北师大版高三数学选修4-4教案:2.7圆的渐开线与摆线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七课时 圆的渐开线与摆线
一、教学目标:
知识与技能:了解圆的渐开线的参数方程, 了解摆线的生成过程及它的参数方程. 过程与方法:学习用向量知识推导运动轨迹曲线的方法和步骤
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点: 圆的渐开线的参数方程,摆线的参数方程
教学难点: 用向量知识推导运动轨迹曲线的方法
三、教学方法:讲练结合,启发、诱导发现教学.
四、教学过程:
(一)、复习引入:复习:圆的参数方程
(二)、新课探析:
1、以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,可得圆渐开线的参数
方程为⎩
⎨⎧-=+=)cos (sin )sin (cos ϕϕϕϕϕϕr y r x (ϕ为参数) 2、在研究平摆线的参数方程中,取定直线为x 轴,
定点M 滚动时落在直线上的一个位置为原点,建立直角坐标系,
设圆的半径为r ,可得摆线的参数方程为。
⎩
⎨⎧-=-=)cos 1()sin (ϕϕϕr y r x (ϕ为参数)
(三)、例题与训练题:
例1 求半径为4的圆的渐开线参数方程
变式训练1 当2π
ϕ=,π时,求圆渐开线⎩⎨⎧-=+=ϕ
ϕϕϕϕϕcos sin sin cos y x 上对应点A 、B 坐标并
求出A 、B 间的距离。
变式训练2 求圆的渐开线⎪⎩⎪⎨⎧-=+=)
cos (sin 2)sin (cos 2t t t y t t t x 上当4π=t 对应的点的直角坐标。 例2 求半径为2的圆的摆线的参数方程
变式训练3: 求摆线⎩⎨⎧-=-=t
y t t x cos 1sin π20≤≤t 与直线1=y 的交点的直角坐标
例3、设圆的半径为8,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M 它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上纵坐标y 的最大值,说明该曲线的对称轴。
(四)、小结:本节课学习了以下内容:
1. 观察发现圆的渐开线及圆的摆线的形成过程;
2.探析圆的渐开线的参数方程,摆线的参数方程
3.会运用圆的渐开线的参数方程,摆线的参数方程求解简单问题。