最新初中奥数试题大全及解析
初中数学奥数试卷答案解析
一、选择题1. 下列哪个数不是无理数?A. √2B. √3C. √5D. 2答案:D解析:无理数是指不能表示为两个整数之比的实数。
选项A、B、C均为无理数,因为它们不能被表示为两个整数的比例。
而选项D的2是一个整数,因此不是无理数。
2. 已知等差数列的前三项分别为1、3、5,求第10项。
A. 29B. 30C. 31D. 32答案:C解析:等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
根据题目给出的前三项,可以得出公差d=2。
代入公式计算第10项:a10 = 1 + (10-1)×2 = 1 + 18 = 19。
选项C的31是错误的,正确答案是C。
3. 下列哪个图形是中心对称图形?A. 正方形B. 等边三角形C. 长方形D. 圆答案:D解析:中心对称图形是指存在一个点,使得图形上的每个点关于这个点对称。
正方形、长方形和等边三角形都不是中心对称图形,因为它们没有一个点可以使得每个点关于这个点对称。
而圆是中心对称图形,因为圆上的每个点都关于圆心对称。
二、填空题1. 若x²-5x+6=0,则x的值为______。
答案:2或3解析:这是一个一元二次方程。
可以通过因式分解或使用求根公式求解。
因式分解得到(x-2)(x-3)=0,解得x=2或x=3。
2. 一个等腰三角形的底边长为8,腰长为10,求这个三角形的面积。
答案:40解析:等腰三角形的面积可以通过底边长和腰长来计算。
首先,利用勾股定理求出高的长度:h=√(腰长²-底边长²/4)=√(10²-8²/4)=√(100-16)=√84。
然后,三角形的面积S=底边长×高/2=8×√84/2=40。
三、解答题1. 已知一个长方形的长是宽的两倍,且周长为24cm,求长方形的长和宽。
答案:长为8cm,宽为4cm。
解析:设长方形的宽为x,则长为2x。
初中奥数题及答案
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
[初中奥数题及答案]初中奥数题大全及答案
[初中奥数题及答案]初中奥数题大全及答案【试卷考卷】初中奥数题大全及答案篇(1):初中奥数试题及答案一、填空题1 .已知不等式3x-a ≤ 0 的正整数解恰是1 ,2 ,3 ,则a 的取值范围是。
2 .已知关于x 的不等式组无解,则 a 的取值范围是。
3 .不等式组的整数解为。
4 .如果关于x 的不等式( a-1 ) x5 .已知关于x 的不等式组的解集为,那么 a 的取值范围是。
二、选择题6 .不等式组的最小整数解是( )A . 0B . 1C . 2D . -17 .若-1A . -a8 .若方程组的解满足条件,则k 的取值范围是( )A .B .C .D .9 .如果关于x 的不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )A.49对B.42对C.36对D.13对10.关于x的不等式组只有5个整数解,则a的取值范围是( )A. B.C. D.三、解答题12.13.已知a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m =3a+b-7c,记x为m的最大值,y为m的最小值,求xy的值。
14.已知关于x、y的方程组的解满足,化简。
15.已知,求的最大值和最小值。
16.某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:甲乙A(单位:千克) 0.5 0.2 A(单位:千克) 0.3 0.4 假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。
设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?17.据电力部门统计,每天8点至21点是用电高峰期,简称“峰时”,21点至次日8点是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:时间换表前换表后峰时(8点至21点) 谷时(21点~次日8点) 电价0.52元/千瓦时x元/千瓦时y元/千瓦时已知每千瓦时峰时价比谷时价高0.25元,小卫家对换表后最初使用的100千瓦时用电情况进行统计分析知:峰时用电量占80%,谷时用电量点20%,与换表前相比,电费共下降2元。
初中奥数题及答案
初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+S△CNP+S△DNP.因此只需证明S△AND=S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,②AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,②BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
奥数题目初中数学试卷答案
一、选择题(每题5分,共50分)1. 若x^2 + 2x + 1 = 0,则x的值为()A. 1B. -1C. 0D. 无解答案:B解析:将x^2 + 2x + 1因式分解得(x + 1)^2 = 0,解得x = -1。
2. 若a^2 - 3a + 2 = 0,则a的值为()A. 1B. 2C. 1或2D. 无解答案:C解析:将a^2 - 3a + 2因式分解得(a - 1)(a - 2)= 0,解得a = 1或a = 2。
3. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无解答案:C解析:将x^2 - 5x + 6因式分解得(x - 2)(x - 3)= 0,解得x = 2或x = 3。
4. 若x^2 - 4x + 4 = 0,则x的值为()A. 2B. -2C. 0D. 无解答案:A解析:将x^2 - 4x + 4因式分解得(x - 2)^2 = 0,解得x = 2。
5. 若x^2 - 2x - 3 = 0,则x的值为()A. 3B. -1C. 3或-1D. 无解答案:C解析:将x^2 - 2x - 3因式分解得(x - 3)(x + 1)= 0,解得x = 3或x = -1。
二、填空题(每题5分,共50分)6. 若x^2 - 5x + 6 = 0,则x的值为______。
答案:2或3解析:将x^2 - 5x + 6因式分解得(x - 2)(x - 3)= 0,解得x = 2或x = 3。
7. 若a^2 - 3a + 2 = 0,则a的值为______。
答案:1或2解析:将a^2 - 3a + 2因式分解得(a - 1)(a - 2)= 0,解得a = 1或a = 2。
8. 若x^2 - 4x + 4 = 0,则x的值为______。
答案:2解析:将x^2 - 4x + 4因式分解得(x - 2)^2 = 0,解得x = 2。
9. 若x^2 - 2x - 3 = 0,则x的值为______。
初中奥数题目及答案大全
初中奥数题目及答案大全初中奥数题及答案大全:一、选择题(每题1分,共10分)1.下面的说法中准确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D。
2.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
3.下面说法中不准确的是()A.有ZUI小的自然数B.没有ZUI小的正有理数C.没有的负整数D.没有的非负数答案:C解析:的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不准确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上能够排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中生奥数练习题及答案
初中生奥数练习题及答案1.初中生奥数练习题及答案篇一一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?设麦地有X公顷,因为已割完了2/3,所以还剩1/3,得方程:(1/3)x∕12=(1/3)x/112*(5/4)]+1化简得:(5/3)X=(4/3)x+60(1/3)x=60x=180所以麦地有180公顷。
2.初中生奥数练习题及答案篇二牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜负平各几场?设胜X场,负y场,则平ll-χ-y场x=4y3x÷ll-χ-y=25x=8y=2胜8场负2场平1场3.初中生奥数练习题及答案篇三某筑路队承担了修一条公路的任务。
原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。
这条公路全长多少米?想:根据计划每天修720米,这样实际提前的长度是(720X3-1200)米。
根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:(720×3-1200)÷80=960÷80二12(天)公路全长:(720+80)×12+1200=800X12+1200=9600+1200二10800(米)答:这条公路全长10800米。
4.初中生奥数练习题及答案篇四某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。
每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?想:由已知条件可知道,每天用去30袋水泥,同时用去30X2袋沙子,才能同时用完。
但现在每天只用去40袋沙子,少用(30X2-40)袋,这样才累计出120袋沙子。
因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
初中奥数题及答案
初中奥数题试题一一、选择题(每题1分,共10分)1.假如a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中准确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D。
3.下面说法中不准确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.假如a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不准确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上能够排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
七年级数学奥数题八套(附答案)
七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图所示,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简ab(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
初中奥数竞赛题试卷
初中奥数竞赛题试卷一、选择题(每题3分,共15分)1. 若x^2-3x + 1=0,则x^2+(1)/(x^2)的值为()- A. 7.- B. 9.- C. 11.- D. 5.- 解析:由x^2-3x + 1 = 0,因为x≠0(若x = 0,方程不成立),方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
对x+(1)/(x)=3两边平方得(x+(1)/(x))^2=x^2+2+(1)/(x^2) = 9,所以x^2+(1)/(x^2)=9 - 2=7。
答案为A。
2. 已知a,b为实数,且ab = 1,设M=(a)/(a + 1)+(b)/(b + 1),N=(1)/(a+1)+(1)/(b + 1),则M与N的大小关系是()- A. M>N- B. M = N- C. M- D. 无法确定。
- 解析:先对M进行化简,M=(a(b + 1)+b(a + 1))/((a + 1)(b + 1))=(ab+a+ab + b)/((a + 1)(b + 1))=(2ab+a + b)/((a + 1)(b + 1))。
因为ab = 1,所以M=(2 + a + b)/((a + 1)(b + 1))。
再化简N,N=(b + 1+a + 1)/((a + 1)(b + 1))=(a + b+2)/((a + 1)(b + 1))。
所以M = N,答案为B。
3. 一个三角形的三条边长分别为a,b,c,满足(a - b)(b - c)(c - a)=0,则这个三角形一定是()- A. 等腰三角形。
- B. 等边三角形。
- C. 直角三角形。
- D. 等腰直角三角形。
- 解析:因为(a - b)(b - c)(c - a)=0,所以a - b = 0或b - c=0或c - a = 0,即a=b 或b = c或c=a,至少有两边相等,所以这个三角形一定是等腰三角形。
答案为A。
初中数学奥数考试题及答案
初中数学奥数考试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 4B. 9C. 23D. 26答案:C2. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 零C. 正数D. 任意实数答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 所有选项答案:D5. 一个数列的前三项是1, 1, 2,如果这个数列是等差数列,那么第四项是:A. 3B. 4C. 5D. 6答案:A二、填空题(每题3分,共15分)6. 一个数的绝对值是其本身,这个数是______。
答案:非负数7. 一个数的相反数是其本身,这个数是______。
答案:零8. 如果一个三角形的内角和为180°,那么一个四边形的内角和是______。
答案:360°9. 一个数的平方是16,这个数是______。
答案:±410. 如果一个数的平方根是4,那么这个数是______。
答案:16三、解答题(每题10分,共70分)11. 证明:对于任意正整数n,n的平方加1不能被n整除。
证明:假设存在一个正整数n,使得n^2 + 1能够被n整除。
设k为整数,使得n^2 + 1 = kn。
将等式两边同时除以n,得到n + (1/n) = k。
由于n是正整数,1/n是正有理数,所以k是正有理数。
然而,n + (1/n)总是大于等于2(当n=1时取等号),而k是整数,所以k不能等于2,这与我们的假设矛盾。
因此,对于任意正整数n,n的平方加1不能被n整除。
12. 解方程:x^2 - 5x + 6 = 0。
解:这是一个二次方程,我们可以通过因式分解来解它。
我们需要找到两个数,它们的乘积是6,它们的和是-5。
这两个数是-2和-3。
因此,我们可以将方程写成(x - 2)(x - 3) = 0。
初中奥数试题大全及解析
数学奥林匹克初中训练题(1)及答案解析数学奥林匹克初中训练题(1)及答案解析
数学奥林匹克初中训练题(2)及答案解析
1
数学奥林匹克初中训练题(2)及答案解析
参考答案:
一.1.(B)
2
数学奥林匹克初中训练题(3)及答案解析
1
数学奥林匹克初中训练题(3)及答案解析
数学奥林匹克初中训练题(3)及答案解析
3
数学奥林匹克初中训练题(4)及答案解析
数学奥林匹克初中训练题(4)及答案解析
2
数学奥林匹克初中训练题(5)及答案解析
1
数学奥林匹克初中训练题(5)及答案解析
2
数学奥林匹克初中训练题(5)及答案解析
1 2。
初中奥数试题及答案
初中奥数试题及答案在初中数学学习过程中,奥数是一个重要的组成部分。
通过解决奥数试题,学生能够培养自己的逻辑思维能力和问题解决能力。
本文将提供一些初中奥数试题及答案,帮助学生更好地练习和巩固数学知识。
1. 试题一已知数列{an}满足a1=3,an+1=2an+1,求a5的值。
解答一:根据题意,我们可以列出数列的前几项:a1=3a2=2*a1+1=2*3+1=7a3=2*a2+1=2*7+1=15a4=2*a3+1=2*15+1=31a5=2*a4+1=2*31+1=63所以,a5的值为63。
2. 试题二已知平面上一个三角形的三个顶点坐标分别为A(3, 5),B(7, 9),C(9, 1),求三角形的面积ABC。
解答二:利用向量的方法来求解。
设向量AB为向量u,向量AC为向量v,则向量AB的坐标为(4,4),向量AC的坐标为(6,-4)。
根据向量的模长和向量之间的夹角公式,可以求得向量AB和向量AC的模长分别为:|u|=√[(4)^2+(4)^2]=√32|v|=√[(6)^2+(-4)^2]=2√13两个向量夹角θ的cos值可以通过向量的点积来计算,即:cosθ=(向量u·向量v)/(|u|*|v|)向量u·向量v=4*6+4*(-4)=8所以,cosθ=(8)/(√32*2√13)通过计算可以得知,cosθ=0.5进一步计算得到,θ≈60°根据三角形的面积公式,可以用向量的模长和夹角sin值求得面积S:S=0.5*|AB|*|AC|*sinθS=0.5*√32*2√13*sin60°=16*√13*√3/2=8√39所以,三角形ABC的面积为8√39。
3. 试题三如果二次方程x^2-7x+k=0有两个不同的实根,那么k的取值范围是多少?解答三:根据二次方程的判别式D=b^2-4ac,可以判断方程的根的性质。
对于方程x^2-7x+k=0,我们可以得到a=1,b=-7,c=k。
初中数学奥林匹克竞赛题和答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
最新整理初中奥数试题大全及解析汇总
数学奥林匹克初中训练题(2)及答案解析
参考答案: 一.1.(B)
数学奥林匹克初中训练题(2)及答案解析
数学奥林匹克初中训练题(3)及答案解析
数学奥林匹克初中训练题(3)及答案解析
数学奥林匹克初中训练题(3)及答案解析
数学奥林匹克初中训练题(4)及答案解析
数学奥林匹克初中训练题(4)及答案解析
数学奥林匹克初中训练题(5)及答案解析
数学奥训练题(5)及答案解析
1 2 下一页 上一页 1 2
初三数学奥数试题及答案
初三数学奥数试题及答案试题一:几何问题题目:在一个圆中,有一条弦AB,弦AB的长度为10厘米。
弦AB上的圆心角为30度。
求弦AB所对的圆心角的度数。
解答:根据圆的性质,弦AB所对的圆心角是弦AB上的圆心角的两倍。
因此,弦AB所对的圆心角为30°×2=60°。
试题二:代数问题题目:若x^2 - 5x + 6 = 0,求x的值。
解答:这是一个二次方程,可以通过因式分解来求解。
将方程分解为(x-2)(x-3)=0,得到x的两个解:x=2或x=3。
试题三:数列问题题目:一个等差数列的前三项分别为2, 5, 8,求这个数列的第20项。
解答:首先确定等差数列的公差d。
由于第二项减去第一项等于第三项减去第二项,所以d=5-2=3。
使用等差数列的通项公式a_n=a_1+(n-1)d,其中a_1是首项,n是项数。
将已知值代入公式,得到a_20=2+(20-1)×3=2+57=59。
试题四:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球,有多少种不同的放法?解答:首先,将5个球分为3组,有C(5,2)种分法。
然后,将分好的3组球放入3个不同的盒子中,有A(3,3)种放法。
根据乘法原理,总的放法为C(5,2)×A(3,3)=10×6=60种。
试题五:概率问题题目:一个袋子里有3个红球和2个蓝球,随机取出2个球,求取出的两个球都是红球的概率。
解答:首先计算总共的取球方式,即从5个球中取出2个球的组合数,C(5,2)=10。
然后计算取出两个红球的方式,即从3个红球中取出2个球的组合数,C(3,2)=3。
所以,取出两个红球的概率为3/10。
结束语:以上就是初三数学奥数试题及答案的全部内容。
奥数题目往往需要学生具备较强的逻辑思维能力和数学基础,希望这些题目能够帮助学生在数学学习上取得更好的成绩。
初二奥数竞赛试题及答案
初二奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于它本身,那么这个数可能是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A4. 一个数列的前四项是2, 4, 8, 16,那么第五项是多少?A. 32B. 64C. 128D. 256答案:A二、填空题(每题5分,共20分)1. 一个等差数列的前三项是2, 5, 8,那么它的第五项是_________。
答案:112. 如果一个三角形的两边长分别是3cm和4cm,且这两边的夹角是90度,那么第三边的长度是_________。
答案:5cm3. 一个圆的直径是14cm,那么它的周长是_________。
答案:44π cm4. 一个数的立方等于它自身,那么这个数是_________。
答案:0或1或-1三、解答题(每题10分,共60分)1. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的第十项。
答案:第十项是76。
2. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求它的表面积和体积。
答案:表面积是94平方厘米,体积是60立方厘米。
3. 一个等比数列的前三项是2, 6, 18,求它的第五项。
答案:第五项是54。
4. 一个圆的半径是7cm,求它的面积。
答案:面积是154π平方厘米。
5. 一个数列的前四项是1, 3, 6, 10,求它的通项公式。
答案:通项公式是n(n+1)/2。
6. 一个长方体的长、宽、高分别是a、b、c,且a+b+c=12,求当a=4时,b和c的可能值。
答案:当a=4时,b和c的可能值是(3, 5)或(4, 4)或(5, 3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥林匹克初中训练题(1)及答案解析数学奥林匹克初中训练题(1)及答案解析
数学奥林匹克初中训练题(2)及答案解析
2008-03-17 16:21 来源:网络资源作者:佚名 [打印] [评论]
12下一页
数学奥林匹克初中训练题(2)及答案解析
2008-03-17 16:21 来源:网络资源作者:佚名 [打印] [评论] 参考答案:
一.1.(B)
上一页12
数学奥林匹克初中训练题(3)及答案解析
2008-03-17 16:27 来源:网络资源作者:佚名 [打印] [评论]
123下
数学奥林匹克初中训练题(3)及答案解析
2008-03-17 16:27 来源:网络资源作者:佚名 [打印] [评论]
数学奥林匹克初中训练题(3)及答案解析
2008-03-17 16:27 来源:网络资源作者:佚名 [打印] [评论]
上一页123
数学奥林匹克初中训练题(4)及答案解析
2008-03-17 16:29 来源:网络资源作者:佚名 [打印] [评论]
数学奥林匹克初中训练题(4)及答案解析
2008-03-17 16:29 来源:网络资源作者:佚名 [打印] [评论]
上一页12
数学奥林匹克初中训练题(5)及答案解析
2008-03-17 16:35 来源:网络资源作者:佚名 [打印] [评论]
123
数学奥林匹克初中训练题(5)及答案解析
2008-03-17 16:35 来源:网络资源作者:佚名 [打印] [评论]
上一页123下一页
数学奥林匹克初中训练题(5)及答案解析
2008-03-17 16:35 来源:网络资源作者:佚名 [打印] [评论]
12下一页上一页12。