利用傅立叶变换计算线性卷积

合集下载

实验二 DFT(FFT)的应用—利用FFT实现快速卷积

实验二 DFT(FFT)的应用—利用FFT实现快速卷积

姓名:高铭遥 班级:16131701 学号:1120171450 成绩:实验二 DFT/FFT 的应用-利用FFT 实现快速卷积[实验目的]1.深刻理解DFT/FFT 的概念和性质,进一步掌握圆周卷积和线性卷积两者之间的关系。

2.掌握DFT/FFT 的应用。

理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好地利用FFT 进行数字信号处理。

[实验内容及要求]1.给定两个序列()[]2,1,1,2x n =,()[]1,1,1,1h n =--。

首先直接在时域计算两者的线性卷积;然后用FFT 快速计算二者的线性卷积,验证结果。

(1)线性卷积 程序代码:figure(1);N1=4; N2=4; xn=[2,1,1,2]; hn=[1,-1,-1,1];N=N1+N2-1;%卷积后的序列长度 yn=conv(xn,hn);%线性卷积 x=0:N-1;stem(x,yn);title('线性卷积'); 运行结果:(2)FFT 卷积快速卷积 程序代码: figure(1); n=0:1:3; m=0:1:3;N1=length(n);%xn 的序列长度 N2=length(m);%hn 的序列长度 xn=[2,1,1,2]; hn=[1,-1,-1,1];姓名:高铭遥 班级:16131701 学号:1120171450 成绩:N=N1+N2-1;%卷积后的序列长度XK=fft(xn,N);%xn 的离散傅里叶变换 HK=fft(hn,N);%hn 的离散傅里叶变换 YK=XK.*HK;yn=ifft(YK,N);%逆变换if all(imag(xn)==0)&&(all(imag(hn)==0))%实序列的循环卷积仍为实序列 yn=real(yn); endx=0:N-1;stem(x,yn);title('FFT 卷积'); 运行结果:结果分析:对比(1)和(2)直接线性卷积和FFT 快速卷积的结果可以验证,用FFT 线性卷积的结果是与直接卷积的结果相同的,FFT 可以实现快速卷积,提高运算速度。

信号分析与处理——傅里叶变换性质

信号分析与处理——傅里叶变换性质

1. 线性 2. 奇偶性 3. 对偶性 4. 尺度变换特性 5. 时移特性
6.
频移特性
7.
微分特性
8.
积分特性
9. 帕斯瓦尔定理
10. 卷积定理
1、线性(叠加性)
若:
x1 (t) X1 ()
x2 (t) X 2 ()
则: a1x1 (t) a2 x2 (t) a1 X 1 () a2 X 2 ()
Sa(t0
)e
j t0 2
2
由积分性质,可得 的x频2 (谱t)为
X 2 ()
X1() j
X1(0) ()
又因为: 所以得:
X1(0) 1
X 2 ()
1
Sa(
t0
)e
j
t0 2
j 2
()
9、帕斯瓦尔定理
若: x(t) X ()
则:
x(t) 2 dt 1 X () 2 d
2
式(2-100)为有限能量信号的帕斯瓦尔公式
2
)
由线性和时移特性,有:
X
2
()
3Sa(
3
2
)
X
()
1 2
e
j
5 2
X 1 ( )
e
j 5 2
X
2
()
e
j 5 2
1 2
Sa(
2
)
3Sa( 3
2
)
例:求三脉冲信号的频谱
g (t为)P36页的标准矩形脉冲信号
求如下三脉冲信号的频谱函数
x(t) g(t) g(t T ) g(t T )
解:
X () G()(1 e jT e jT ) G()(1 2 cosT ) E Sa( )(1 2 cosT )

傅里叶变换进行卷积

傅里叶变换进行卷积

傅里叶变换进行卷积
傅里叶变换可以用于进行卷积运算。

傅里叶变换将信号从时域转换到频域,因此可以通过对两个信号的傅里叶变换进行点对点乘积来模拟它们在时域中的卷积。

具体来说,假设有两个信号f(t)和g(t),它们的傅里叶变换分别为F(w)和G(w)。

那么,f(t)和g(t)的卷积在频域中的表示为F(w)和G(w)的乘积,即:
卷积结果在频域= F(w) ×G(w)
需要注意的是,傅里叶变换有线性性质,即对于任意常数c1和c2,有:
c1f(t)+c2g(t)↔c1F(w)+c2G(w)c1f(t)+c2g(t)\Rightarrow
c1F(w)+c2G(w)c1f(t)+c2g(t)↔c1F(w)+c2G(w)
因此,卷积运算在频域中也可以表示为两个信号傅里叶变换的和。

另外,卷积运算还有可分离性质,即如果两个信号在时域中的卷积可以表示为其中一个信号在不同时间位置的复制与另一个信号的卷积,那么它们的傅里叶变换的乘积也可以通过将两个信号的傅里叶变换分别进行逆变换后再相乘得到。

需要注意的是,傅里叶变换只是将信号从时域转换到频域的一种工具,卷积运算的本质仍然是在时域中进行的。

数字信号处理名词解析及滤波器原理和设计

数字信号处理名词解析及滤波器原理和设计

论述计算题(40分)1、试分析DFT与DTFT及Z变换之间的关系,并详细阐述用DFT计算线性卷积的方法和步骤。

FT(傅里叶变换)是对纯虚数变换的情况,是拉普拉斯变换的特殊情况,即傅里叶变换是S仅在虚轴上取值的拉普拉斯变换。

Z变换是离散化的拉普拉斯变换(即拉普拉斯变换对应的是连续信号,而Z变换对应的是离散信号),是离散时间傅里叶变换(DTFT)的一种拓展形式,所以Z变换和拉普拉斯变换类似。

DFT(离散傅里叶变换)是傅里叶变换的离散形式,也即将x(t)进行傅里叶变换后进行离散采样得的函数X[jw]DTFT(离散时间傅里叶变换)为将x(t)先进行离散采样处理得到离散时间系列x[n],然后再对x[n]进行傅里叶变换。

可以看作是将()jwX e在频域展开为傅立叶级数,傅立叶系数即是x[n]。

DTFT是Z变换的特殊情况,只有绝对可和的离散信号才有DTFT,所以Z变换用于那些不满足绝对可和的信号,如T j Tz eσ+Ω=(T 是采样间隔),当σ=0时,就是DTFT。

此时其时域是离散的,而频域依然是连续的。

图像上,对应的是z平面的单位圆。

用DFT计算线性卷积:线性卷积:一个离散序列通过一个离散的线性时不变系统,它的输出即为y[k],即在时域上,输出信号等于输入信号和系统的单位脉冲响应h[k] 的卷积。

即:y[][]*[]k x k h k=y[k]利用DFT 的循环卷积特性,可由DFT 计算线性卷积:比如若系列x[k]的长度为N,系列h[k]的长度为M,则L>=N+M-1点的循环卷积等于x[k]与h[k]的线性卷积。

即:x[k]*h[k]=x1[k] h1[k]DFT实现具体过程为:1. 首先将两序列在尾部补零,延拓成长度为L=M+N -1的序列2. 将两序列进行循环卷积,卷积后的结果即为线性卷积的结果 即:其中乘法总次数为:23log 2LL L ⨯+ 结论:线性卷积可以完全使用DFT 实现,而DFT 可以使用其快速算法FFT 大大降低计算量。

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。

同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。

1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。

时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。

)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。

上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积⼤连理⼯⼤学实验报告学院(系):电信专业:⽣物医学⼯程班级:**1101姓名:**** 学号:201181*** 组:___实验时间:实验室:实验台:指导教师签字:成绩:实验⼀线性卷积和圆周卷积⼀、实验程序1.给出序列x=[3,11,7,0,-1,4,2],h=[2,3,0,-5,2,1];⽤两种⽅法求两者的线性卷积y,对⽐结果。

a)直接调⽤matlab内部函数conv来计算。

b)根据线性卷积的步骤计算。

clear;clc;x=[3 11 7 0 -1 4 2];n1=0:1:length(x)-1;h=[2 3 0 -5 2 1];n2=0:1:length(h)-1;y=conv(x,h);n3=0:1:length(x)+length(h)-2;figure(1);subplot(121);stem(n1,x,'.');axis([0 6 -15 15]);title('x(n)序列');grid;subplot(122);stem(n2,h,'.');axis([0 5 -10 10]);title('h(n)序列');grid;figure(2);subplot(121);stem(n3,y,'.');axis([0 12 -60 60]);title('调⽤conv函数的线性卷积后序列');grid;N=length(x);M=length(h);L=N+M-1;for(n=1:L)y1(n)=0;for(m=1:M)k=n-m+1; if(k>=1&k<=N)y1(n)=y1(n)+h(m)*x(k); end; end; end;subplot(122);stem(n3,y1,'*');axis([0 12 -60 60]);title('按步骤计算的线性卷积后序列');grid; 结果2.卷积后结果y=[ 6 , 31 , 47 , 6 , -51 , -5 , 41 , 18 , -22 , -3 , 8 , 2]。

数字信号处理 第二章 DFT

数字信号处理 第二章 DFT

~ N=16:x (4) x((4))16 x((12 16))16 x(12)
例2:
x (n ) x (n ) 0
~ 1 X (k ) k 0 N ~ X (r )
e
j

15
周期序列的傅里叶级数表示:
正变换:
2 N 1 N 1 j nk ~ ~(n) ~(n)e N ~(n)W nk X (k ) DFS x x x N n 0 n 0
反变换:
~ ~(n) IDFS X (k ) 1 x N
j
2 kN N
k mN , m为整数 其他k
W
n 0
N 1
( m k ) n N
1W 1W
( k m ) N N ( k m ) N

1 e
j
1 e
N m k rN 0 mk
此外,复指数序列还有如下性质:
0 WN 1, W N 2 N r 1 1, WN WN r
ek (n)
ek (n) 是以N为周期的周期序列,所以基序
列 {e }(k=0,…,N-1) 只有N个是独立 的,可以用这N个基序列将 ~ ( n) 展开。 x
j 2 nk N
12
复指数序列 ek (n) e
周期性:
j
2 nk N
W
nk N
的性质:
无论对k还是n,复指数序列都具备周期性。
时间函数 连续和非周期 连续和周期(T0) 离散(Ts)和非周期 离散(Ts)和周期(T0) 非周期和连续 非周期和离散(Ω 0=2π /T0) 周期(Ω s=2π /Ts)和连续 周期(Ω s=2π /Ts)和离散(Ω 0=2π /T0) 频率函数

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用摘要:传统的微机继电保护算法中 ,一般使用梯形算法来计算周期信号的直流分量和各次谐波的系数 ,此方法计算比较复杂。

本文提出了一种基于 FFT 的算法。

该算法利用 FFT 可以由输入序列直接计算出输入信号的直流分量和各次谐波的幅值和相角的特点 ,大大简化了谐波分析的计算。

与梯形算法相比 ,该算法具有精度高、计算量小、更易在数字信号处理器上实现等优点。

因而可以取代梯形算法来计算谐波系数。

针对 FFT计算 ,还介绍了正弦信号采样频率的选择方法。

关键字:傅里叶算法; FFT; 谐波分析;微机继电保护。

The Introduction of Fourier algorithm based on FFT inModif ied model of power meteringAbstract: In microcomputer relay protection of traditional algorithm, coefficient of DC component generally use the trapezoidal algorithm to calculate the periodic signal and harmonic,and this method is very complex. This paper presents an algorithm based on FFT. The algorithm makes use of the FFT and it can be calculated directly from the input sequence characteristics of amplitude and phase of the DC component of the input signal and harmonic, greatly simplifies the calculation of harmonic analysis. Compared with the trapezoidal algorithm, this algorithm has high precision, small computation, easily realized in digital signal processor. So that you can replace trapezoidal algorithm to calculate the harmonic coefficient. For the FFT calculation, the selection method of sine signal sampling frequency is also presented. Keywords: Fourier algorithm;FFT;harmonic analysis;Modif ied model of power metering.一、傅立叶变换FFT算法简介:计算离散傅里叶变换的一种快速算法,简称FFT。

快速傅里叶变换FFT试题

快速傅里叶变换FFT试题

快速傅⾥叶变换FFT试题第⼀章快速傅⾥叶变换(FFT )4.1 填空题(1)如果序列)(n x 是⼀长度为64点的有限长序列)630(≤≤n ,序列)(n h 是⼀长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为点的序列,如果采⽤基FFT 2算法以快速卷积的⽅式实现线性卷积,则FFT 的点数⾄少为点。

解:64+128-1=191点; 256(2)如果⼀台通⽤机算计的速度为:平均每次复乘需100s µ,每次复加需20s µ,今⽤来计算N=1024点的DFT )]([n x 。

问直接运算需()时间,⽤FFT 运算需要()时间。

解:①直接运算:需复数乘法2N 次,复数加法)(1-N N 次。

直接运算所⽤计算时间1T 为s s N N N T 80864.12512580864020110021==?-+?=µ)(②基2FFT 运算:需复数乘法N N2log 2次,复数加法N N 2log 次。

⽤FFT 计算1024点DTF 所需计算时间2T 为s s N N N NT 7168.071680020log 100log 2222==?+?=µ。

(3)快速傅⾥叶变换是基于对离散傅⾥叶变换和利⽤旋转因⼦k Nj e π2-的来减少计算量,其特点是 _______、_________和__________。

解:长度逐次变短;周期性;蝶形计算、原位计算、码位倒置(4)N 点的FFT 的运算量为复乘、复加。

解:N NL N mF 2log 22==;N N NL aF 2log ==4.2 选择题1.在基2DIT —FFT 运算中通过不断地将长序列的DFT 分解成短序列的DFT ,最后达到2点DFT 来降低运算量。

若有⼀个64点的序列进⾏基2DIT —FFT 运算,需要分解次,⽅能完成运算。

A.32 B.6 C.16 D. 8 解:B2.在基2 DIT —FFT 运算时,需要对输⼊序列进⾏倒序,若进⾏计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为。

第4章傅立叶变换例题

第4章傅立叶变换例题

ω 2
e
1 a
j

F
ω a
e
jt0 a
这里a -2, t0 6代入上式,得
F
f1 6
2t
1 2
其它方法自己练习。
F1
ω 2
e
j 3ω
例4:时移性质,求 F j
f t f1 t f2 t
f1 t g6 t 5 6Sa 3 e j5 f2 t g2 t 5 2Sa e j5
3
f t
fe t
2
பைடு நூலகம்
1
1
3
1 0 1 t
3 1 0 1
3t
例11:系统如图所示, f1t Sa 1000t , f2 t Sa 2000t ,
pt t nT , f t f1t f2t , fs t f t pt
n
(1)为从 fs t 无失真恢复 f t ,求最大抽样间隔Tmax 。
R
jX
R
jX
jX
例10:如图所示信号 f t,已知其傅里叶变换 F j F j e j
利用傅里叶变换的性质(不作积分运算),求:
1 ;
2 F 0 ;
3
F
j d
4
画出 1 F 2
j 2
e j 2所对应的时域信号的波 形。
5 画出 ReF j 所对应的时域信号的波 形。
解:f t f t 1 F j e j
f t
F j F j e j 0
2
1
f t F j e j 1 0 1
t 3
1
F ω f tejωtd t
f t 1 F ωejωtd ω
2 π

离散傅里叶变换 卷积定理 矩阵乘法

离散傅里叶变换 卷积定理 矩阵乘法

一、离散傅里叶变换离散傅里叶变换(Discrete Fourier Transform,DFT)是信号处理中常用的一种变换方法。

它将离散时域信号转换为频域信号,可以对信号进行频谱分析和滤波处理。

离散傅里叶变换的定义如下:$f_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$其中,$x_n$表示输入的离散信号,$k$表示频率索引,$f_k$表示变换后的频域信号。

离散傅里叶变换可以通过快速傅里叶变换算法(Fast Fourier Transform,FFT)高效地计算,是数字信号处理中的重要工具之一。

二、卷积定理卷积定理是信号处理中的重要定理之一,它描述了两个信号在频域进行卷积操作等效于它们在时域进行乘法操作。

具体来说,如果有两个信号$f(x)$和$g(x)$,它们的傅里叶变换分别为$F(\omega)$和$G(\omega)$,那么它们在时域的卷积$f(x)*g(x)$的傅里叶变换等于$F(\omega)G(\omega)$。

卷积定理在信号处理中有着广泛的应用,例如可以用于滤波器的设计和信号的频域分析等。

利用卷积定理,可以将信号的卷积操作转换为频域的乘法操作,从而简化了信号处理的复杂度。

三、矩阵乘法矩阵乘法是线性代数中的重要概念,它描述了两个矩阵相乘得到的新矩阵。

具体来说,如果有两个矩阵$A$和$B$,它们的大小分别为$m\times n$和$n\times p$,那么它们的矩阵乘法$C=AB$的定义如下:$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$其中,$c_{ij}$表示矩阵$C$的第$i$行第$j$列的元素,$a_{ik}$和$b_{kj}$分别表示矩阵$A$和$B$的元素。

矩阵乘法在计算机图形学、优化算法等领域有着广泛的应用,例如矩阵变换、神经网络的前向传播等。

通过高效的矩阵乘法算法(如Strassen算法、Coppersmith-Winograd算法等),可以加速复杂计算的进行。

傅里叶变换

傅里叶变换

傅里叶变换的变换对对于N点序列{x[n ]} 0 ≤ n < N ,它的离散傅里叶变换(DFT)为? x [k ] = N - 1 Σ n = 0 e - i 2 π –––––N n k x[n ] k = 0,1, …,N-1. 其中e 是自然对数的底数,i 是虚数单位。

通常以符号F表示这一变换,即? x = Fx 离散傅里叶变换的逆变换(IDFT)为:x[n ] = 1 ––N N - 1 Σ k = 0 e i 2 π –––––N nk ? x [k ] n = 0,1, …,N-1. 可以记为:x = F -1 ? x 实际上,DFT和IDFT变换式中和式前面乘上的归一化系数并不重要。

在上面的定义中,DFT和IDFT前的系数分别为 1 和1/N。

有时会将这两个系数都改成1/ √ ––N ,这样就有x = FFx,即DFT成为酉变换。

从连续到离散连续时间信号x(t) 以及它的连续傅里叶变换(CT)? x ( ω) 都是连续的。

由于数字系统只能处理有限长的、离散的信号,因此必须将x 和? x 都离散化,并且建立对应于连续傅里叶变换的映射。

数字系统只能处理有限长的信号,为此假设x(t)时限于[0, L],再通过时域采样将x(t) 离散化,就可以得到有限长的离散信号。

设采样周期为T,则时域采样点数N=L/T。

x discrete (t) = x (t) N - 1 Σ n = 0 δ(t-nT) = N - 1 Σ n = 0 x (nT) δ(t-nT) 它的傅里叶变换为? x discrete ( ω) = N - 1 Σ n = 0 x (nT)F δ(t-nT) = 1 ––T N - 1 Σ n = 0 x (nT)e - i 2 π n ω T 这就是x(t)时域采样的连续傅里叶变换,也就是离散时间傅里叶变换,它在频域依然是连续的。

类似的,频域信号也应当在带限、离散化之后才能由数字系统处理。

信号与线性系统分析复习题及答案

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题;1. 已知序列3()cos()5f k k π=为周期序列,其周期为 C A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 B图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 AA .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 AA . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 D A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 B A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 AA .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 C A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为 BA .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指 A A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为 A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 A . )(2)()(2)(''t f t f t y t y -=+B. )()(sin )('t f t ty t y =+C. )()]([)(2't f t y t y =+D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指 A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________;2.()(2)t e t t dt δ∞--∞++=⎰____________________________;3.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;4.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 5.函数()f t 的傅里叶变换存在的充分条件是________________________;6. 已知11()10.5X z z -=+(0.5)z >,则其逆变换()x n 的值是______________;7.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;8.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 9.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 10. 已知信号)(t f ,则其傅里叶变换的公式为______________; 11. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________; 12.()(2)t e t t dt δ∞--∞++=⎰____________________________;13.当LTI 离散系统的激励为单位阶跃序列()k ε时,系统的零状态响应称为_________________;14.已知函数4()23F s s =+,其拉普拉斯逆变换为____________________; 15.函数()f t 的傅里叶变换存在的充分条件是________________________;16. 已知11()10.5X z z-=+(0.5)z >,则其逆变换()x n 的值是______________; 17.系统函数(1)(1)()1()2z z H z z -+=-的极点是___________________________;18.已知()f t 的拉普拉斯变换为()F s ,则00()()f t t t t ε--的拉普拉斯变换为_________________; 19.如果系统的幅频响应()H jw 对所有的ω均为常数,则称该系统为__________________________; 20. 已知信号)(t f ,则其傅里叶变换的公式为______________; 21.)(63t e tε-的单边拉普拉斯变换为_________________________;22.=-⎰∞∞-dt t t t f )()(0δ ____________________________;23.)(5t δ的频谱函数为______________________;24.一个LTI 连续时间系统,当其初始状态为零,输入为单位阶跃函数所引起的响应称为__________响应; 25.序列)()21()(k k f kε=的z 变换为___________________________;26.时间和幅值均为______________的信号称为数字信号; 27.系统函数)6.0)(4.0()1()(+-+=z z z z z H 的极点是___________________________;28.LTI 系统的全响应可分为自由响应和__________________;29. 函数)(1t f 和)(2t f 的卷积积分运算=*)()(21t f t f _______________________; 30. 已知函数23)(+=s s F ,其拉普拉斯逆变换为____________________; 简答题.;1.简述根据数学模型的不同,系统常用的几种分类;2.简述稳定系统的概念及连续时间系统时域稳定的充分必要条件; 3.简述单边拉普拉斯变换及其收敛域的定义; 4.简述时域取样定理的内容; 5.简述系统的时不变性和时变性; 6.简述频域取样定理;7.简述-0时刻系统状态的含义;8. 简述信号拉普拉斯变换的终值定理;9.简述LTI 连续系统微分方程经典解的求解过程; 10.简述傅里叶变换的卷积定理;11.简述LTI 离散系统差分方程的经典解的求解过程;12.简述信号z 变换的终值定理;13.简述全通系统及全通函数的定义; 14.简述LTI 系统的特点; 15.简述信号的基本运算 计算题1.描述离散系统的差分方程为1)1(,0)1(9.0)(=-=--y k y k y ,利用z 变换的方法求解)(k y ; 2.描述某LTI 系统的微分方程为)(3)()(3)(4)(''''t f t f t y t y t y -=++ ,求其冲激响应)(t h ;3.给定微分方程 )(3)()(2)(3)(''''t f t f t y t y t y +=++,1)0(),()(==-y t t f ε,2)0('=-y ,求其零输入响应;4.已知某LTI 离散系统的差分方程为),()1(2)(k f k y k y =--)(2)(k k f ε=, y-1=-1,求其零状态响应;5.当输入)()(k k f ε=时,某LTI 离散系统的零状态响应为)(])5.1()5.0(2[)(k k y k k zs ε-+-=,求其系统函数;6.描述某LTI 系统的方程为),(3)()(3)(4)(''''t f t f t y t y t y -=++求其冲激响应)(t h ;7.描述离散系统的差分方程为 )1()(2)2(43)1()(--=---+k f k f k y k y k y ,,求系统函数和零、极点; 8. 已知系统的微分方程为)()(3)(4)('''t f t y t y t y =++,1)0()0('==--y y )()(t t f ε=,求其零状态响应;9.用z 变换法求解方程2)1(),(1.0)1(9.0)(=-=--y k k y k y ε的全解10.已知描述某系统的微分方程)(4)()(6)(5)(''''t f t f t y t y t y +=++,求该系统的频率响应).(jw H11.已知某LTI 系统的阶跃响应)()1()(2t e t g tε--=,欲使系统的零状态响应)()1()(22t te e t y t t zs ε--+-=,求系统的输入信号)(t f ;12.利用傅里叶变换的延时和线性性质门函数的频谱可利用已知结果,求解下列信号的频谱函数;13.若描述某系统的微分方程和初始状态为 )(4)(2)(4)(5)(''''t f t f t y t y t y -=++5)0(,1)0('==--y y ,求系统的零输入响应;14.描述离散系统的差分方程为 )2()()2(21)1()(--=-+--k f k f k y k y k y , 求系统函数和零、极点;15.若描述某系统的差分方程为)()2(2)1(3)(k k y k y k y ε=-+-+,已知初始条件5.0)2(,0)1(=-=-y y ,利用z 变换法,求方程的全解;信号与线性系统分析复习题答案单项选择题1. C2.B3.A4.A5.D6.B 7 .A 8.C 9.B 10.A 11. C 12.A 13. D 14.B 15.B 16. D17. A 18.C 19. D 20.C 21.B 22.C 23. B 24.A 25.B 26.C 27. D 28.C 29. B 30. B填空题1. 22. 22e - 3. 单位阶跃响应/阶跃响应 4. )(223t et ε- 5.()f t dt ∞-∞<∞⎰6.)()5.0(k k ε- 7.128. 0()st F s e - 9. 全通系统 10. dt e t f jw F jwt⎰∞∞--=)()( 11.卷积和 12. 1 13.)()(d t t kf t y -= 14. )()()()(3121t f t f t f t f *+* 15.齐次解和特解16. 系统函数分子 17. 2 18.63-z z 19.)(2w πδ 20.齐次 21.36+s 22.)(0t f - 23. 5 24. 单位阶跃响应 25. 122-z z26. 离散 27. 0.4,-0.6 28. 强迫响应 29.τττd t f f )()(21-⎰∞∞- 30. )(32t e t ε-简答题1.答:1加法运算,信号1()f ⋅与 2()f ⋅之和是指同一瞬时两信号之值对应相加所构成的“和信号”,即12()()()f f f ⋅=⋅+⋅2乘法运算,信号1()f ⋅与 2()f ⋅之积是指同一瞬时两信号之值对应相乘所构成的“积信号”,即12()()()f f f ⋅=⋅⋅3反转运算:将信号()f t 或()f k 中的自变量t 或k 换为t -或k -,其几何含义是将信号()f ⋅以纵坐标为轴反转;4平移运算:对于连续信号()f t ,若有常数00t >,延时信号0()f t t -是将原信号沿t 轴正方向平移0t 时间,而0()f t t +是将原信号沿t 轴负方向平移0t 时间;对于离散信号()f k ,若有整常数00k >,延时信号0()f k k -是将原序列沿k 轴正方向平移0k 单位,而0()f k k +是将原序列沿k 轴负方向平移0k 单位; 5尺度变换:将信号横坐标的尺寸展宽或压缩,如信号()f t 变换为()f at ,若1a >,则信号()f at 将原信号()f t 以原点为基准,将横轴压缩到原来的1a倍,若01a <<,则()f at 表示将()f t 沿横轴展宽至1a 倍2.答:根据数学模型的不同,系统可分为4种类型. 即时系统与动态系统; 连续系统与离散系统; 线性系统与非线性系统 时变系统与时不变系统3.答:1一个系统连续的或离散的如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统;2连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰4.信号的单边拉普拉斯正变换为:dt e t f s F st ⎰∞-=)()(逆变换为:ds e s F j t f jwjwst ⎰+-=δδπ)(21)(收敛域为:在s 平面上,能使0)(lim =-∞→tt et f δ满足和成立的δ的取值范围或区域,称为)(t f 或)(s F 的收敛域;5.答:一个频谱受限的信号)(t f ,如果频谱只占据m m w w ~-的范围,则信号)(t f 可以用等间隔的抽样值唯一表示;而抽样间隔必须不大于mf 21m m f w π2=,或者说,最低抽样频率为m f 2; 6.答:如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变或非时变系统或常参量系统,否则称为时变系统; 描述线性时不变系统的数学模型是常系数线性微分方程或差分方程,而描述线性时变系统的数学模型是变系数线性微分或差分方程;7.答:一个在时域区间),(m m t t -以外为零的有限时间信号)(t f 的频谱函数)(jw F ,可唯一地由其在均匀间隔)21(m s s t f f <上的样点值)(s jnw F 确定;)()()(ππn wt Sa t n j F jw F m n m -=∑∞-∞=,sm f t 21=8.答:在系统分析中,一般认为输入)(t f 是在0=t 接入系统的;在-=0t 时,激励尚未接入,因而响应及其导数在该时刻的值)0()(-j y与激励无关,它们为求得0>t 时的响应)(t y 提供了以往的历史的全部信息,故-=0t 时刻的值为初始状态;9.答:若)(t f 及其导数dt t df )(可以进行拉氏变换,)(t f 的变换式为)(s F ,而且)(lim t f t ∞→存在,则信号)(t f 的终值为)(lim )(0lim s sF t f s t →∞→=;终值定理的条件是:仅当)(s sF 在s 平面的虚轴上及其右边都为解析时原点除外,终值定理才可用;10.答:1列写特征方程,根据特征方程得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解函数的形式,将特解代入原微分方程,求出待定系数得到特解的具体值. 3 得到微分方程全解的表达式, 代入初值,求出待定系数 4 得到微分方程的全解11.答:1时域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()()()(2121ωωj F j F t f t f ↔* 2 频域卷积定理:若)()(),()(2211ωωj F t f j F t f ↔↔,则)()(21)()(2121ωωπj F j F t f t f *↔12..答:1列写特征方程,得到特征根,根据特征根得到齐次解的表达式 2 根据激励函数的形式,设特解的形式,将特解代入原差分方程,求出待定系数, 得到特解的具体值. 3 得到差分方程全解的表达式, 代入初始条件,求出待定系数, 4 得到差分方程的全解 13.答:终值定理适用于右边序列,可以由象函数直接求得序列的终值,而不必求得原序列;如果序列在M k < 时,0)(=k f ,设∞<<↔z z F k f α),()(且10<≤α,则序列的终值为)(1lim)(lim )(1z F zz k f f z k -==∞→∞→或写为)()1(lim )(1z F z f z -=∞→上式中是取1→z 的极限,因此终值定理要求1=z 在收敛域内10<≤α,这时)(lim k f k ∞→存在;14.答 全通系统是指如果系统的幅频响应)(jw H 对所有的w 均为常数,则该系统为全通系统,其相应的系统函数称为全通函数;凡极点位于左半开平面,零点位于右半开平面,且所有的零点与极点为一一镜像对称于jw 轴的系统函数即为全通函数;15.答:当系统的输入激励增大α 倍时,由其产生的响应也增大α倍,则称该系统是齐次的或均匀的;若两个激励之和的响应等于各个激励所引起的响应之和,则称该系统是可加的;如果系统既满足齐次性又满足可加性,则称系统是线性的;如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变系统或常参量系统;同时满足线性和时不变的系统就称为线性时不变系统LTI 系统;描述线性时不变系统的数学模型是常系数线性微分差分方程;线性时不变系统还具有微分特性;计算题1解:令)()(z Y k y ↔,对差分方程取z 变换,得 0)]1()([9.0)(1=-+--y z Y z z Y将1)1(=-y 代入上式并整理,可得 9.09.09.019.0)(1-=-=-z zz z Y 取逆变换得 )()9.0()(1k k y k ε+=2.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++于是系统函数为343)()()(2++-==s s s s F s Y s H zs )()23()(3t e e t h t t ε---=3.系统的特征方程为0232=++λλ特征根为:1,221-=-=λλ 所以,零输入响应为t zi tzi zi e C e C t y --+=221)(所以:22)0(1)0(21'21=--==+=++zi zi zi zi zi zi C C y C C y故:4321=-=zi zi C C所以:t t zi e e t y --+-=43)(24.解:零状态响应满足:2)1(2)(=--k y k y zs zs ,且0)1(=-zs y 该方程的齐次解为:kzs C 2设特解为p,将特解代入原方程有:22=-p p从而解得2)(-=k y p所以22)(-=k zs zs C k y 将2)0(=zs y 代入上式,可解得4=zs C故,)()224()(k k y k zs ε-⋅=5.解:1)(-=z z z F )5.1)(5.0)(1()5.02()(2+--+=z z z z z z Y zs 75.05.02)()()(22-++==z z z z F z Y z H zs 6.解:令零状态响应的象函数为)(s Y zs ,对方程取拉普拉斯变换得:)(3)()(3)(4)(2s F s sF s Y s sY s Y s zs zs zs -=++ 系统函数为:3312)()()(+++-==s s s F s Y s H zs 故冲激响应为)()23()(3t e e t h t t ε---=7. 解:对差分方程取z 变换,设初始状态为零;则:)()2()()431(121z F z z Y z z ----=-+于是系统函数)21)(23()12()()()(-+-==z z z z z F z Y z H 其零点为21,021==ζζ, 极点为21.2321=-=p p 8. 解: 方程的齐次解为:t zs t zs e C e C 321--+方程的特解为:31 于是:31)(321++=--t zs t zs zs e C e C t y 031)0(21=++=+zs zs zs C C y 03)0(21'=--=+zs zs zs C C y得61,2121=-=zs zs C C 于是:)()312161()(3t e et y t t zs ε+-=--9. 解:令)()(z Y k y ↔,对差分方程取z 变换,得11.0)]1()([9.0)(1-=-+--z z y z Y z z Y 将2)1(=-y 代入上式,并整理得 )9.0)(1()8.19.1()(---=z z z z z Y )(])9.0(1[)(1k k y k ε++=10.解:令)()(),()(jw Y t y jw F t f ↔↔,对方程取傅里叶变换,得 )(4)()()(6)()(5)()(2jw F jw F jw jw Y jw Y jw jw Y jw +=++ 654)()()(2++-+==jw w jw jw F jw Y jw H 11. 解:)(2)()(2t e dtt dg t h t ε-==22)(+=s s H 2)2(43)(++=s s s s Y zs 2211)()()(++==s s s H s Y s F zs )()211()(2t e t f t ε-+= 12 解:)(t f 可看作两个时移后的门函数的叠合;)2()2()(22-++=t g t g t f因为)(2)(2w Sa t g ↔所以由延时性和线性性有: )2cos()(4)(2)(2)(22w w Sa e w Sa e w Sa jw F w j w j =+=- 13.解:特征方程为:0452=++λλ 4,121-=-=λλt zi t zi zi e C e C t y 421)(--+=t zi t zi zi e C e C t y 421'4)(----=令,0=t 将初始条件代入上式中,得1)0(21=+=+zi zi zi C C y 54)0(21'=--=+zi zi zi C C y 可得: 2,321-==zi zi C C0,23)(4≥-+=--t e e t y t t zi14.解:对差分方程取z 变换,设初始状态为零,则 )()1()()211(221z F z z Y z z ----=+- 211)()()(22+--==z z z z F z Y z H 其零点1,121-==ζζ;极点21212,1j p ±= 15. 解:令)()(z Y k y ↔,对差分方程取z 变换,得112111)]2()1()((2)]1()([3)(----+=-+-++-++zy y z z Y z y z Y z z Y)1)(23()(22-++=z z z z z Y )(])2(32)1(2161[)(k k y k k ε---+=。

卷积相关傅里叶级数

卷积相关傅里叶级数

作业
0-13. 证明实函数f(x,y)旳自有关是实旳偶函数,即:
rff(x,y) = rff(-x,-y)
0-14. 已知函数 f(x) = rect (x+2) + rect (x-2)
求函数f(x) 旳自有关,并画出图形。
第一章 二维线性系统分析
Analysis of 2-Dimensional Linear System
g ( x)
Cn
n
exp(
j2p
n1
t
x)
n级谐波频率:n/t 相邻频率间隔: 1/t
Cn
1
t
t 2g(x) exp( j2p n 1 x)dx
t 2
t
g(x)
n
1
t
t 2g(x) exp( j2p
t 2
n
1
t
x)dx
exp(
j2p
n
1
t
x)
展开系数Cn
频率为n/t旳分量
§1-2 二维傅里叶变换 2-D Fourier Transform
p 位相板: 输出 = 输入 exp(jp ), 即: 透过率= exp(jp ) = -1 若右边园孔上加p 位相板, 则
t (x, y) =
* circ x2 y2 l / 2
[d (x+d/2 - d (x-d/2)]
利用卷积性质求卷积旳例子
练习0-11 :用图解法求图示两个函数旳卷积f(x) * h(x)
rfg (x)
f *( x)g( )]d g(x) f *(x)
(3)
1. 当且仅当f*(-x)=f(x) [f(x)是厄米旳], 有关才和卷积相同. 一

数字信号处理作业_答案

数字信号处理作业_答案

数字信号处理作业DFT 习题1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。

把)(~n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。

当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。

试利用)(~1k X 确定)(~2k X 。

(76-4)2. 研究两个周期序列)(~n x 和)(~n y 。

)(~n x 具有周期N ,而)(~n y 具有周期M 。

序列)(~n w 定义为)()()(~~~n y n x n w +=。

a. 证明)(~n w 是周期性的,周期为MN 。

b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。

类似地,由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。

)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。

试利用)(~k X 和)(~k Y 求)(~k W 。

(76-5)3. 计算下列各有限长度序列DFT (假设长度为N ):a. )()(n n x δ= b .N n n n n x <<-=000)()(δc .10)(-≤≤=N n an x n(78-7)4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。

试求频谱取样之间的频率间隔,并证明你的回答。

(79 -10)5. 令)(k X 表示N 点序列)(n x 的N 点离散傅里叶变换(a ) 证明如果)(n x 满足关系式:)1()(n N x n x ---=,则0)0(=X 。

(b ) 证明当N 为偶数时,如果)1()(n N x n x --=,则0)2/(=N X 。

第3章 离散傅立叶变换 DFSDFS的性质DFTDFT的性质循环卷积利用DFT计算线性卷积频率域抽样FFT

第3章 离散傅立叶变换 DFSDFS的性质DFTDFT的性质循环卷积利用DFT计算线性卷积频率域抽样FFT

~x(n)
1 N
N
1
X~
(k
)W
N
kn
k 0
IDFS
X~ (k )
DFS[·] ——离散傅里叶级数正变换 IDFS[·]——离散傅里叶级数反变换
离散傅里叶变换(DFT)
我们知道周期序列实际上只有有限个序列值有意义,因此 它的许多特性可推广到有限长序列上。
一个有限长序列 x(n),长为N,
x(n)
图4.2.8 倒序规律
3.5.4 频域抽取法FFT(DIF―FFT)
在基2快速算法中,频域抽取法FFT也是一种常用 的快速算法,简称DIF―FFT。
设序列x(n)长度为N=2M,首先将x(n)前后对半分
开,得到两个子序列,其DFT可表示为如下形式:
N 1
X (k) DFT[x(n)] x(n)WNk
T0
频谱特点: 离散非周期谱
2. 连续时间非周期信号
x(t) 1 X ( j) ej td
2
X ( j) x(t) e j tdt
频谱特点: 连续非周期谱
3. 离散非周期信号
x(n) FT-1[ X (ej )] 1 X (ej ) ejnd
2
X (ej ) FT[x(n)] x(n) e-jn n
~x (n) IDFS [ X~ (k )] 1 N 1 X~ (k )e j2 / N nk
N n0
X~ (k ) DFS [~x (n)] N 1 ~x (n)e j2 / N kn n0
习惯上:记 WN e j2 / N ,叫旋转因子.
则DFS变换对可写为
X~(k) N 1 ~x (n)WNkn DFS~x (n) n0

卷积的傅里叶变换等于傅里叶变换的乘积

卷积的傅里叶变换等于傅里叶变换的乘积

卷积的傅里叶变换等于傅里叶变换的乘积在介绍卷积的傅里叶变换等于傅里叶变换的乘积之前,我们首先来回顾一下傅里叶变换和卷积的基本概念。

傅里叶变换是一种信号处理中常用的数学工具,它可以将一个时域(时间域)上的信号转换为频域上的信号。

通过傅里叶变换,我们可以把复杂的信号分解成一系列简单的正弦波或余弦波的叠加。

这种频域上的表示形式能够让我们更好地理解信号的频率成分和振幅分布,从而方便进行频域分析和处理。

而卷积则是另一种在信号处理和图像处理中广泛应用的方法。

它描述了两个函数之间的关系,尤其是在时域中描述了信号之间的线性时不变关系。

在时域上,卷积可以理解为两个函数的重叠程度。

而在频域上,卷积的计算可以通过简单的乘法来完成,这是傅里叶变换和卷积之间联系的关键。

现在,让我们来深入探讨卷积的傅里叶变换等于傅里叶变换的乘积这个主题。

在这个过程中,我们将会按照简单到复杂的方式来逐步理解这一概念。

1. 理解傅里叶变换让我们从傅里叶变换开始。

傅里叶变换是一个非常重要的数学工具,它在信号处理、图像处理、通信等领域都有着广泛的应用。

通过傅里叶变换,我们可以将一个时域上的信号转换为频域上的表示,从而更好地理解信号的频率成分和振幅分布。

在时域上,信号可以看作是一系列离散的数据点,而在频域上,信号则可以用频率和振幅来描述。

2. 探索卷积的概念接下来,让我们来了解卷积的概念。

在信号处理和图像处理中,卷积是一种描述两个函数之间关系的数学运算。

在时域上,卷积描述了两个函数之间的重叠程度,而在频域上,卷积的计算可以通过简单的乘法来完成。

这种频域上的乘法和傅里叶变换之间的关系将会为我们理解卷积的傅里叶变换等于傅里叶变换的乘积奠定基础。

3. 卷积的傅里叶变换等于傅里叶变换的乘积现在,让我们来深入探讨卷积的傅里叶变换等于傅里叶变换的乘积这个主题。

我们需要了解傅里叶变换和卷积在频域上的表示。

在频域上,两个函数的卷积等于它们的傅里叶变换的乘积。

这个性质在信号处理和图像处理中有着重要的应用,可以帮助我们更好地理解信号之间的关系,并进行相应的处理和分析。

数字信号处理简答题

数字信号处理简答题

1. 举例说明什么是因果序列和逆因果序列,并分别说明它们z变换的收敛域。

答:因果序列定义为x (n)= 0 , n<0,例如x (n)= a n u(n),其z变换收敛域:R x z 。

逆因果序列的定义为x (n)=0,n>0。

例如x (n )=a n u n 1 ,其z变换收敛域:0 z R x2. 用差分方程说明什么是IIR和FIR数字滤波器,它们各有什么特性?答:1 )冲激响应h (n)无限长的系统称为IIR数字滤波器,例如y(n)印y n 1 a2y n 2 b0x(n) b1x n 1。

IIR DF的主要特性:①冲激响应h (n)无限长;②具有反馈支路,存在稳定性问题;③系统函数是一个有理分式,具有极点和零点;④一般为非线性相位。

(2 )冲激响应有限长的系统称为FIR DF。

例如y(n) x(n) Dx(n 1) b2x n 2。

其主要特性:①冲激响应有限长;②无反馈支路,不存在稳定性问题;③系统函数为一个多项式,只存在零点;④具有线性相位。

3. 用数学式子说明有限长序列x (n )的z变换X (z)与其傅里叶变换X(e j )的关系,其DFT系数X (k)与X (z)的关系。

答:(1) x (n)的z变与傅里叶变换的关系为X z Z e j X e j(2)x (n )的DFT与其z变换的关系为X z ,^k X KZ W N K e j N4. 设x (n)为有限长实序列,其DFT系数X (k)的模X(k)和幅角arg[X (k)] 各有什么特点?答:有限长实序列x (n)的DFT之模x k和幅角arg X (k)具有如下的性质:(1) X(k)在0-2 之间具有偶对称性质,即X(k) X(N k)(2) arg x(k)具有奇对称性质,即arg X(k) arg X N k5. 欲使一个FIR数字滤波器具有线性相位,其单位取样响应h(n)应具有什么特性?具有线性相位的FIR数字滤器系统函数的零点在复平面的分布具有什么特点?答:要使用FIR具有线性相位,其h (n)应具有偶对称或奇对称性质,即h(n)=h(N-n-1) 或h(n)=-h(N-n-1)。

DFT

DFT
WN e
j 2 N
1 N
nk X( k ) W N k 0
N 1
——旋转因子(N点)
x ( n ) X(k )
——周期为N的周期序列
DFS的性质
设 x(n) , y (n) 为周期为N的周期序列,对应的DFS为
X(k ) , Y( k ) (时域、频域均为周期为N的周期序列)
N 1 n 0
, n = 0, 1, 2 ,…, N-1
-j 2 nk N
DFT IDFT
X ( k ) x ( n) e x ( n) 1 N
N 1 k 0
, k 0,1, 2,, N 1
X (k ) e
j
2 nk N ,n
0,1, 2,, N 1
x ( n ) 是 x ( n ) 以N为周期的周期延拓序列(无限长)
x ( n)
x(n) x((n)) N
x((n))6
0
1 2 3 4
n
0
1 2 3 4 5
n
符号((n))N 是余数运算表达式,表示n对N求余数
例: x(n) 是周期为N=8的序列,求 n =11和 n =-2 对N的余数
解: n 11 1 8 3
Ω 0 Ωh 周期延拓 (ω=ΩT) |X(e jω)|
x(n)
0 T
(M-1)
(N-1)
n
-ωh 0 ωh 主周期 N点抽样

X (k )
ω
主值周期
x ( n)
周期延拓
0
N-1
n
ω0 = 2π/N
0
k
有限长序列的傅里叶分析
一、四种信号傅里叶表示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 利用傅立叶变换计算线性卷积
一、实验目的
1. 掌握MATLAB 的使用。

2. 掌握用直接法计算线性卷积的原理和方法
3. 掌握利用FFT 及IFFT 计算线性卷积的原理和方法
二、实验原理及方法
1、线性卷积的定义
序列)1N n 0(),n (x -≤≤和序列)1M n 0(),n (h -≤≤的线性卷积y(n)=x(n)*h(n)定义为:
10),()()(1
0-+≤≤-⨯=
∑-=M N n m n h m x n y N m 利用直接法计算线性卷积即用线性卷积的定义计算。

2、利用FFT 及IFFT 计算线性卷积的原理和方法
如果将序列x(n)和h(n) 补零,使其成为长度为L 的序列(L>=N+M-1), 则x(n)与h(n)的线性卷积y(n)=x(n)*h(n)与L 点圆周卷积相等,而圆周卷积可采用FFT 及IFFT 完成,即求y(n)=x(n)*h(n)可转化为:
对上式两端取FFT 得: Y(k)=X(k)H(k)
其中:X(k)=FFT[x(n)], H(k)=FFT[h(n)]
则:y(n)=IFFT[Y(k)]
三、实验仪器及材料
⒈ 计算机,并装有MATLAB 程序
⒉ 打印机
四、实验步骤
1、已知两序列: ⎩⎨⎧>≤≤=3n ;
03n 0;)5/3()n (h n 用Matlab 随机生成输入信号X (n ),范围为0~2;
2、得出用直接法(定义)计算线性卷积y(n)=x(n)*h(n)的结果;
3、用Matlab 编制利用FFT 和IFFT (圆周卷积)计算线性卷积y(n)=x(n)*h(n)的程序; 分别令圆周卷积的点数为L=5,7,8,10,打印结果。

4、对比直接法和圆周卷积法所得的结果。

五、实验说明:
1、实验前复习线性卷积,圆周卷积及FFT 内容。

2、利用FFT 计算线性卷积是将x(n)、h(n)用补零的方法延长到N+M-1,再用圆周卷积完成,因此要求x(n)、h(n)延长后的长度满足L>=N+M-1,才能保证用圆周卷积计算结果与直接法计算结果相同。

六、分析整理实验数据,写出实验报告
实验报告要求:
1、 手工计算两序列的线性卷积,并与计算机的结果比较,以验证手工计算的正确性。

2、 令L=5,用已编制好的程序分别采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n),并打印结果。

3、 令L=7,8,10,用已编制好的程序分别采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n),并对比所得的结果,打印L=7,8,10的结果。

4、 打印程序.
七、思考题
说明为什么L=7,8,10时采用直接法和FFT 法对两序列计算线性卷积y(n)=x(n)*h(n)的结果相同,而与L=5时计算结果不同?
附录:
本实验所用的Matlab函数:
X=rand(r,c) : 用Matlab随机生成输入信号X(n),范围为0~1,r行,c列
Y=conv(x1,x2): 将序列x1(n)与序列x2(n)做线形卷积,结果赋给序列Y(n);
Y=fft(x ,L) : 将序列x (n)做L点傅立叶变换,结果赋给序列Y(n);
Y=ifft(x,L) : 将序列x (n)做L点傅立叶反变换,结果赋给序列Y(n);
Stem(x,y) : 以x为横坐标,y为纵坐标画曲线;
Plot(x,y) : 以x为横坐标,y为纵坐标画曲线;
L=10; % The length of FFT
sizex=4; % The length of the sequence x(n)
sizeh=4; % The length of the sequence h(n)
x=rand(1,4)*2 %x=[1,1,1,1]; x =[1.9003,0.4623,1.2137,0.9720]
h=[0.6^0,0.6^1,0.6^2,0.6^3]
y=conv(x,h); %x*h
X=fft(x,L);
H=fft(h,L);
for i=1:1:L
YK(i)=X(i)*H(i);
end
yFFT=ifft(YK,L);
subplot(2,2,1)
le=0:1:sizex-1; %横标
stem(le,x)
title('x sequence')
xlabel('n')
ylabel('x(n)')
x = 1.9003 0.4623 1.2137 0.9720
y = 1.9003 1.6025 2.1752 2.2771 1.1200 0.6121 0.2100
Yfft=1.9003 1.6025 2.1752 2.2771 1.1200 0.6121 0.2100 0 0 h = 1.0000 0.6000 0.3600 0.2160
L=7;
L=5;
x=[1,1,1,1]; h = 1.0000 0.6000 0.3600 0.2160
y =1.0000 1.6000 1.9600 2.1760 1.1760 0.5760 0.2160
yFFT =1.0000 1.6000 1.9600 2.1760 1.1760 0.5760 0.2160 0.0000 0.0000 0.0000
subplot(2,2,2)
le2=0:1:sizeh; %1
stem(le2,h)
title('h sequence')
xlabel('n')
ylabel('h(n)')
subplot(2,2,3)
le3=0:1:sizex+sizeh-1; % 2 stem(le3,y)
title('y sequence by direct method') xlabel('n')
ylabel('y(n)')
subplot(2,2,4)
le3=0:1:L; %1
stem(le3,yFFT)
title('y sequence by FFT')
xlabel('n')
ylabel('y(n)')。

相关文档
最新文档