高中数学必修五复习

合集下载

寒假必修五复习二---不等式

寒假必修五复习二---不等式

寒假必修五复习二---不等式1、 不等式的性质:(1) 同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2) 左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3) 左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。

如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦;⑧,则。

其中正确的命题是______(答:;(2)已知,,则的取值范围是______(3)、已知函数,满足,,那么的取值范围是 .(3)已知,且则的取值范围是______不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法。

其中比较法(作差、作商)是最基本的方法。

如(1)设,比较的大小2)设,,,试比较的大小(3)比较1+与的大小3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”如(1)下列命题中正确的是A、的最小值是2B、的最小值是2C、的最大值是D、的最小值是(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:);4. 常用不等式有:(1) (根据目标不等式左右的运算结构选用)(2) (2)a、b、c R,(当且仅当时,取等号);(3) 若,则(糖水的浓度问题)。

如如果正数、满足,则的取值范围是_________5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。

).常用的放缩技巧有:如(1)已知,求证:;(2) 已知,求证:;(3)已知,且,求证:;(4) 若a、b、c是不全相等的正数,求证:;(5)若,求证:;(7) 已知,求证:;(8)求证:。

高中数学必修5等差数列知识点总结和题型归纳

高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。

等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。

—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。

≤d<3 D.<d≤36、。

在数列中,,且对任意大于1的正整数,点在直上,则=_____________。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

高中数学必修五基础知识点

高中数学必修五基础知识点

必修五重要考点题型1正、余弦定理1、在△ABC 中,若 45,22,32===B b a ,则A 等于( )A. 30B. 60C. 60120 或D. 30150 或 2、在△ABC 中,ab c b a =+222-,则C 等于( ) A. 60 B. 13545或 C. 120 D. 303、已知三角形三边之比为3:5:7,则该三角形的最大内角为( ) A. 60 B. 90 C. 120 D. 150 题型2简单的线性规划4、直角坐标系内的一动点,运动时该点坐标满足不等式x y <,则这个动点的运动区域(用阴影表示)是A5、若,x y 满足5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则34x y +的最小值为( )A.52B.-3C.0D.-10题型3不等式的性质 6、下列命题正确的是()A .若ac>bc ⇒a>b B. 若b a b a >⇒>22 C .若b a ba <⇒>11 D.若b a b a <⇒<7、若b a c b a >∈,R 、、,则下列不等式成立的是( )(A )ba11<. (B )22b a >. (C )1122+>+c b c a .(D )||||c b c a >.题型4不等式的解法8、不等式24410x x -+≥的解集为11.{}.{|}..22A B x x C R D ≥∅9、不等式0442<++x x 的解集为( ) A .}2|{-<x x B . }2|{-≠x xC .RD .空集10、不等式2x x >的解集是( ) A .(0)-∞,B .(01),C .(1)+∞,D .(0)(1)-∞+∞ ,,题型5均值不等式 11、若1a >,则11a a +-的最小值是( )A.2B.aC.3 1a -12、若x ,y 都是正实数,且20x y +=,则xy 的最大值是 题型6等差、等比数列的通项公式13.在等差数列}{n a 中,已知53a =,96a =,则13a = A .9 B .12 C .15 D .18 14.在等比数列}{n a 中,已知19a =,13q =-,19n a =,则n =A .4B .5C .6D .715、在等比数列{}n a 中,公比1q ≠,5a p =,则8a 为( ) A.2pq B. 3pq C.4pq D. 7pq 题型7等差、等比中项公式16、在等差数列{}n a 中,1910a a +=,则5a 的值为( ) A .5 B .6 C .8 D .1017、若三个数2,G ,8成等比数列,则G = ; 题型8等差、等比数列求和综合题18、等差数列{a n }中,已知a 3+ a 7 – a 10 =8, a 11 – a 4=4,求数列{a n }前13项的和S 13.19、已知数列{}n a 是各项都是正数的等比数列,其中242,8a a ==.求数列{}n a 的前n 项和n S。

天津高二数学必修五知识点

天津高二数学必修五知识点

天津高二数学必修五知识点必修五是天津高中二年级数学课程的一部分,主要涉及数列与数学归纳法、排列与组合、概率与统计等内容。

下面将对这些知识点做一简要介绍。

一、数列与数学归纳法数列是指按照一定顺序排列的一组数。

常见的数列有等差数列和等比数列。

其中,等差数列的通项公式为An = A1 + (n-1)d,其中A1为首项,d为公差;等比数列的通项公式为An = A1 * q^(n-1),其中A1为首项,q为公比。

数学归纳法是一种证明方法,可用于证明数学命题的正确性。

其基本思想是:先证明命题在某个特定条件下成立,然后说明如果命题对于某一个正整数n成立,那么它也对于n+1成立。

由此可推知,命题对于一切正整数都成立。

二、排列与组合排列与组合是研究对象的选择或者排列方式的数学分支。

它们在实际问题中有着广泛的应用。

排列是指从给定对象中按一定顺序选取若干个对象进行排列。

对于n个不同的对象,取出m(m≤n)个进行排列的方法数记作A(n, m)或者P(n, m)。

其中,A(n, m) = n! / (n-m)!,P(n, m) = n! / (n-m)!表示排列的计算公式。

组合是指从给定对象中选取若干个对象,不考虑排列顺序的方法数。

对于n个不同的对象,取出m(m≤n)个进行组合的方法数记作C(n, m)。

其中,C(n, m) = n! / [m! * (n-m)!] 表示组合的计算公式。

三、概率与统计概率是数学中研究随机事件发生可能性的学科。

在概率中,我们常用事件发生的频率来描述其概率。

概率的取值范围是0到1之间,表示事件发生的可能性大小。

常见的概率运算有概率的加法原理和乘法原理。

统计是研究通过对数据进行收集、整理和分析来获得有关事物特征的学科。

统计学中常用的两个分支是描述统计和推断统计。

描述统计是通过对样本数据进行收集、整理和分析,来描述事物特征的统计方法。

常见的描述统计方法有平均数、中位数、众数和标准差等。

推断统计是通过对样本数据进行收集、整理和分析,来对总体特征进行推断的统计方法。

人教版高中数学必修五《数列》基础知识要点总结

人教版高中数学必修五《数列》基础知识要点总结
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
二、等差数列与等比数列
已知三个数成等比数列,且已知三个数之积时,一般设此三个数分别为 , , ,其中 为公比。
若已知四个数成等比数列及这个四个数的积时,一般不设为 , , , ,因为这种设法使得四个数的公比为 ,就漏掉了公比为负数的情形,造成漏解。
2、求数列最大(小)值的方法
一般方法——解不等式 ;或
特别地,若 为等差数列, 为它的前n项的和时,求 的最大(小)值可以利用①二次函数的性质;② 中项的符号。
3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
③根据递推公式求通项公式:
(1)迭代法:对于形如 型的递推公式,采取逐次降低“下标”数值的反复迭代方式,最终使 与初始值 (或 )建立联系的方法就是迭代法.
(2)累加法:形如 的递推公式可用 求出通项;






4、等差(比)数列的通项公式


③ ,其中 、 是常数



5、性质1
在等差数列 中,若已知 与 ,其中 ,则该数列的公差 。
若等比数列 中,公比是 ,则 。
6、性质2
在等差数列 中,若 且 、 、 、 ,则 。
特别地、在等差数列 中,若 且 、 、 ,则 。
在等比数列 中,若 ( , , , ),则 。

高中必修五数学知识点大全

高中必修五数学知识点大全

高中必修五数学知识点大全高中必修五数学知识点大全高中数学是学习数学的重要阶段,也是学习数学的关键时期。

高中必修五数学是高中数学课程中的重要部分,是将学生对初中数学知识的继续掌握和拓展。

高中必修五数学涵盖了数学的各个方面,包括函数、几何、三角函数、导数等。

下面将详细介绍高中必修五数学中的重要知识点。

1.函数函数是高中数学中的重要知识点,是学习数学的重要基础。

函数是一种关系,它将一个变量的值映射到一个输出值。

在高中数学中,函数是一个可以用符号表示的数学对象,其形式为f(x)。

其中,x是自变量,f(x)是函数值或者因变量。

高中必修五数学中,我们要学习函数的基本概念、函数的性质和图像、一次函数、二次函数、三次函数、反比例函数、指数函数和对数函数等概念和相关内容。

2.几何几何是高中必修五数学中的重要内容,绝大部分高中生在初中就曾学习过基本几何概念。

在高中必修五数学中,我们需要更加深入的理解几何概念,如向量、平面几何、解析几何等等。

平面几何是数学的基本分支之一,它研究图形的形状、大小、位置、相似、全等等。

在高中必修五数学中,通过研究平面几何,我们可以更好地理解图形的属性和运动规律,并学习到三角形、圆形、多边形等形状的性质。

3.三角函数在高中必修五数学中,学习三角函数是必不可少的。

三角函数是从直角三角形上发展而来的,三角函数的基本概念是三角函数的值在坐标系中的表示和图形。

高中数学中,我们将学习正弦函数、余弦函数、正切函数和余切函数等内容。

通过学习三角函数,我们可以更好地理解三角函数的性质和应用,如周期性、对称性、偶函数和奇函数等。

4.导数导数是高中必修五数学中的重要内容,也是微积分的基础。

导数是表示某个函数在某一点处斜率的概念。

导数可以用于解决各种问题,包括最值、切线和曲线的性质等问题。

在高中必修五数学中,我们将学习导数的基本概念、导数的定义、常用导数公式、导数的运算法则等内容。

通过学习导数,我们可以更好地理解数学与物理的相互关系,并可以更好地理解微积分的相关知识。

高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。

下面是为大家整理的有关高一数学必修五知识点归纳,希望对你们有帮助!高一数学必修五知识点归纳1高中数学共有五本必修和选修1-1,1-2(文科),2-1,2-2,2-3(理科),主要为代数(高考占比约为50%)和几何(高考占比25-30%),其他(算法,概率统计等)。

高一上期将会学习必修1整本书(集合和函数,初等函数,方程的根等),必修四(三角函数)等。

主要为函数内容的学习,主要考察学生的抽象思维。

而且函数的基本概念和性质,为整个高中的代数奠定了基础。

在这一阶段的学习,学生应该尽量培养自己的抽象思维,多思考。

可以适当少做题,多花时间在知识概念等的复习和理解上面,弄清楚所学内容之间的逻辑联系。

高一下期将会学习必修四(向量,三角函数和差公式等),必修五(解三角形,数列,解不等式)等。

这一阶段的内容,主要考察学生的推演和计算能力。

可以适当多做题,多训练,提高自己计算的速度和准确性。

高二将会进入几何部分的学习。

高二上期学习必修二(立体几何,直线和圆),必修三(算法,概率统计)等。

这一阶段的内容对学生的空间想象力(立体几何)和逻辑思维能力要求较高,同时也要求学生具备较高的计算水平(经过高一下的训练)。

同时,这也是对学生学习数学相对比较轻松的一个学期。

所以,可以在学好本学期内容的基础上,对上学期的内容多做复习,温故而知新。

高二下期主要学习选修部分(圆锥曲线,导数等)。

这一学期的内容是整个高考的压轴,也是最难的内容。

它对学生各方面能力的要求都很高,是学生拿高分必须要学好的部分。

对于这一阶段的学习,一定要形成自己的思想,在多思考的基础上,一定要动笔!总之,对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。

只有理清楚了数学各个知识之间的逻辑联系,形成自己的一套体系,才能更快更好地学好数学。

高中数学必修五第三章不等式复习知识点与例题

高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。

2、不等式log1(x 2) 0的解集是_____________ 。

22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。

(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。

(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。

高中必修五数学知识点总结

高中必修五数学知识点总结

高中必修五数学知识点总结数学是一门抽象而严密的学科,它是自然科学和工程技术的基础,也是认识和把握自然和社会的一种强有力的工具。

数学知识的掌握不仅对高中生的学业成绩有着直接的影响,还对今后的学习和工作有着积极的促进作用。

高中数学必修五是高中数学课程的重要组成部分,它包括了一系列基础的数学理论和方法,对于学生们来说是必须要掌握的。

一、函数函数是高中数学课程的重要内容之一,它是建立在数学分析和代数的基础上的一个学科,也是人们在实际生活中经常会用到的概念。

在高中数学必修五中,对函数的学习主要包括了函数的概念和性质、函数的图像和性质、基本初等函数、复合函数和反函数等内容。

在学习函数的过程中,学生需要掌握函数的定义和性质,能够画出各种基本初等函数的图像,并且能够对复合函数和反函数进行运算和分析。

从而能够在实际问题中正确地运用函数的知识,解决实际的数学问题。

二、导数导数是微积分学中的一个基本概念,它是用来研究函数变化率的一个重要工具,也是为了求函数在某一点的切线斜率而引入的。

在高中数学必修五中,对导数的学习主要包括了导数的概念、导数的几何意义、导数的计算方法、导数的应用等内容。

在学习导数的过程中,学生需要掌握导数的定义和性质,能够灵活地运用导数的计算方法,解决实际的应用问题,掌握导数在几何图形上的应用。

导数是微积分学中的一个重要内容,掌握导数的知识,有利于学生对微积分学的深入理解和学习。

三、不定积分不定积分是微积分学中的一个基本概念,它是对函数的一个反操作,是用来求原函数的一个方法。

在高中数学必修五中,对不定积分的学习主要包括了不定积分的概念、不定积分的计算方法、不定积分的性质、不定积分的应用等内容。

在学习不定积分的过程中,学生需要掌握不定积分的定义和性质,能够熟练地进行不定积分的计算,掌握不定积分在几何图形上的应用。

不定积分是微积分学中的一个重要内容,掌握不定积分的知识,有利于学生对微积分学的深入理解和学习。

高中数学必修五公式方法总结

高中数学必修五公式方法总结

高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。

高中数学学业水平测试必修五复习资料

高中数学学业水平测试必修五复习资料

必 修 五第一单元:解斜三角形一.基础知识: ⒈三角形的基本知识回顾(1)三角形内角和定理: ; (2)三角形两边之和 第三边,两边之差 第三边; (3)三角形的内角和等于;大边对大角,大角对大边。

⒉正弦定理: 。

(R 为外接圆半径)⒊余弦定理a 2= ; cosA= ; b 2= ; cosB= ;c 2= ; cosC= ; ⒋三角形的面积公式公式一:S △ABC = ;公式二:S △ABC =21absinC= = ;(两边及夹角); 二.标杆题:1.在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为( ) A 、︒30B 、︒60C 、︒30或︒150D 、︒60或︒1202.在锐角△ABC 中,已知B A 2=,则的ba取值范围是 ; 3.在ABC ∆中,1=BC ,︒=60B ,其面积为3,则=C tan ; 4.若ABC ∆的面积为233,两边a 、b 的长是方程06332=+-x x 的两个根,则第三边c 的长为 ;5.在ABC ∆中, 角C B A ,,的对边分别是,,a b c , 已知2,3a b ==, ABC ∆的面积为1, 则=C sin ;6.在ABC ∆中,已知0120,6,4===C b a ,则A sin 的值是 ;7.已知△ABC 的面积为AB =2,BC = 4,则三角形的外接圆半径为__________; 8.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则b 等于 ;AB Cabc9.在ABC ∆中,若C b a cos 2=,则ABC ∆是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、等腰直角三角形 10. 在ΔABC 中,sinA •sinB-cosA •cosB<0则这个三角形一定是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等腰三角形 三、巩固练习:1.已知在ABC ∆中,4:3:2sin :sin :sin =C B A ,则C B A cos :cos :cos 为( ) A 、4:3:2 B 、15:8:5 C 、)2(:11:7- D 、)4(:11:14-2.在ABC △中,3AC =,45A ∠=,75C ∠=,则BC 的长为 。

数学必修五单元知识点总结归纳2篇

数学必修五单元知识点总结归纳2篇

数学必修五单元知识点总结归纳数学必修五单元知识点总结归纳精选2篇(一)引言数学必修五是高中数学课程中的一个重要组成部分,它旨在加深学生对数学基本概念和方法的理解,培养学生的逻辑思维能力和解决实际问题的能力。

本文将对必修五的主要单元知识点进行总结和归纳,以帮助学生更好地掌握和复习这些内容。

单元一:函数的概念与性质函数的概念:描述变量之间依赖关系的一种数学表达方式。

定义域与值域:函数输入值的集合和输出值的集合。

函数的表示方法:符号表达式、图像、表格等。

单调性:函数值随自变量增加而增加或减少的性质。

奇偶性:函数关于原点对称或关于y轴对称的性质。

周期性:函数值随自变量增加而重复出现的性质。

有界性:函数值在某个范围内变化的性质。

单元二:基本初等函数幂函数的定义:形如(y = x^n)的函数,其中n为实数。

幂函数的性质:图像、单调性、特殊点等。

指数函数的定义:形如(y = a^x)的函数,其中a为正常数,a≠1。

指数函数的性质:图像、单调性、特殊点等。

对数函数的定义:形如(y = \log_a x)的函数,其中a为正常数,a≠1。

对数函数的性质:图像、单调性、特殊点等。

单元三:函数的应用根据实际问题构建函数模型。

利用函数模型进行问题分析和解决。

函数与曲线的关系。

利用函数求解几何问题。

函数在运动学、力学等领域的应用。

利用函数解决物理问题。

单元四:三角函数正弦、余弦、正切等三角函数的定义。

三角函数的图像和性质。

同角三角函数的基本关系。

三角恒等式的应用。

利用三角函数解三角形的边角关系。

三角函数在实际问题中的应用。

结语通过对数学必修五单元知识点的总结和归纳,我们可以看到这些知识点不仅涵盖了函数的基本概念和性质,还包括了函数在各个领域的应用,以及三角函数的相关知识。

掌握这些知识点对于提高学生的数学素养和解决实际问题的能力具有重要意义。

希望本文能够帮助学生更好地理解和复习这些内容,为进一步的数学学习打下坚实的基础。

数学必修五单元知识点总结归纳精选2篇(二)引言数学必修一的第三章通常涵盖了函数的基本概念、性质以及基本的函数类型。

人教课标版高中数学必修5《解三角形》章末总结

人教课标版高中数学必修5《解三角形》章末总结

人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr (S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A>90° A=90° A<90° a>b 一解 一解 一解 a=b无解 无解 一解a<ba>bsinA 两解 无解 无解 a=bsinA 一解a<bsinA无解9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1..(2011江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c例2..(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==。

高中数学必修五:第二章数列复习(一)通项公式(1)

高中数学必修五:第二章数列复习(一)通项公式(1)

.2 写出下面各数列一个通项公式.(1));1(21,111≥+==+n a a a n n 练习1:111,23(1)n n a a a n +==+≥;(2)11=a ,)2(2211≥+=--n a a a n n n ; 练习2:11=a ,)1(331≥+=+n a a a nn n ; (3)11=a ,)2(21≥+=-n n a a n n 练习3:*12211,3,32().n n n a a a a a n N ++===-∈(4)11=a ,)1(11≥+=+n a n n a n n ; 练习4:11=a ,)1(21≥⋅=+n a a n n n 【解】(1)法一:∵11=a ,)1(211≥+=+n a a n n ∴232112112=+=+=a a , 474312123=+=+=a a 8158712134=+=+=a a 故1212--=n n n a . 法二:∵)1(211≥+=+n a a n n ,∴)2(2121-=-+n n a a ∴{2-n a }是一个首项为-1,公比为21的等比数列, ∴1)21)(1(2--=-n n a ,即1)21(2--=n n a . 练习: ∵111,23(1)n n a a a n +==+≥,∴ 132(3)(1)n n a a n ++=+≥,∴{3n a +}是以134a +=为首项,2为公比的等比数列,∴113422n n n a -++=⋅=,所以该数列的通项n a =123n +-.(备用)∵421+=+n n a a , ∴)4(241+=++n n a a∴数列{4+n a }是以2为首项,2为公比的等比数列,∴1224-⨯=+n n a ,即)(42*∈-=N n a n n .[点评]若数列{a n }满足a 1 =a ,a n +1 = pa n +q (p ≠1),通过变形可转化为)1(11p q a p p q a n n --=--+,即转化为}1{pq a n --是等比数列求解. 解:(2)由)2(2211≥+=--n a a a n n n 得21111+=-n n a a ,即21111=--n n a a ,又111=a ,∴数列{n a 1}是以1为首项,21为公差的等差数列. ∴2121)1(111+=⨯-+=n n a a n ,∴)(12*∈+=N n n a n . 练习2:由n n n a a a +=+331得31111+=+n n a a , 即31111=-+n n a a ,又111=a , ∴数列{n a 1}是以1为首项,31为公差的等差数列. ∴3231)1(111+=⨯-+=n n a a n ,∴)(23*∈+=N n n a n . [点评]若数列{n a }满足a a =1,)0,(1≠+=+c b c ba ca a n n n ,通过取倒可转化为c b a a n n =-+111,即转化为{n a 1}是等差数列求解. (3)∵11=a ,)2(21≥+=-n n a a n n ∴2212⨯=-a a 3223⨯=-a a 4234⨯=-a a … … n a a n n ⨯=--21将上述(n -1)个式子相加,得)432(21n a a n ++++⨯=-即2)1)(2(21-+⨯=-n n a a n ,)(12*∈-+=N n n n a n . 练习3: 2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n n a a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列.∴*12(),n n n a a n N +-=∈ 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 12*22 (21)21().n n n n N --=++++=-∈[点评]若数列{n a }满足a a =1,)(1}为可以求和的数列数列{nn n n b b a a +=+,则用累加法求解,即)()()(123121--++-+-+=n n n a a a a a a a a .(4)∵11=a ,)1(11≥+=+n a n n a n n , ∴11+=+n n a a n n , ∴2112=a a ,3223=a a ,4334=a a ,…, nn a a n n 11-=-, 将上述(n -1)个式子相乘,得n a a n 11=,即)(1*∈=N n n a n . 练习4:∵ n n n a a ⋅=+21,∴n n n a a 21=+ ∴212=a a ,2232=a a ,3342=a a ,…,112--=n n n a a , 将上述(n -1)个式子相乘,得)1(32112-++++=n n a a ,即)(22)1(*-∈=N n a n n n .[点评]若数列{n a }满足a a =1,)(1}为可以求积的数列数列{nn n n b b a a ⋅=+,则用迭乘法求解,即123121-⋅⋅⋅⋅=n n n a a a a a a a a . 三、课堂小结:1. 已知数列的前几项,求数列的通项公式的方法:观察法.2. 已知递推公式,求特殊数列的通项公式的方法:转化为等差、等比数列求通项;累加法;迭乘法.四、课外作业:《习案》作业二十.精美句子1、善思则能“从无字句处读书”。

高中必修五数学知识点笔记整理

高中必修五数学知识点笔记整理

高中必修五数学知识点笔记整理高中必修五数学知识点一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高中必修五数学必背知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

高中数学必修五数列知识点总结归纳

高中数学必修五数列知识点总结归纳

高中数学必修五数列知识点总结
归纳
一、数列的概念和简单表示法
1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
2.了解数列是自变量为正整数的一类函数.
二、等差数列
1.理解等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.
4.了解等差数列与一次函数的关系.
三、等比数列
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.
四.数列的定义、分类与通项公式
(1)数列的定义
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类
(3)数列的通项公式
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
五.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.
1.辨明两个易误点
(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.
(2)易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.
2.数列与函数的关系
数列是一种特殊的函数,即数列是一个定义在正整数集N*或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1:已知{an }满足Sn 2n an(n N ),求an
解:Sn 2n an,S1 2 a1 Sn1 2(n 1) an1,a1 1
相减得:an1 2 an1 an
an1
1 2
an
1
(an1
2)
1 2
(an
2)
{an
2}是以1 为公比的等比数列 2
an
2
1 2n1
3.利用递推关系,构造新数列。
①an an1 f (n)型
累加法
②an an1· f (n)型
累乘法
③an pan1 q( p 1,q 0)型
可设an t p(an1 t ) 求出t,可得{an t}为一等比数列 其公比为p,首项为a1 t
例:已知a1
an1 an
1,an1
1 n 2
an
mnk p
p、q、r成等差
等差数列
等比数列
d an am nm
qnm an am
an am (n m)d
an amqnm
an am ak a p
a p、aq、ar成等差
anam aka p
a p、aq、ar成等比
Sn、S2n Sn、S3n S2n Sn、S2n Sn、S3n S2n
例如:自然数列、奇偶数列、自然数平方数列、倒数数列、 幂数列、符号数列等。
2.利用前n项和与通项的关系求通项公式
an
S1 ( n Sn
1) Sn1
(n
2)
方法一:直接利用an Sn Sn1求出an
方法二:利用an Sn Sn1消去an,得出Sn与Sn1的 递推关系式,求出Sn,再求an
Sn
(a1
an )n 2
Sn
na1
n(n
1)d 2
Sn an2 bn
是关于n 的不含常 数项的二次函数
an a1qn1
an kan
底数a就是公比
Sn
a1(1 qn ),(q 1q
1)
Sn
a1 anq 1q
,(q
1)
Sn kan k
a 的n 次幂的系数与常 数项互为相反 数。
3.性质
解法二:
∵{an }是等差数列,设Sn An2 Bn 由a1 S1 13,S3 S11,代入得9AAB3B13121A 11B 解得A 1,B 14, Sn n2 14n
.(2010·福建理) 设等差数列{an}的前n项
和为Sn.若a1=-11,a4+a6=-6,则
当Sn取得最小值时,n等于( A )
2
3n
.
1 求数列an 的通项公式;
2
若数列cn
满足cn=2ann
(n是奇数), (n是偶数)
求数列cn 的前n项和Tn .
【解析】1因为Sn= n2
2
3n

所以an=Sn-Sn-1= n2
2
3n
(n
1)2
2
3(n
1)
=n+1(n 2,n N*).
又a1=S1=2适合上式,所以an=n+1(n N*).
则n=______.
【解析】a1+a3++a2n+1=85, 则a3+a5++a2n+1=q(a2+a4++a2n ) =42q=84,所以q=2,
则S2n+1=
a1
1 q2n 1 q
1
=22n+1-1=85+42=127,
则22n+1=128,则n=3.

已知数列an 的前n项和Sn= n 2
1 2
n
,求an
a2
a1
1 1
2
a3
a2
1 2 2
an
an1
1 n1
2
相加得an
a1
1 1 2
1 2 2
1 n1 2
例:在an中,a1 1,an 3an1 4(n 2,n N ),求an
解 设:an t ( 3 an1 t) 得:an 3an1 2t 令2t 4,解得t 2 (an 2) 3(an1 2) {an 2}是以3为公比,以a1 2为首项的等比数列
也成等差
也成等比
若an、bn是等差数列, 若an、bn是等比数列,
则an k、kan、an bn 则kan、ank 、an bn
也是等差数列
也是等比数列
例 : 等差数列{an }中,a1 13,S3 S11,求Sn
解法一:由S3 S11,得a4 a5 a11 0, a4 a11 0,由a1 13,解得d 2 Sn n2 14n
得:an 2 3 3n1 an 3n 2
四.数列的求和
数列求和,一是把一个未知的数列变成若干个已知的数 列,利用公式求和;二是把数列整理化简,使某些项相约、 相消,成为关于n的一个代数式。归纳起来,常用的方法有 如下几种。
1.裂项求和
2.分组求和
3.错位相减
4.倒序相加
练习1 等比数列{an}共2n+1项, 首项a1=1,所有奇数项的和等 于85,所有偶数项的和等于42,
高中数学(北师大版)必修5 第一章
数 列 复习
一知识结构
数列的式

等差数列 性质

数列
前n项和公式

定义 通项公式

等比数列 性质

前n项和公式
数列求和
二.等差数列和等比数列
等差数列
等比数列
1.通项公式 特征
2.前 n 项和
特征
an a1 (n 1)d an kn b n 的系数k就是公差
A.6
B.7
C.8
D.9
例:在等比数列an 中,
若a3a5a7a9a11=243,则
a92 a11
的值为
______

答案:3 点评:运用等比数列的性质求解等比数 列问题,是一个基础考点,是数列的重 点内容之一.
三.如何求数列的通项
1.归纳法: 对于数列中所给出的一些项,逐项分析项与项数n的关
系,由此归纳出一般的公式。 在使用这种方法时要经常用到一些基本数列的通项公式,
2 当n为奇数时,n-1为偶数,
Tn=(a1+a3++an )+(22+24++2n-1)
4
1
4
n 1 2
=[2+4+6++(n+1)]+
1 4

n
2
1
2
n
1

4
(2n-1-1)
2
3
= n2 4n 3 4 (2n-1-1).
4
3
当n为偶数时,
Tn=(a1+a3++an-1)+(22+24++2n )
n
=(2+4++n)+ 41 42 1 4

n 2
2
n
+4
(2n-1-1)= n2
2n
4
(2n-1-1)
2
3
4
3
祝 同 学 们 学 习 进 步 !
相关文档
最新文档