为12312,,,,A A A A 的12名篮球运动员在某次篮球比赛中的得分记录如下:(1) 完成如下的频率分布表:(2)从得分在区间[)10,20内的运动员中随机抽取2人 , 求这2人得分之和大于25的概率.21.如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by a x 的左、右两个焦点,A 、B 为两个顶点,该椭圆的离心率为5ABO ∆(Ⅰ)求椭圆C 的方程和焦点坐标;(Ⅱ)作与AB 平行的直线l 交椭圆于P 、Q两点,PQ =l 的方程.22.(10分)已知函数.cos sin sin )(2x x x x f += (1) 求其最小正周期; (2) 当20π≤≤x 时,求其最值及相应的x 值。
2024年高职单独招生考试数学模拟试题及答案
![2024年高职单独招生考试数学模拟试题及答案](https://img.taocdn.com/s3/m/a9cee74d03020740be1e650e52ea551811a6c968.png)
2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。
中职数学 2023年山东省春季高考数学模拟试卷(一)
![中职数学 2023年山东省春季高考数学模拟试卷(一)](https://img.taocdn.com/s3/m/e0f4242db6360b4c2e3f5727a5e9856a56122665.png)
2023年山东省春季高考数学模拟试卷(一)一、单选题:本大题共20小题,每题3分,共60分,在每小题列出的四个选项中,只有一项符合题目要求。
A .2或3B .2C .3D .11.(3分)设x 为实数,A ={1,2,3},B ={1,x },若A ∪B =A ,则x 的值为( )A .a +1>b +1B .2a <2bC .a +1<b +1D .a <b -12.(3分)已知a ,b ∈R ,a >b ,则下列不等式一定成立的是( )A .150°B.120°C .60°D .30°3.(3分)已知|a |=3,|b |=23,a •b =−3.则a 与b 的夹角等于( )→√→√→→→→A .-21B .-18C .24D .274.(3分)已知等差数列{a n }中,a 1=3,公差d =-3,则a 8等于( )A .0B .-2C .2D .-15.(3分)已知f (x )是奇函数,当x >0时f (x )=-x (1+x ),则f (-1)等于( )A .B .C .D .6.(3分)如图所示几何体是由一个球体和一个圆柱组成的,它的主视图是( )A .x -2y +4=0B .2x +y -7=0C .2x -y -1=0D .x +2y -8=07.(3分)过点A (2,3)且与直线l :2x -4y +7=0平行的直线方程是( )A .p 真q 真B .p 真q 假C .p 假q 真D .p 假q 假8.(3分)若命题“p ∧q ”与命题“¬p ∨q ”都是假命题,则( )A .m −2n B.m +2nC .2m +nD .−m +2n9.(3分)在△ABC 中,D 为AB 边的中点,记CA =m ,CD =n ,则CB =( )→→→→→→→→→→→→→A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)10.(3分)圆x 2+y 2-2x +4y +1=0的圆心为( )A .−1213B .125C .−125D .121311.(3分)已知α为第二象限角,且sinα=1213,则tanα的值为( )A .-960B .960C .448D .-44812.(3分)若(1-2x )n 的展开式有且只有第5项的二项式系数最大,则展开式中x 3项的系数为( )A .B .C .D .13.(3分)某同学离家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中d 轴表示该学生离学校的距离,t 轴表示所用的时间,则符合学生走法的只可能是( )A .4种B .6种C .8种D .10种14.(3分)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只能去1个村,则不同的分配方案共有( )15.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,下列结论:①abc >0;②b 2-4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个A .(-1,1)B .[-1,1]C .{-1,1}D .{1}16.(3分)已知向量m =(-sinx ,sin 2x ),n =(sin 3x ,sin 4x ),若方程m •n =a 在[0,π)有唯一解,则实数a 的取值范围( )→→→→A .B .C .D .17.(3分)不等式x -y ≥0所表示的平面区域是( )A .14B .15C .110D .12018.(3分)张益唐是当代著名华人数学家.他在数论研究方面取得了巨大成就,曾经在《数学年刊》发表《质数间的有界间隔》,证明了存在无穷多对质数间隙都小于7000万.2013年张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p ,使得p +2是素数,素数对(p ,p +2)称为孪生素数.在不超过12的素数中,随机选取两个不同的数,能够组成孪生素数的概率是( )A .(1,3]B .(1,5]C .[3,+∞)D .[5,+∞)19.(3分)双曲线x 2−y2b 2=1的左焦点为F ,A (0,-b ),M 为双曲线右支上一点,若存在M ,使得|FM |+|AM |=5,则双曲线离心率的取值范围为( )√√√√20.(3分)血药浓度检测可使给药方案个体化,从而达到临床用药的安全、有效、合理.某医学研究所研制的某种治疗新冠肺炎的新药进入了临床试验阶段,经检测,当患者A 给药2小时的时候血药浓度达到峰值,此后每经过3小时检测一次,每次检测血药二、填空题:本大题共5小题,每小题4分,共20分。
春季高考高职单招数学模拟试题 (2) Word版含答案
![春季高考高职单招数学模拟试题 (2) Word版含答案](https://img.taocdn.com/s3/m/2308a45e49d7c1c708a1284ac850ad02de8007f5.png)
春季高考高职单招数学模拟试题 (2)Word版含答案春季高考高职单招数学模拟试题一、选择题1.已知集合 $M=\{0,1,2\}$,$B=\{1,4\}$,那么集合$A\cup B$ 等于()A) $\{1\}$B) $\{4\}$C) $\{2,3\}$D) $\{1,2,3,4\}$2.在等比数列 $\{a_n\}$ 中,已知 $a_1=2$,$a_2=4$,那么 $a_5$ 等于A) 6B) 8C) 10D) 163.已知向量 $\vec{a}=(3,1)$,$\vec{b}=(-2,5)$,那么$2\vec{a}+\vec{b}$ 等于()A) $(-1,11)$B) $(4,7)$C) $(1,6)$D) $(5,-4)$4.函数 $y=\log_2(x+1)$ 的定义域是()A) $(0,+\infty)$B) $(-1,+\infty)$C) $(1,+\infty)$D) $[-1,+\infty)$5.如果直线 $3x-y=$ 与直线 $mx+y-1=$ 平行,那么$m$ 的值为()A) $-3$B) $-\dfrac{11}{33}$C) $\dfrac{11}{33}$D) $3$6.函数 $y=\sin(\omega x)$ 的图象可以看做是把函数$y=\sin(x)$ 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的 $\dfrac{1}{2}$ 倍而得到,那么 $\omega$ 的值为()A) 4B) 2C) 3D) $\dfrac{3}{2}$7.在函数 $y=x$,$y=2$,$y=\log_2(x)$,$y=\dfrac{3x}{x+3}$ 中,奇函数的是()A) $y=x$B) $y=2$C) $y=\log_2(x)$D) $y=\dfrac{3x}{x+3}$8.$\sin\left(\dfrac{11\pi}{12}\right)$ 的值为()A) $-\dfrac{1}{2}$B) $-\dfrac{\sqrt{2}}{2}$C) $\dfrac{\sqrt{2}}{2}$D) $\dfrac{1}{2}$9.不等式 $x^2-3x+2<0$ 的解集是()A) $x>2$B) $x>1$C) $1<x<2$D) $x2$10.实数 $\log_4 5+2\log_5 2$ 的值为()A) 2B) 5C) 10D) 2011.某城市有大型、中型与小型超市共 1500 个,它们的个数之比为 1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取 30 个超市进行调查,那么抽取的小型超市个数为()A) 5B) 9C) 18D) 2112.已知平面 $\alpha\parallel\beta$,直线 $m\in\alpha$,那么直线 $m$ 与平面 $\beta$ 的关系是()A。
中职春考单招数学模拟测试卷
![中职春考单招数学模拟测试卷](https://img.taocdn.com/s3/m/3d9c41760166f5335a8102d276a20029bd6463cc.png)
综合模拟测试卷(四)本试题卷包括选择题.填空题和解答题三部分, 共6页, 时量120分钟, 满分120分.一、选择题(本大题共10小题, 每小题4分, 共40分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设集合A= , 则A 的真子集有( )个A.15B.16C.31D.322.设 、 是两个命题, 则“ 为真”是“ 为假”的( )条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要3.下列函数是对数函数的是( )A.x y 2=B.x y 2=C.2x y =D.x y 2log =4.设点A (2, 3), B (3, 4), 向量 , 则下列命题不正确的是( )A.向量AB 是单位向量B.a AB //C.a AB 与的夹角是πD.||5||AB a =5.若 , 则 ( )A.-B.C.-D. .6.设直线 , , 则下列说法正确的是( )A.21l l 与相交B.21//l lC.1l 的倾斜角为6πD.21l l 与之间的距离为27.动点P 到 . 的距离之和为8, 则P 的轨迹方程是( ) A.1162522=+y x B.171622=+y x C.171622=-y x D.116722=+y x8.下列命题中正确的一个是( )A.平行于同一平面的两直线平行B.平行于同一直线的两平面平行C.垂直于同一直线的两平面平行D.垂直于同一平面的两平面平行.9.将 个大学毕业生全部分配给 所学校, 不限制去每所学校的大学生人数, 则不同的分配方案有() A.35P B.35C C.35 D.5310.抛掷两枚骰子, 出现的点数和为 的概率为( )A. B. C. D.二、填空题(本大题共5小题, 每小题4分, 共20分)11.不等式2|1|≥-x 的解集用区间表示是 .12.一组数据8.12. .11.9的平均数是10, 则其方差是 .13.双曲线1422=-y x 的渐近线方程是 .14.若 的展开式中所有项的系数和为64, 则展开式中 的幂指数相同的项的系数是 .(结果用数字表示)15.函数)10lg(2)(lg )(2x x x f -=的值域为__________.三、解答题(本大题共7小题, 其中第21, 22小题为选做题, 共60分, 每小题10分.解答应写出文字说明或演算步骤)16.下图是某城市通过抽样得到的居民某年的月均用水量(单位: 吨)的频率分布直方图.1)求直方图中x 的值;(2分)2)若将频率视为概率, 从这个城市随机抽取3位居民(看作有放回的抽样), 求这三人中, 月均用水量在3至4吨的居民数X 的分布列、数学期望和方差.(8分)17.数列{ }满足 , 且 .数列{ }的前 项和记作 .1)求{ }的通项 及 ;(5分) 2)若 , 求数列{ }的前6项之和 .(5分)18.设函数 是定义在R 上的奇函数, 且 =30.1)求 的值;(3分) 2)说明 的单调性(简要说明理由及结论, 不需要证明);(3分)3)解不等式30)2(02<+<x x f .(4分)19.向量, , .(为坐标原点).1)求, , ;(4分)2)将四边形OABC绕着OC旋转一周, 求所得几何体的表面积与体积.(精确到0.01)(6分)20.抛物线的顶点在原点, 对称轴是X轴, 圆的圆心是抛物线的焦点F, 抛物线与圆的一个交点是A(4, 4). 1)求抛物线及圆的标准方程;(4分)2)设直线AF交抛物线于另一点B,交圆于另一点C,求BC的长度.(6分)注意: 第21题, 22题为选做题, 请考生选择其中一题作答.21.已知复数 的模为4, 幅角主值是 ,(1)求复数z ;(4分) (2)求复数1z .(6分) 22.(本题满分10分)某工厂用两种不同原料均可生产同一产品, 若采用甲种原料, 每吨成本1000元, 运费500元, 可得产品90千克;若采用乙种原料, 每吨成本为1500元, 运费400元, 可得产品100千克, 如果每月原料的总成本不超过6500元, 运费不超过2200元, 那么此工厂每月最多可生产多少千克产品?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于春季高考高职单招数学模拟试题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】2015届春季高考高职单招数学模拟试题一、选择题:本大题共14个小题,每小题5分,共70分。
在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡上。
1.如果集合{1,2}A =-,{|0}B x x =>,那么集合A B 等于A. {2}B. {1}-C. {1,2}-D. ∅ 2.不等式220x x -<的解集为A. {|2}x x >B. {|0}x x <C. {|02}x x <<D. {|0x x <或2}x >3.已知向量(2,3)=-a ,(1,5)=b ,那么⋅a b 等于4.如果直线3y x =与直线1+=mx y 垂直,那么m 的值为A. 3-B. 13- C. 13 D. 35.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量为6.函数1+=x y 的零点是A. 1-B. 0C. )0,0( D .0,1(-7.已知一个算法,其流程图如右图,则输出的结果是8.下列函数中,以π为最小正周期的是A. 2sin xy = B. x y sin = C. x y 2sin = D .y =(第7题图)9.11cos6π的值为A. 2-B. 2-C. 2D. 210. 已知数列{}n a 是公比为实数的等比数列,且11a =,59a =,则3a 等于B. 3C. 4D. 511.当,x y 满足条件,0,230x y y x y ≥⎧⎪≥⎨⎪+-≤⎩时,目标函数3z x y =+的最大值是12.已知直线l过点P ,圆C :224x y +=,则直线l 与圆C 的位置关系是 A.相交 B. 相切 C.相交或相切 D.相离 13. 已知函数3()f x x =-,则下列说法中正确的是A. ()f x 为奇函数,且在()0,+∞上是增函数B. ()f x 为奇函数,且在()0,+∞上是减函数C. ()f x 为偶函数,且在()0,+∞上是增函数D. ()f x 为偶函数,且在()0,+∞上是减函数14.已知平面α、β,直线a 、b ,下面的四个命题①a b a α⎫⎬⊥⎭∥b α⇒⊥;②}a b αα⊥⇒⊥a b ∥;③a b a b αβαβ⊂⎫⎪⊂⇒⊥⎬⎪⊥⎭;④a b a b αβαβ⊂⎫⎪⊂⇒⎬⎪⎭∥∥中, 所有正确命题的序号是A. ①②B. ②③C. ①④D. ②④非选择题(共80分)二、 填空题:本大题共4个小题,每小题5分,共20分。
请把答案写在答题卡相应的位置上。
15. 计算131()log 12-+的结果为 *** .16. 复数 i i ⋅+)1(在复平面内对应的点在第 *** 象限.17.如图 ,在边长为2的正方形内有一内切圆,现从正方形内取一点P ,则点P 在圆内的概率为__ *** _.18. 在ABC ∆中,60A ∠=︒,AC =BC =B 等于__ *** _.海沧中学2015届春季高考高职单招数学模拟试题答题卡(2)若某袋食品的实际重量小于或等于47g ,则视为不合格产品,试估计这批食品重量的合格率.21.(本小题满分10分)如图,在正方体1111D C B A ABCD -中,E 是棱1CC 的中点.(Ⅰ)证明:1AC ∥平面BDE ; (Ⅱ)证明:1AC BD ⊥.22. (本小题满分10分)在平面直角坐标系xOy 中,角,(0,)22αβαβππ<<<<π的顶点与原点O 重合,始边与x轴的正半轴重合,终边分别与单位圆交于,A B 两点,,A B 两点的纵坐标分别为53,135. (Ⅰ)求tan β的值; (Ⅱ)求AOB ∆的面积.23.(本小题满分12分)设半径长为5的圆C 满足条件: ①截y 轴所得弦长为6;②圆心在第一象限.并且到直线02:=+y x l 的距离为556. (Ⅰ)求这个圆的方程;(Ⅱ)求经过P (-1,0)与圆C 相切的直线方程.24. (本小题满分12分)已知函数9()||f x x a a x=--+,[1,6]x ∈,a R ∈.(Ⅰ)若1a =,试判断并证明函数()f x 的单调性;(Ⅱ)当(1,6)a ∈时,求函数()f x 的最大值的表达式()M a .海沧中学2015届春季高考高职单招数学模拟试题 参考答案一.选择题(每题5分,共70分) 二.填空题(每题5分,共20分)15. 2 16. 第二象限 17. 41π-045 或4π 4 5 6 6 9 5 0 0 0 1 1 2(第20题图) D 1B 1C 1A 1DBE C A(第21题三.解答题19. (本小题满分8分)解:设等差数列{}n a 的首项为1a ,公差为d ,因为所以⎩⎨⎧=+=+261027211d a d a ………………………………2分解得2,31==d a ………………………………4分 从而12)1(1+=-+=n d n a a n ………………………………6分n n a a n S n n 22)(21+=+=………………………………8分 20.(本小题满分8分)解:(1)这10袋食品重量的众数为50(g ), …………………………2分因为这10袋食品重量的平均数为491052515150505049464645=+++++++++(g ),所以可以估计这批食品实际重量的平均数为49(g ); ………………………4分(2)因为这10袋食品中实际重量小于或等于47g 的有3袋, 所以可以估计这批食品重量的不合格率为103, ………………………6分故可以估计这批食品重量的合格率为107. ………………………8分21.(本小题满分10分)(I)证明:连接AC 交BD 于O,连接OE,因为ABCD 是正方形,所以O 为AC 的中点,因为E 是棱CC 1的中点,所以AC 1∥OE. ………………………………2分又因为AC 1⊄平面BDE,OE ⊂平面BDE,所以AC 1∥平面BDE. (5)分(II) 证明因为ABCD 是正方形,所以AC ⊥BD.因为CC 1⊥平面ABCD,且BD ⊂平面ABCD,所以CC 1⊥BD.又因为CC 1∩AC=C,所以BD ⊥平面ACC 1. (8)分又因为AC 1⊂平面ACC 1,所以AC 1⊥BD. ………………………………10分22.(本小题满分10分)解:(I)因为在单位圆中,B 点的纵坐标为35,所以3sin 5β=,因为2πβπ<<,所以4cos 5β=-,所以sin 3tan cos 4βββ==-. ………………………………3分 (II)解:因为在单位圆中,A 点的纵坐标为513,所以5sin 13α=. 因为02πα<<,所以12cos 13α=.由(I)得3sin 5β=,4cos 5β=-, (6)分所以sin AOB sin()βα∠=-=sin cos cos sin βαβα-5665=. ………………………8分 又因为|OA|=1,|OB|=1,所以△AOB 的面积128|OA ||OB |sin AOB 265S =⋅∠=. ………………………………10分23.(本小题满分12分) (1)由题设圆心),(b a C ,半径r =5截y 轴弦长为64=∴a ……………2分 由C 到直线02:=+y x l 的距离为556(2)①设切线方程)1(+=x k y 由C 到直线)1(+=x k y 的距离51152=+-kk ……………8分∴切线方程:012512=++y x ……………10分24.(本小题满分12分)(1)判断:若1a =,函数()f x 在[1,6]上是增函数. ……………1分证明:当1a =时,9()f x x x=-, 在区间[1,6]上任意12,x x ,设12x x <,所以12()()f x f x <,即()f x 在[1,6]上是增函数. ……………4分(注:若用导数证明同样给分)(2)因为(1,6)a ∈,所以92(),1,()9,6,a x x a x f x x a x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩……………6分 ①当13a <≤时,()f x 在[1,]a 上是增函数,在[,6]a 上也是增函数, 所以当6x =时,()f x 取得最大值为92; ……………8分 ②当36a <≤时,()f x 在[1,3]上是增函数,在[3,]a 上是减函数,在[,6]a 上是增函数,而9(3)26,(6)2f a f =-=,当2134a<≤时,9262a-≤,当6x=时,函数()f x取最大值为92;当2164a<≤时,9262a->,当3x=时,函数()f x取最大值为26a-;………11分综上得,921,1,24()2126, 6.4aM aa a⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩……………12分。