题型专练04-新高考数学开放性试题(解析版)

合集下载

新高考数学新定义 开放性和探究专题(解析版)

新高考数学新定义 开放性和探究专题(解析版)

新高考新定义开放性和探究专题题型一:数列新题型1(2023·河北张家口·统考二模)欧拉函数φn n ∈N * 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如:φ1 =1,φ3 =2.数列a n 满足a n =φ2n ,其前n 项和为S n ,则S 10=()A.1024B.2048C.1023D.2047【答案】C【分析】根据欧拉函数的定义可求出a n =φ2n =2n -1,再由等比数列的前n 项和公式即可求出答案.【详解】根据欧拉函数的定义可得a 1=φ2 =1,a 2=φ22 =2,a 3=φ23 =4,a 4=φ24 =8,一般地,a n =φ2n =2n -1.事实上,φ2n 表示从1到2n 的正整数中,与2n 互质的正整数的个数,相当于去掉从1到2n 的正整数中所有2的倍数的个数(共2n -1个数),因此,a n =φ2n =2n -2n -1=2n -1.所以,S 10=1+2+4+⋯+29=1023.故选:C .2(2023·陕西西安·西安一中校联考模拟预测)南宋数学家杨辉在《详解九章算术》中提出了高阶等差数列的问题,即一个数列a n 本身不是等差数列,但从a n 数列中的第二项开始,每一项与前一项的差构成等差数列b n (则称数列a n 为一阶等差数列),或者b n 仍旧不是等差数列,但从b n 数列中的第二项开始,每一项与前一项的差构成等差数列c n (则称数列a n 为二阶等差数列),依次类推,可以得到高阶等差数列.类比高阶等差数列的定义,我们亦可定义高阶等比数列,设数列1,1,2,8,64⋯是一阶等比数列,则该数列的第8项是( ).A.28 B.215C.221D.228【答案】C 【分析】设b n -1=a na n -1,得到b n 为等比数列,求得b n =2n -1,结合a n =b n -1⋅b n -2⋯b 1⋅a 1,进而求得a 8的值.【详解】由题意,数列1,1,2,8,64,⋯为a n ,且为一阶等比数列,设b n -1=a na n -1,所以b n 为等比数列,其中b 1=1,b 2=2,公比为q =b 2b 1=2,所以b n =2n -1,则a n =b n -1⋅b n -2⋯b 1⋅a 1=21+2+3+⋯+n -2=2n -1 n -22,n ≥2,所以第8项为a 8=221.故选:C .3(2023·上海黄浦·统考二模)设数列a n 的前n 项的和为S n ,若对任意的n ∈N *,都有S n <a n +1,则称数列a n 为“K 数列”.关于命题:①存在等差数列a n ,使得它是“K 数列”;②若a n 是首项为正数、公比为q 的等比数列,则q ∈[2,+∞)是a n 为“K 数列”的充要条件.下列判断正确的是()A.①和②都为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②都为假命题【答案】C【分析】根据给定的定义,按公差的取值情况分类探讨判断①;利用等比数列通项公式及前n项和公式,结合不等式恒成立即可推理作答.【详解】令等差数列a n的公差为d,当d≤0时,S1=a1≥a1+d=a2,不符合题意,当d>0时,S n-a n+1=na1+n(n-1)2d-(a1+nd)=d2n2-32d-a1n-a1,函数f(x)=d2x2-32d-a1x-a1的图象是开口向上的抛物线,对称轴x=32-a1d,存在x0>32-a1d,使得f(x0)>0,取不小于x0的正整数n,则有f(n)>0,即S n>a n+1,不符合题意,综上得①为假命题;等比数列a n首项a1>0,因为数列a n为“K数列”,则有a1=S1<a2=a1q,即q>1,S n=a1(1-q n)1-q,a n+1=a1q n,于是a1(1-q n)1-q<a1q n⇔q n+1-2q n+1>0⇔2-q<1q n,依题意,任意的n∈N*,2-q<1q n,函数y=1qx,x≥1在[1,+∞)单调递减,值域是0,1q ,因此2-q≤0⇔q≥2,所以q∈[2,+∞)是a n为“K数列”的充要条件,②是真命题,判断正确的是①为假命题,②为真命题.故选:C【点睛】关键点睛:数列是特殊的函数,根据数列的特性,准确构造相应的函数,借助函数性质分析求解是解题的关键,背景函数的条件,应紧扣题中的限制条件.题型二:立体几何新定义4(2023·辽宁沈阳·统考一模)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.则正八面体(八个面均为正三角形)的总曲率为()A.2πB.4πC.6πD.8π【答案】B【分析】利用正八面体的面积和减去六个顶点的曲率和可得结果.【详解】正八面体每个面均为等比三角形,且每个面的面角和为π,该正面体共6个顶点,因此,该正八面体的总曲率为6×2π-8π=4π.故选:B.5(2021·全国·统考模拟预测)图1中的机械设备叫做“转子发动机”,其核心零部件之一的转子形状是“曲侧面三棱柱”,图2是一个曲侧面三棱柱,它的侧棱垂直于底面,底面是“莱洛三角形”,莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,如图3.若曲侧面三棱柱的高为10,底面任意两顶点之间的距离为20,则其侧面积为()A.100πB.600C.200πD.300π【答案】C【分析】由莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,结合已知可得半径为20,由弧长公式求得底面周长,进而可求得结果.【详解】莱洛三角形由三段半径为20,圆心角为π3的圆弧构成,所以该零件底面周长为3×π3×20=20π,故其侧面积为200π.故选:C.6(2023·四川南充·四川省南充高级中学校考模拟预测)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即12V球=πR2⋅R-13πR12⋅R=23πR3.现将椭圆x24+y29=1绕y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于()A.32πB.24πC.18πD.16π【答案】D【解析】构造一个底面半径为2,高为3的圆柱,通过计算可得高相等时截面面积相等,根据祖暅原理可得橄榄球形几何体的体积的一半等于圆柱的体积减去圆锥的体积.【详解】解:构造一个底面半径为2,高为3的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为h0≤h≤3时,小圆锥底面半径为r,则h3=r2,∴r=23h,故截面面积为:4π-49πh2,把y=h代入x24+y29=1,即x24+h29=1,解得:x=±239-h2,∴橄榄球形几何体的截面面积为πx2=4π-49πh2,由祖暅原理可得橄榄球形几何体的体积为:V=2V圆柱-V圆锥 =2×4π×3-13×4π×3=16π.故选:D.【点睛】关键点点睛:本题解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,根据祖暅原理得到橄榄球形几何体的体积.题型三:函数新定义7(2023·陕西商洛·统考二模)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类一直在思考和探索数学的对称问题,图形中的对称性本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()①函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”;②函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”;③函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”;④若函数y =f x 是“优美函数”,则y =f x 的图象一定是中心对称图形.A.①② B.①③ C.②③ D.②④【答案】B【分析】根据“优美函数”的定义,可判断①③中的函数为奇函数,其图象为中心对称图形,可判断其正误,结合余弦函数的性质可判断②,作图分析,举出反例,判断④.【详解】对于①,f x =x 2x+2-x -1≤x ≤1满足f -x =-x2-x +2x =-f (x ),故为奇函数,则f x 图象原点对称,且连续,所以f x 可以是中心为原点且边长为2的正方形的“优美函数”,故①正确.对于②,令2x -π6=π2+k πk ∈Z ,得x =π3+k π2k ∈Z ,所以f x =4cos 2x -π6+3图象的对称中心为π3+k π2,3 k ∈Z ,故以π3+k π2,3k ∈Z 为中心的正方形都能被函数f x =4cos 2x -π6+3的图象平分,即f x =4cos 2x -π6+3可以同时是无数个正方形的“优美函数”,故②错误.对于③,令g x =ln 4x 2+1-2x ,x ∈R ,则g -x =ln 4x 2+1+2x =-ln 4x 2+1-2x =-f (x ),故g x 为奇函数.又因为f x 的图象是由g x 的图象向下平移一个单位长度得到的,所以f x 图象的对称中心为0,-1 ,故以0,-1 为中心的正方形都能被f x =ln 4x 2+1-2x -1的图象平分,故③正确.对于④,如图所示,图中两三角形面积相等,函数y =f x 是“优美函数”,但其图象不是中心对称图形,可知④错误,故选:B8(2021·陕西渭南·统考三模)已知符号函数sgn x =1,x >0,0,x =0,-1,x <0,偶函数f x 满足f x +2 =f x ,当x ∈0,1 时,f x =x ,则下列结论正确的是()A.sgn f x >0 B.f 40412=1C.sgn f 2k =0k ∈Z D.sgn f k =sgn k k ∈Z【答案】C【分析】利用偶函数以及函数周期为2,作出函数f x 的大致图象,数形结合即可逐个分析答案.【详解】根据题意得函数f x 是周期为2的函数,作出函数f x 的大致图象,如下图所示.数形结合易知f x ∈0,1 ,则sgn f x =0或sgn f x =1,故A 错误;f 40412=f 202012 =12,故B 错误;f 2k =0k ∈Z ,则sgn f 2k =0k ∈Z ,故C 正确;sgn k =1,k >00,k =0,-1,k <0(k ∈Z ),所以sgn k =1,k ≠00,k =0 (k ∈Z ),所以sgn f k ≠sgn k k ∈Z ,故D 错误.故选:C .9(2023·陕西安康·统考二模)宋代理学家周敦颐的《太极图》和《太极图说》是象数和义理结合的表达.《朱子语类》卷七五:“太极只是一个混沦底道理,里面包含阴阳、刚柔、奇偶,无所不有”.太极图(如下图)将平衡美、对称美体现的淋漓尽致.定义:对于函数f x ,若存在圆C ,使得f x 的图象能将圆C 的周长和面积同时平分,则称f x 是圆C 的太极函数.下列说法正确的是()①对于任意一个圆,其太极函数有无数个②f x =log 122x +1 +12x 是x 2+y +1 2=1的太极函数③太极函数的图象必是中心对称图形④存在一个圆C ,f x =sin x +cos x 是它的太极函数A.①④ B.③④ C.①③ D.②③【答案】A【分析】根据“太极函数”、函数的对称性、对数运算等知识对选项4个说法进行分析,由此确定正确答案.【详解】对于①:过圆心的直线都可以将圆的周长和面积平分,所以对于任意一个圆,太极函数有无数个,故①正确对于②:f -x =log 122-x+1 -12x =log 121+2x 2x-12x ,f x -f -x =log 122x+12x +12x+x =-x +x =0,所以f x 关于y 轴对称,不是太极函数,故②错误;对于③:中心对称图形必定是太极函数,对称点即为圆心.但太极函数只需平分圆的周长和面积,不一定是中心对称图形,故③错误;对于④:曲线f x =sin x +cos x =2sin x +π4存在对称中心,所以必是某圆的太极函数,故④正确.故选:A .题型四:向量新定义10(2022·浙江·高三专题练习)定义d a ,b =a -b 为两个向量a ,b 间的“距离”,若向量a ,b满足下列条件:(ⅰ)b =1;(ⅱ)a ≠b ;(ⅲ)对于任意的t ∈R ,恒有d a ,tb ≥d a ,b,现给出下面结论的编号,①.a ⊥b ②.b ⊥a -b ③.a ⊥a -b ④.a ≥1⑤.a +b ⊥a -b 则以上正确的编号为()A.①③B.②④C.③④D.①⑤【答案】B【分析】根据题意可得a -tb 2≥a -b 2,转化为t 2-2ta ⋅b +2a ⋅b -1 ≥0对于任意的t ∈R 恒成立,即Δ≤0,整理得a ⋅b -1 2≤0,再利用向量的数量积逐一判断即可.【详解】由于d a ,b =a -b ,又对于t ∈R ,恒有d a ,tb ≥d a ,b ,显然有a -tb ≥a -b ,即a -tb 2≥a -b 2,则t 2-2ta ⋅b +2a ⋅b-1 ≥0对于任意的t ∈R 恒成立,显然有Δ=-2a ⋅b 2-42a ⋅b-1 ≤0成立,即a ⋅b -1 2≤0,则a ⋅b=1,故序号①错误,进而a ⋅b =a ⋅bcos θ=1,∵b =1,于是cos θ=1a ≤1,得a ≥1,即序号④正确.再由a ⋅b -1=0得a ⋅b -b 2=0,得b a -b =0,∴b ⊥a -b ,显然序号②正确.从而序号③错误,再由②a ≠b ,故序号⑤错误.综上知本题正确的序号为②④.故选:B .【点睛】本题命制是以新定义为背景,考查向量长度及数量积等知识概念,同时考查了等价转换、不等式恒成立问题,符合以生考熟的高考理念,考查知识内容源于教材,试题面向全体考生,不同思维能力层次的考生度可以利用熟悉的通法来解决问题,从而增强考生的自信心,有利于考生正常发挥,属于中档题.11(2023·全国·高三专题练习)互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记P a ,b ,则在x 轴正方向和y 轴正方向的夹角为θ的斜坐标系中,下列选项错误的是()A.当θ=60°时A 1,2 与B 3,4 距离为23B.点A 1,2 关于原点的对称点为A -1,-2C.向量a=x 1,y 1 与b =x 2,y 2 平行的充要条件是y 1x 2=y 2x 1D.点A 1,2 到直线x +y -1=0的距离为2【答案】D【分析】根据“斜坐标系”的定义,结合向量运算对选项进行分析,从而确定正确答案.【详解】设x 轴正方向的单位向量为e 1 ,y 轴正方向的单位向量为e 2,对于A 选项:由已知得e 1 ,e 2 =60°,所以e 1 ⋅e 2 =1×1×12=12.由A 1,2 ,B 3,4 及斜坐标的定义可知OA =e 1 +2e 2 ,OB =3e 1 +4e 2,AB =OB -OA =2e 1 +e 2 =2e 1 +e 2 2=2e 1 2+2e 1 ⋅e 2 +e 2 2=21+1+1=23,故A 选项正确;对于B 选项:根据“斜坐标系”的定义可知:点A 1,2 ,则OA =e 1 +2e 2 ,设A 1,2 关于原点的对称点为Ax ,y ,则OA ' =-OA =-e 1 -2e 2 =x e 1 +y e 2 ,由于e 1 ,e 2 不共线,所以x =-1y =-2 ,故B 选项正确;对于C 选项:a =x 1e 1 +y 1e 2 ,b =x 2e 1 +y 2e 2 ,若a 是零向量,则a ⎳b 成立,同时x 1=y 1=0,所以x 1y 2=x 2y 1成立,此时a ⎳b⇔x 1y 2=x 2y 1;若a 是非零向量,则a ⎳b ⇔存在非零常数λ,使b =λa⇔x 2e 1 +y 2e 2 =λx 1e 1 +λy 1e 2 ⇔x 2=λx 1λy 1=y 2 ⇔λx 2y 1=λx 1y 2⇔y 1x 2=y 2x 1,所以a ⎳b⇔x 1y 2=x 2y 1.故C 选项正确;对于D 选项:设直线x +y -1=0上的动点为P x ,y ,OP =x e 1 +y e 2 ,因为x +y -1=0,所以x +y =1,设OC =e 1 ,OD =e 2 ,则点P x ,y 在直线CD 上,所以直线x +y -1=0过点C 1,0 ,D 0,1 ,因为OA =e 1 +2e 2 ,则AC =OC -OA =2e 2 =2,AD =OD -OA =e 1 +e 2 =e 1 +e 2 2=3,由于OC =OD =1,OC ,OD =60°,所以CD =1.所以AD 2+CD 2=AC 2,所以AD ⊥CD ,所以点A 到直线x +y -1=0的距离为AD=3,故D 选项错误.故选:D12(2023·全国·高三专题练习)向量的运算包含点乘和叉乘,其中点乘就是大家熟悉的向量的数量积.现定义向量的叉乘:给定两个不共线的空间向量a 与b ,a ×b 规定:①a ×b 为同时与a ,b垂直的向量;②a ,b ,a ×b 三个向量构成右手系(如图1);③a ×b =a b sin a ,b ;④若a=x 1,y 1,z 1 ,b =x 2,y 2,z 2 ,则a ×b=+y 1,z 1y 2,z 2 ,-x 1,z 1x 2,z 2 ,+x 1,y 1x 2,y 2 ,其中a ,b c ,d=ad -bc .如图2,在长方体中ABCD -A 1B 1C 1D 1,AB =AD =2,AA 1=3,则下列结论正确的是()A.AB ×AD =AA 1B.AB ×AD =AD ×ABC.AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1D.长方体ABCD -A 1B 1C 1D 1的体积V =AB ×AD ⋅C 1C【答案】C【分析】利用向量的叉乘的定义逐项分析即得.【详解】解法一:AA 1 同时与AB ,AD 垂直;AA 1 ,AB ,AD三个向量构成右手系,且AB ×AD =AB AD sin AB ,AD =2×2×sin90°=4≠AA 1=3,所以选项A 错误;根据右手系知:AB ×AD 与AD ×AB 反向,所以AB ×AD ≠AD ×AB,故选项B 错误;因为AB -AD ×AA 1 =DB ×BB 1=22×3×sin90°=62,且DB ×BB 1 =-BD ×BB 1 与CA同向共线;又因为AB ×AA 1 =2×3×sin90°=6,且AB ×AA 1 与DA同向共线,AD ×AA 1 =2×3×sin90°=6,AD ×AA 1与DC 同向共线,所以AB ×AA 1 -AD ×AA 1 =62,且AB ×AA 1 -AD ×AA 1 与CA 同向共线,AB -AD ×AA 1 =AB ×AA -AD ×AA 1,故选项C 正确;因为长方体ABCD -A 1B 1C 1D 1的体积为2×2×3=12.又因为由右手系知向量AB ×AD 方向垂直底面向上,与C 1C 反向,所以AB ×AD ⋅C 1C<0,故选项D 错误;故选:C .解法二:如图建立空间直角坐标系:AB =0,2,0 ,AD =-2,0,0 ,AA 1 =0,0,3 ,则AB ×AD=0,0,4 ,所以选项A 错误;C 1C =0,0,-3 ,则AB ×AD ⋅C 1C =-12,故选项D 错误;AD ×AB=0,0,-4 ,故选项B 错误;AB -AD =DB =2,2,0 ,则AB -AD ×AA 1 =6,-6,0 ,AB ×AA 1 =6,0,0 ,AD ×AA 1 =0,6,0 ,则AB ×AA 1 -AD ×AA 1 =6,-6,0 .所以AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1 ,故选项C 正确;故选:C .题型五:开放性题型13(2023·甘肃酒泉·统考三模)已知P 是平行四边形ABCD 对角线上的一点,且AP =λAB +μAD,其中λ∈0,1,μ∈ 0,1 ,写出满足条件的λ与μ的一组λ,μ 的值.【答案】13,23(答案不唯一,满足λ+μ=1或λ=μ即可)【分析】若P 在AC 上可得λ=μ,若P 在BD 上,根据共线定理的推论得到λ+μ=1,填写符合题意的答案即可.【详解】因为AC =AB +AD ,若P 在AC 上,则AC ⎳AP ,又AP =λAB +μAD ,所以λ=μ,若P 在BD 上,即P 、B 、D 三点共线,又AP =λAB +μAD,则λ+μ=1.故答案为:13,23(答案不唯一,满足λ+μ=1或λ=μ即可)14(2023·江西九江·瑞昌市第一中学校联考模拟预测)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心在直线x -y +7=0上.若⊙C 与⊙O 相切,则⊙C 的一个方程为.【答案】x +4 2+y -3 2=9(答案不唯一)【分析】先根据已知得出⊙C 的圆心在⊙O 的外面.然后分⊙C 与x 轴相切以及⊙C 与y 轴相切,结合已知可得出两圆外切.列出方程,化简整理求解,即可得出答案.【详解】由已知可得,⊙O :x 2+y 2=4的圆心为O 0,0 ,半径R =2,所以点O 0,0 到直线x -y +7=0的距离d =72=722>2,所以,直线与圆相离,所以⊙C 的圆心在⊙O 的外面.当⊙C 与x 轴相切时,设⊙C 的圆心C a ,a +7 ,则⊙C 的半径r 1=a +7 .因为⊙C 与⊙O 相切,且C 在⊙O 的外面,所以两圆外切.所以OC =R +r 1,即a 2+a +7 2=2+a +7 ,整理可得,a 2=4+4a +7 .若a ≤-7,整理可得a 2+4a +24=0无解,所以a >-7,所以a 2-4a -32=0,解得a =-4或a =8,所以⊙C 方程为x +4 2+y -3 2=9或x -8 2+y -15 2=225;当⊙C 与y 轴相切时,设圆心C a ,a +7 ,则⊙C 的半径r 2=a .由两圆外切可得,OC =R +r 2,即a 2+a +7 2=2+a ,整理可得a 2+14a +49=4+4a ,则a <0,所以有a 2+18a +45=0,解得a =-3或a =-15,所以⊙C 方程为x +3 2+y -4 2=9或x +15 2+y +8 2=225.故答案为:x +4 2+y -3 2=9.15(2023·新疆·校联考二模)已知函数f x 满足下列条件:①f x 是y =sin x 经过图象变换得到的;②对于∀x ∈R ,均满足-3=f -π6 ≤f x ≤f π3=1成立;③y =f x 的函数图象过点0,-2 .请写出符合上述条件的一个函数解析式.【答案】f x =2sin 2x -π6-1(答案不唯一)【分析】由①可设f x =A sin ωx +φ +B ,根据②,设A >0,求得A =2,B =-1,且ω=2,再由③求得φ的一个值为φ=-π6,即可求解.【详解】解:由①可设f x =A sin ωx +φ +B ,又由②可知,不妨设A >0,由-3=f -π6 ≤f x ≤f π3 =1,可得A =1-(-3)2=2,B =1+(-3)2=-1,且T =2π3--π6=π,所以ω=2πT=2,所以f x =2sin 2x +φ -1,由③,可得2sin φ-1=-2,即sin φ=-12,所以φ的一个值为φ=-π6,因此函数f x 的一个解析式为f x =2sin 2x -π6-1.故答案为:f x =2sin 2x -π6-1(答案不唯一).16(2023·江西南昌·校联考模拟预测)正割(Secant )及余割(Co sec ant )这两个概念是由伊朗数学家、天文学家阿布尔·威发首先引入,sec ,csc 这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割sec α=1cos α,余割csc α=1sin α.已知函数f x =1sec x +1csc x,给出下列说法:①f x 的定义域为x x ≠k π,k ∈Z ;②f x 的最小正周期为2π;③f x 的值域为-2,-1 ∪-1,1 ∪1,2 ;④f x 图象的对称轴为直线x =-π4+k πk ∈Z .其中所有正确说法的序号为()A.②③B.①④C.③D.②③④【答案】A【分析】首先化简函数f x =2sin x +π4,再结合原函数的特征,求函数的定义域,以及根据三角函数的性质判断周期,值域和对称性.【详解】f x =1sec x +1csc x =cos x +sin x =2sin x +π4 ,由cos x ≠0,sin x ≠0,得x ≠k π2k ∈Z ,即f x 的定义域为x x ≠k π2,k ∈Z ,①错误;f x 的定义域关于原点对称,故f x 的最小正周期与函数y =2sin x +π4的最小正周期一致,均为2π,②正确;当x =0,π2,π,3π2时,y =2sin x +π4的值分别为1,1,-1,-1,考虑周期性可知,f x 的值域为-2,-1 ∪-1,1 ∪1,2 ,③正确;令x +π4=π2+k πk ∈Z ,得x =π4+k πk ∈Z ,即f x 图象的对称轴为直线x =π4+k πk ∈Z ,④错误,故选:A .17(2023春·重庆沙坪坝·高三重庆一中校考阶段练习)林业部门规定:树龄500年以上的古树为一级,树龄300~500年之间的古树为二级,树龄100~299年的古树为三级,树龄低于100年不称为古树.林业工作者为研究树木年龄,多用年轮推测法,先用树木测量生长锥在树干上打孔,抽取一段树干计算年轮个数,由经验知树干截面近似圆形,年轮宽度依次构成等差数列.现为了评估某棵大树的级别,特测量数据如下:树干周长为3.14米,靠近树芯的第5个年轮宽度为0.4cm ,靠近树皮的第5个年轮宽度为0.2cm ,则估计该大树属于()A.一级B.二级C.三级D.不是古树【答案】C【分析】由条件抽象出等差数列的基本量,再结合等差数列的前n 项和,求n .【详解】设树干的截面圆的半径为r ,树干周长2πr =3.14,r =0.5m =50cm ,从内向外数:a 5=0.4,a n -4=0.2,S n =r =50=a 5+a n -4 ⋅n2=0.3n ,∴n =5003≈167年,所以为三级.故选:C18(2023春·江西·高三校联考阶段练习)若存在实数k 和m 使得函数f x 和g x 对其公共定义域上的任意实数x 都满足:g x ≤kx +m ≤f x 恒成立,则称此直线y =kx +m 为f x 和g x 的“分离直线”.有下列命题:①f x =x 2和g x =a ln x 之间存在唯一的“分离直线”y =2ex -e 时a =2e ;②f x =x 2和g x =1x(x <0)之间存在“分离直线”,且m 的最小值为-4,则()A.①、②都是真命題B.①、②都是假命題C.①是假命题,②是真命题D.①是真命题,②是假命题【答案】A【分析】命题①,f(x)=x2和g(x)=2e ln x有公共点e,e,故隔离直线过该点,设为点斜式,结合二次函数性质对参数分类讨论,即可求解;命题②,设隔离直线为y=kx+b,则x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,结合二次函数性质对参数分类讨论,即可求解;【详解】对于命题①,函数f(x)=x2和g(x)=2e ln x的图像在x=e处有公共点,若存在f(x)和g(x)的隔离直线,那么该直线过这个公共点e,e,设隔离直线的斜率为k,则隔离直线方程为y-e=k x-e,即y=kx-k e+e 由f(x)≥kx-k e+e x>0恒成立,即x2-kx+k e-e≥0x>0恒成立,(i)当k=0时,则x2≥e x>0不恒成立,不符合题意;(ii)当k<0时,令u x =x2-kx+k e-e x>0,对称轴x=k2<0,u x 在0,e上单调递增,且u e=0,故k<0不恒成立,不符合题意;(iii)当k>0时,令u x =x2-kx+k e-e x>0,对称轴x=k2>0,则u x min=uk2=-k24+k e-e=-k-2e24≥0,只有k=2e,即直线y=2e x-e下面证明g(x)=2e ln x≤2e x-e,令G(x)=2e x-e-2e ln x,求导G (x)=2e x-ex,令G(x)=0,得x=e,当x∈0,e时,G (x)<0,函数G(x)在区间0,e上单调递减;当x∈e,+∞时,G (x)>0,函数G(x)在区间e,+∞单调递增;故当x=e时,函数G(x)取得极小值,也是最小值,故G(x)≥0,即g(x)≤2e x-e 所以f(x)=x2和g(x)=2e ln x之间存在唯一的隔离直线y=2e x-e.所以命题①是真命题;对于命题②,设f(x)=x2和g(x)=1x(x<0)的隔离直线为y=kx+m,则x2≥kx+m1x≤kx+m对任意x<0恒成立,即x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,由kx2+mx-1≤0恒成立,得k≤0(i)当k=0时,则m=0符合题意;(ii)当k<0时,则x2-kx-m≥0对任意x<0恒成立,令h x =x2-kx-m x<0,对称轴x=k2<0,需Δ=k2+4m≤0,即k2≤-4m,故m≤0令d x =kx2+mx-1x<0,对称轴x=-m2k≤0,需Δ=m2+4k≤0,即m2≤-4k,所以k4≤16m2≤-64k,故-4≤k<0同理可得m4≤16k2≤-64m,即-4≤m<0,故m 的最小值为-4故命题①正确,命题②正确;故选:A专题强化一、单选题19(2023·山东潍坊·统考模拟预测)阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹.如图,在平面直角坐标系xOy 中,螺线与坐标轴依次交于点A 1-1,0 ,A 20,-2 ,A 33,0 ,A 40,4 ,A 5-5,0 ,A 60,-6 ,A 77,0 ,A 80,8 ,并按这样的规律继续下去.若四边形A n A n +1A n +2A n +3的面积为760,则n 的值为()A.18B.19C.21D.22【答案】A【分析】根据四边形的特点,将四边形的面积转化为四个直角三角形的面积,即可求解.【详解】如图,四边形A n A n +1A n +2A n +3的面积由四个直角三角形构成,得12n n +1 +12n +1 n +2 +12n +2 n +3 +12n n +3 =760,n n +1+n +3 +n +2 n +1+n +3 =1520,2n +4 2n +2 =1520,即n +2 n +1 =380,n ∈N *,解得:n =18故选:A20(2023春·湖北·高二校联考阶段练习)高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行1+2+3+⋯+100的求和运算时,他这样算的:1+100=101,2+99=101,⋯,50+51=101,共有50组,所以50×101=5050,这就是著名的高斯算法,课本上推导等差数列前n 项和的方法正是借助了高斯算法.已知正数数列a n是公比不等于1的等比数列,且a1a2023=1,试根据以上提示探求:若f(x)=41+x2,则f a1+f a2+⋯+f a2023=()A.2023B.4046C.2022D.4044【答案】B【分析】根据倒序相加法,结合等比数列的下标性质进行求解即可.【详解】根据等比数列的下标性质由a1⋅a2023=1⇒a n⋅a2024-n=1,∵函数f(x)=41+x2,∴f(x)+f1x=41+x2+41+1x2=4+4x21+x2=4,令T=f a1+f a2+⋯+f a2023,则T=f a2023+f a2023+⋯+f a1 ,∴2T=f a1 +f a2023+f a2+f a2022+⋯+f a2023+f a1 =4×2023,∴T=4046.故选:B21(2022秋·山东青岛·高三统考期末)已知定义域为0,1的“类康托尔函数”f x 满足:①∀0≤x1<x2≤1,f x1≤f x2;②f x =2fx3;③f x +f1-x=1.则f12023=()A.132B.164C.1128D.1256【答案】C【分析】根据函数的定义分别赋值得到f(1)=1,f12=12,然后再利用f x =2f x3 得到f(x)=2n⋅f x3n,再次赋值,利用∀0≤x1<x2≤1,f x1 ≤f x2 即可求解.【详解】因为∀0≤x1<x2≤1,f x =2fx3,令x=0可得:f(0)=0,又因为f x +f1-x=1,令x=0可得:f(1)=1,令x=12可得:f12=12,由f x =2fx3可得:f(x)=2f x3 =22⋅f x32=⋯=2n⋅f x3n ,令x=1,n=7,则有f(1)=27f137=128f12187,所以f12187=1128,令x=12,n=6,则有f12=26f1236=64f11458=12,所以f11458=1128,因为12187<12023<11458,所以f12187≤f12023≤f11458,也即1128≤f12023≤1128,所以f12023=1128,故选:C.22(2023·全国·高三专题练习)设定点F1,0,动点M满足以MF为直径的圆与y轴相切,设动点M的轨迹为C ,则下列说法正确的是()A.轨迹C 的方程为y 2=4xB.动点M 到直线l 1:4x -3y +6=0和l 2:x =-2的距离之和的最小值为2C.长度为8的线段两端点在轨迹C 上滑动,中点到y 轴距离的最小值为4D.轨迹C 上一点P 处的切线与x 轴交于Q ,若PQ =FQ ,则切线斜率为3【答案】A【分析】先用直接法求出动点M 的轨迹方程,然后根据轨迹方程为抛物线找出焦点和准线,将BC 两选项中的问题用抛物线的定义进行转化可判断BC 的真假;D 答案需要联立方程设而不求的思想可判断.【详解】设M x ,y ,MF 中点Q x +12,y2,∵以MF 为直径的圆与y 轴相切∴x +12 =12x -12+y 2⇒y 2=4x ,A 正确.对于B ,MM +MM =MM +MP +1=MM +MF +1,MM +MF ≥F 到l 1的距离=2,∴MM +MM ≥3,B 错.对于C ,设AB 中点M ,AB =8,分别过A ,B 作l 2的垂线,垂足为A ,B ,∴MM=AA +BB 2=AF -1+BF -12=AF +BF -22≥AB -22=3∴中点到y 轴距离的最小值为3,C 错.对于D ,切线:x =my +n ,x =my +ny 2=4x消y 可得y 2-4my -4n =0,Δ=0,∴n =-m 2,y =2mx =m2 ,∴Q -m 2,0 ,P m 2,2m ,PQ =FQ ,∴4m 4+4m 2=1+m 2,∴m 2=13,m =±33,斜率±3,D 错.故选:A23(2022·重庆江北·校考一模)已知斐波那契数列a n 满足a 1=a 2=1,a n +2=a n +1+a n ,若a s ,a t 是数列a n 中的任意两项,a s -a t =m ,当m ≤2时,称数组a s ,a t 为数列a n 的“平缓数组”(a s ,a t 与a t ,a s 为相同的“平缓数组”),m 为数组a s ,a t 的组差.现从a n 的所有“平缓数组”中随机抽取3个,则这3个“平缓数组”的组差中至少有2个相等的取法种数为()A.24B.26C.29D.35【答案】B【分析】先根据“平缓数组”的定义,找出所有的“平缓数组”,然后再计算随机抽取三个“平缓数组”的组差中至少有2个相等的取法种数即可.【详解】由题意得a n +1≥a n ,a n +2-a n +1≥a n +1-a n ,a 1=a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,又a 6-a 5=3,所以当n ≥5时,a n +1-a i ≥3i =1,2,⋅⋅⋅,n ,所以a n 的所有“平缓数组”有a 1,a 2 ,a 1,a 3 ,a 1,a 4 ,a 2,a 3 ,a 2,a 4 ,a 3,a 4 ,a 4,a 5 ,共7个,其中组差为0的有1个为a 1,a 2 ,组差为1的有3个为a 1,a 3 ,a 2,a 3 ,a 3,a 4 ,组差为2的有3个为a 1,a 4 ,a 2,a 4 ,a 4,a 5 ,所以这3个“平缓数组”的组差中至少有2个相等的取法种数为2C 23C 14+2C 33=26,故选:B24(2022秋·上海浦东新·高三华师大二附中校考期中)十七世纪法国数学家费马提出猜想:“当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”.经历三百多年,于二十世纪九十年代中期由美国数学家安德鲁怀尔斯证明了费马猜想,使它终成为费马大定理根据前面叙述,则下列命题正确的个数为()(1)存在至少一组正整数组x ,y ,z 是关于x ,y ,z 的方程x 3+y 3=z 3的解;(2)关于x ,y 的方程x 3+y 3=1有正有理数解;(3)关于x ,y 的方程x 3+y 3=1没有正有理数解;(4)当整数n >3时关于x ,y ,z 的方程x n +y n =z n 有正实数解A.0 B.1 C.2 D.3【答案】C【分析】当整数n >2时方程没有正整数解,(1)错误,x z 3+y z3=1,没有正有理数解,(2)错误,(3)正确,当x =y =1,z =21n满足条件,(4)正确,得到答案.【详解】当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解,故方程x 3+y 3=z 3没有正整数解,(1)错误;x 3+y 3=z 3没有正整数解.即x z3+y z3=1,z ≠0 ,没有正有理数解,(2)错误,(3)正确;方程x n+y n=z n,当x =y =1,z =21n满足条件,故有正实数解,(4)正确.故选:C25(2022秋·北京·高三北京铁路二中校考期中)德国著名数学家、解析数论的创始人狄利克雷(1805年2月13日~1859年5月5日),对函数论、三角级数论等都有重要贡献,主要著作有《数论讲义》《定积分》等.狄利克雷函数就是以其名字命名的函数,其解析式为D x =1,x 为有理数,0,x 为无理数, 则下列关于狄利克雷函数D(x )的判断错误的是()A.对任意有理数t ,D (x +t )=D (x )B.对任意实数x ,D (D (x ))=1C.D (x )既不是奇函数也不是偶函数D.存在实数x ,y ,D (x +y )=D (x )+D (y )【答案】C【分析】根据狄利克雷函数的定义判断ABD ,结合奇偶性的定义判断C .【详解】对于A ,对任意有理数t ,当x 为有理数时,x +t 为有理数,则D (x +t )=1=D (x );当x 为无理数时,x +t 为无理数,则D (x +t )=0=D (x ),故A 正确;对于B ,若x 为有理数,则D (D (x ))=D (1)=1;若x 为无理数,则D (D (x ))=D (0)=1,故B 正确;对于C ,当x 为有理数时,则-x 为有理数,则D (-x )=1=D (x );当x 为无理数时,则-x 为无理数,则D (-x )=0=D (x ),于是对任意实数x ,都有D (-x )=D (x ),即狄利克雷函数为偶函数,故C 错误;对于D ,取x =2,y =3,因为2+3为无理数,所以D (2+3)=0=D (2)+D (3),故D 正确.故选:C .二、多选题26(2023春·吉林白山·高三统考期中)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类对数学的对称问题一直在思考和探索,图形中对称性的本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()A.函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”B.函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”C.函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”。

(复习指导)第4章新高考新题型微课堂4开放题命题热点之解三角形含解析

(复习指导)第4章新高考新题型微课堂4开放题命题热点之解三角形含解析

四 开放题命题热点之解三角形数学开放题是高考的一种新题型,此类问题的核心是培养学生的创造意识和创新能力,激发学生独立思考和创新的意识.开放题通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考.解三角形是开放性命题的热点之一.三角形中基本量的计算(2020·全国卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________?解:(方法一)由sin A =3sin B 可得ab =3, 不妨设a =3m ,b =m (m >0),则c 2=a 2+b 2-2ab cos C =3m 2+m 2-2×3m ×m ×32=m 2,即c =m ,所以b =c .选择条件①:据此可得ac =3m ×m =3m 2=3,所以m =1,此时a =3,b =c =1,三角形存在.选择条件②:据此可得cos A =b 2+c 2-a 22bc =m 2+m 2-3m 22m 2=-12,所以A =2π3. 则sin A =32,所以c sin A =m ×32=3,所以m =23,则b =c =23,a =6,三角形存在. 选择条件③:因为b =c ,与条件c =3b 矛盾,所以问题中的三角形不存在.(方法二)因为sin A =3sin B ,C =π6,B =π-(A +C ), 所以sin A =3sin(A +C ) =3sin ⎝ ⎛⎭⎪⎫A +π6=32sin A +32cos A ,所以sin A =-3cos A ,所以tan A =-3,所以A =2π3, 所以B =C =π6,所以b =c .若选①,ac =3,因为a =3b =3c ,所以3c 2=3, 所以c =1,即a =3,b =c =1,三角形存在;若选②,c sin A =3,则3c2=3,得c =23,即a =6,b =c =23,三角形存在;若选③,与条件c =3b 矛盾,三角形不存在.避免失误准确解题(1)应用正弦定理求角时容易出现增解或漏解的情况,要根据条件和三角形的限制条件合理取舍.(2)求角时易忽略角的范围而导致错误,需要根据大边对大角、大角对大边的规则,可以通过画图来帮助判断.(2020·德州一模)在条件①2cos A (b cos C +c cos B )=a ,②c sin B +C2=a sin C ,③(sin B -sin C )2=sin 2A -sin B sin C 中任选一个,补充到下面的问题中,并给出问题解答.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且a =7,b -c =2,________.求BC 边上的高. 解:若选条件①.由正弦定理得2cos A (sin B cos C +sin C cos B )=sin A =sin(B +C ), 即2cos A sin(B +C )=sin(B +C ),得cos A =12. 因为0<A <π,所以A =π3.由余弦定理得a 2=b 2+c 2-2bc cos A , 所以⎩⎨⎧b 2+c 2-bc =7,b -c =2,化简得c 2+2c -3=0,解得c =1或c =-3(舍),从而b =3. 设BC 边上的高为h ,所以12bc sin A =12ah , 解得h =32114. 若选条件②.由正弦定理得sin C sin B +C2=sin A sin C . 因为sin C ≠0,所以sin B +C2=sin A . 由A +B +C =180°, 可得sin B +C 2=cos A 2, 故cos A 2=2sin A 2cos A 2.因为cos A 2≠0,所以sin A 2=12,因此A =π3. 下同选条件①. 如选条件③.由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0<A <π,所以A =π3. 下同选条件①.与三角形的面积和周长有关的问题(2020·青岛三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin Acos A=sin B +sin C cos B +cos C. (1)若△ABC 还同时满足下列四个条件中的三个:①a =7,②b =10,③c =8,④△ABC 的面积S =103,请指出这三个条件,并说明理由;(2)若a =3,求△ABC 周长L 的取值范围. 解:因为sin A cos A =sin B +sin C cos B +cos C,所以sin A cos B +sin A cos C =cos A ·sin B +cos A sin C , 即sin A cos B -cos A sin B =sin C cos A -cos C sin A , 所以sin(A -B )=sin(C -A ). 因为A ,B ,C ∈(0,π),所以A -B =C -A ,即2A =B +C ,所以A =π3. (1)△ABC 还同时满足条件①③④. 理由如下:若△ABC 同时满足条件①②,由正弦定理得sin B =b sin A a =537>1,此时B 无解. 所以△ABC 不能同时满足条件①②, 所以△ABC 同时满足条件③④.所以S △ABC =12bc sin A =12×b ×8×32=103, 解得b =5与②矛盾,所以△ABC 还同时满足条件①③④.(2)在△ABC 中,由正弦定理得b sin B =c sin C =asin A =2 3. 因为C =2π3-B , 所以b =23sin B ,c =23sin ⎝ ⎛⎭⎪⎫2π3-B ,所以L =a +b +c=23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫2π3-B +3=6⎝ ⎛⎭⎪⎫32sin B +12cos B +3=6sin ⎝ ⎛⎭⎪⎫B +π6+3.因为B ∈⎝ ⎛⎭⎪⎫0,2π3,所以B +π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以sin ⎝ ⎛⎭⎪⎫B +π6∈⎝ ⎛⎦⎥⎤12,1.所以△ABC 周长L 的取值范围为(6,9].解答三角形的面积和周长有关问题的策略(1)利用三角恒等变换公式化简已知条件等式,并注意用正弦定理、余弦定理进行边角互化.(2)根据条件选择三角形面积公式或计算三角形的周长.(3)若求最值,注意根据条件利用均值不等式或三角函数的性质求最值.(2020·临沂高三期末)在①cos A =35,cos C =255,②c sin C =sin A +b sin B ,B =60°,③c =2,cos A =18三个条件中任选一个补充在下面的问题中,并加以解答.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,________,求△ABC 的面积S .解:若选①.因为cos A =35,cos C =255,A ,C ∈(0,π), 所以sin A =45,sin C =55,所以sin B=sin(A+C)=sin A cos C+cos A sin C=45×255+35×55=11525.由正弦定理得b=a sin Bsin A=3×1152545=33520,所以S=12ab sin C=12×3×33520×55=9940.若选②.因为c sin C=sin A+b sin B,所以由正弦定理得c2=a+b2. 因为a=3,所以b2=c2-3. 又因为B=60°,所以b2=c2+9-2×3×c×12=c2-3,解得c=4,所以S=12ac sin B=3 3.若选③.因为c=2,cos A=1 8,所以由余弦定理得18=b2+22-322b×2,即2b2-b-10=0,解得b=52或b=-2(舍去).因为A∈(0,π),所以sin A=1-cos2A=37 8,所以S=12bc sin A=12×52×2×378=15716.。

第1讲 函数的概念与性质(解析版)-2024高考数学常考题型

第1讲 函数的概念与性质(解析版)-2024高考数学常考题型

第1讲函数的概念与性质【考点分析】1.函数的定义域、值域、解析式是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单的基本方法.2.函数的单调性、奇偶性是高考命题热点,每年都会考一道选择或者填空题,分值5分,一般与指数,对数结合起来命题【题型目录】题型一:函数的定义域题型二:同一函数概念题型三:函数单调性的判断题型四:分段函数的单调性题型五:函数的单调性唯一性题型六:函数奇偶性的判断题型七:已知函数奇偶性,求参数题型八:已知函数奇偶性,求函数值题型九:利用奇偶性求函数解析式题型十:给出函数性质,写函数解析式题型十一:()=x f 奇函数+常数模型(()()常数⨯=+-2x f x f )题型十二:中值定理(求函数最大值最小值和问题,()()()中f x f x f 2min max =+,中指定义域的中间值)题型十三:.单调性和奇偶性综合求不等式范围问题题型十四:值域包含性问题题型十五:函数性质综合运用多选题【典型例题】题型一:函数的定义域【例1】(2021·奉新县第一中学高一月考)函数()f x =的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4答案:C解析:对于函数()f x =,有1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 1f x -=的定义域为()1,4.故选:C.【例2】函数()21log (3)f x x =-的定义域为【答案】()()3,44,⋃+∞【详解】由题意知()230log 30x x ->⎧⎨-≠⎩,得()223log 3log 1x x >⎧⎨-≠⎩,所以331x x >⎧⎨-≠⎩,所以()()3,44,x ∈⋃+∞.【例3】(2020·集宁期中)已知函数)32(-x f 的定义域是]41[,-,则函数)21(x f -的定义域()A .]12[,-B .]21[,C .]32[,-D .]31[,-【答案】C【详解】因为函数)32(-x f 的定义域是]41[,-,所以41≤≤-x ,所以5325≤-≤-x ,函数)(x f 的定义域为]55[,-,令5215≤-≤-x ,解得32≤≤-x 【例4】若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

2024年高考数学复习大题全题型专练:专题02 裂项相消求和(解析版)

2024年高考数学复习大题全题型专练:专题02 裂项相消求和(解析版)

专题2裂项相消求和1.(2022·湖北·大冶市第一中学模拟预测)已知数列 n a 的前n 项和为n S ,111a ,29a ,且 11222n n n S S S n .(1)求数列 n a 的通项公式;(2)已知11n n n b a a,求数列 n b 的前n 项和n T .【答案】(1)213n a n (2)12122n n【解析】【分析】(1)根据1n n n a S S 以及 11222n n n S S S n 可得该数列是等差数列,然后根据等差数列的1a 、d 写出数列的通项公式即可.(2)有题意可知1213211n b n n,然后根据裂项求和即可求得n T .(1)由题意得:由题意知 112n n n n S S S S ,则 122n n a a n 又212a a ,所以 n a 是公差为2的等差数列,则 11213n a a n d n ;(2)由题知11112132112213211n b n n n n则1111111111211997213211211211n T n n n 12122n n2.(2022·青海·海东市第一中学模拟预测(文))已知正项数列 n a 满足2123232n a a a na n n ,且 211nn n n a b n n.(1)求数列 n a 的通项公式;(2)求数列 n b 的前n 项和n S .【答案】(1)21n n a n(2)(3)21n n n nS n【解析】【分析】(1)根据2123232n a a a na n n ,即可得到2123123(1)(1)2(1)n a a a n a n n (2n ),两式作差即可得解;(2)依题意可得1111n b n n n,利用分组求和及裂项相消法求和即可;(1)解:因为2123232n a a a na n n ,①当2n 时,2123123(1)(1)2(1)n a a a n a n n .②① ②得21n na n ,所以21n n a n.当1n 时,13a ,也满足上式,所以21n n a n.(2)解:因为(2)(1)1n n a n n b n n,则221211111111(1)(1)1n n a n b n n n n n n n n n n n n n,则11111(3)2311223121n n n n S n n n n.3.(2022·山东·德州市教育科学研究院三模)已知数列 n a 的前n 项和为n S ,13a ,*112n n S n a n N .(1)求数列 n a 的通项公式n a 和前n 项和n S ;(2)设*22111k k k b k S SN ,数列 n b 的前n 项和记为n T ,证明:*16n T n N .【答案】(1)3,21,N 1,2n n k a k n k,2,21,N ,2n n n k S k n n k(2)证明见解析【解析】【分析】(1)根据11n n n S S a 代入整理得12n n a a ,结合13a 理解处理;(2)代入整理得11122123n b n n,利用裂项相消进行求和.(1)由 112n n S n a,得*111(1)12n n S n a n N 两式相减可得12n n a a ,因为13a ,得21a 数列 n a 为3,1 ,3,1 ,3,1 ,3,即3,21,N 1,2n n k a k n k,当n 为偶数时,[3(1)]2n nS n ;当n 为奇数时,1[3(1)]322n n S n;2,21,N ,2n n n k S k n n k(2)由*22111k k k b k S S N 则有 221111111(21)(23)22123n n n b S S n n n n所以1111111235572123n T n n,111123236n n T4.(2022·河南·平顶山市第一高级中学模拟预测(文))已知数列 n a 的前n 项和为n S ,且 222n n S n a .(1)求数列 n a 的通项公式;(2)若数列21n a的前n 项和为n T ,求证:23n T .【答案】(1)*1n a n n N(2)证明见解析【解析】【分析】(1)先根据 222n n S n a 和an =Sn -Sn -1(n ≥2),推出数列{an }的递推公式,再求an .(2)根据21n a的通项公式的结构形式,结合裂项求和法进行适当放缩,再求和,即可证得结果.(1)当1n 时, 112122S a ,即12a .当2n 时, 222n n S n a ①,111212212n n n S n a n a ②,由①-②,得 1221n n n a n a n a ,即 11n n na n a .所以11n n a a n n ,且112a ,所以数列1n a n为常数列,所以11n a n ,即*1n a n n N .(2)证明:由(1)得*1n a n n N ,所以 22221144411221232123141411n a n n n n n n n,所以2222111111111111222223435577921231n T n n n111111111122235577921233233n n n.5.(2022·辽宁·渤海大学附属高级中学模拟预测)等比数列 n a 中,首项11a ,前n 项和为n S ,且满足 1344a a S .(1)求数列 n a 的通项公式;(2)若31(1)log n n b n a ,求数列242n n b的前n 项和n T .【答案】(1)13n (2)222(1)n【解析】【分析】(1)根据等比数列求解公比即可;(2)根据题意得22242112(1)n n b n n,再裂项求和即可.(1)设数列 n a 公比为q ,由11a , 1344a a S ,可得32330q q q ,化简得2130q q ,即3q ,所以13 n n a .(2)由(1)得3(1)log 3(1)n n b n n n ,所以222224242112(1)(1)n n n b n n n n所以22222111112122223(1)n T n n22222211111221222311n n n..6.(2022·江苏无锡·模拟预测)已知数列{}n a 满足:12(1),=,2n n a n n a n n为奇数为偶数*()N n (1)求1a 、3a 、5a ;(2)将数列{}n a 中下标为奇数的项依次取出,构成新数列{}m b ()m *N ,①证明:m b m是等差数列;②设数列+11m b的前m 项和为m S ,求证:12m S .【答案】(1)10a ;34a ;512a (2)①证明见解析;②证明见解析【解析】【分析】(1)根据12(1),=,2n n a n n a n n为奇数为偶数求解;(2)①利用等差数列的定义证明;②利用裂项相消法求解.(1)由题意知:21222202a a ,23444442a a ,256666122a a ;(2)①当n 为奇数时,n +1为偶数,221111122n n n n a a n n,221211212m m m b a m m,2122m m m b m m m,当2m 时,1(22)[2(1)2]21m m b bm m m m ,m b m是以11011b a 为首项,2为公差的等差数列.②由①知12(1)(N )m b m m m,111111(2(1)21m b m m m m,11111111[(1)()((1)2223121m S m m m ,11122(1)2m .7.(2022·河南·模拟预测(文))已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a ,求数列{bn }的前n 项和为Tn .【答案】(1)3n n a (2)1114343n T n【解析】【分析】(1)根据题干中的已知条件可得当1n 时,13a ,当2n 时,13nna ,即可求解数列 n a 的通项公式;(2)代入3n n a 化简数列 nb ,利用裂项相消法即可求解数列 n b 的前n 项和n T .(1)解:∵312233333n n a a a a n ,∴当1n 时,13a ,当2n 时,3-11223-113333n n a a a a n ,从而有13n na ,即当2n 时,3nna ,又13a 满足上式,故数列 n a 的通项公式为3n n a .(2)解:由题可知, 414334134333111=log log log 3log 34143n n n n n b a a n n ,所以1111=414344143n b n n n n,111111111437471144143n T n n,所以1114343n T n.8.(2022·青海·海东市第一中学模拟预测(理))设数列 n a 的前n 项和为n S ,24n n S a n .(1)证明:数列 1n a 是等比数列.(2)若数列12n n n a a的前m 项和170513m T,求m 的值.【答案】(1)证明见解析(2)8【解析】【分析】(1)根据n S 与n a 的关系式化简证明;(2)由(1)得数列 n a 的通项公式为21nn a .所以112112121n n n n n a a ,继而求和计算.(1)当1n 时,1123a a ,13a .当2n 时, 11214n n S a n ,两式相减得121n n a a ,即 1121n n a a ,112a ,则数列 1n a 是首项为2,公比为2的等比数列.(2)由(1)得12n n a ,21n n a ,当1n 时,1213a ,数列 n a 的通项公式为21n n a .111221121212121n n n n n n n n a a ,11111111111135599172121321m m m m T ,令111170321513m ,得121513m ,解得8m .9.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列 n a 的前n 项和,12a ,且*121n n S S n N .(1)求数列 n a 的通项公式;(2)若*221log n n b a n N ,求数列11n n b b的前n 项和n T .【答案】(1)2n n a (2)n T 21nn【解析】【分析】(1)由 121n n S S ,利用数列通项和前n 项和的关系结合等比数列的定义求解;(2)由(1)得到111(21)(21)n n b b n n 11122121n n,再利用裂项相消法求解.(1)解:因为 121n n S S ①,*n N ,当2n 时, 121n n S S ②,由①②可得 112121n n n n S S S S ,即12(2)n n a a n .1n 时,122a a S 112222S a ,又12a ,所以24a ,所以*12n n a a n N ,所以12n na a ,所以数列 n a 是等比数列,且首项为2,公比为2.所以2n n a .(2)由(1)知221log 21n n b a n ,所以111(21)(21)n n b b n n 11122121n n,所以12233411111n n n T b b b b b b b b ,1111111112335572121n n,111221n ,21n n .10.(2022·重庆·模拟预测)已知数列 n a 的前n 项和为Sn ,111a ,29a =-,且11222n n n S S S n ()(1)求数列{an }的通项公式;(2)设11n n n b a a,数列{bn }的前n 项和为Tn ,求使得Tn >0的n 的最大值.【答案】(1)an =2n ﹣13(2)5【解析】【分析】(1)消去Sn 得到an +1﹣an =2,即可判断出{an }是公差为2的等差数列,求出通项公式;(2)利用裂项相消法求出111211211n T n,列不等式即可求解.(1)由题意知(Sn +1﹣Sn )﹣(Sn ﹣Sn ﹣1)=2,解得an +1﹣an =2(n ≥2),又a 2﹣a 1=2,所以{an }是公差为2的等差数列,则an =a 1+(n ﹣1)d =2n ﹣13;(2)由题知1111((213)(211)2213211n b n n n n,则121111111211997213211111211211111211211n nT b b b n n n n由0n T 得11201121111(211)n n n ,解得1102n ,所以n 的最大值为5.11.(2022·广东·模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若 311log 3log 33n n n c S S,求 n c 的前n 项和n T ,并证明:1126n T .【答案】(1)21263 S ,12312633 S ,133n n S (2)1122n T n ,证明见解析【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S ,217611512181263S ,2123187136171116512185412636312633S ,41981572013196231728112716215S 1218541622312636363 123126333 ,…12311263333(1)n n S n ,由等比数列的前n 项和公式可得, 113131263313n n n S ,所以 n S 的通项公式133n n S .(2)由于133n n S ,所以 33111111log 3log 31221n n n c S S n n n n,则1111111132432122n T n n n,因为n N ,所以102n ,所以111222n ,又n T 随n 的增大而减小,所以当1n 时,n T 取得最大值16,故1126n T .12.(2022·四川·绵阳中学实验学校模拟预测(文))已知n S 是数列 n a 的前n 项和,且21n S n n .(1)求 n a 的通项公式.(2)若11n n n b a a,n T 是 n b 的前n 项和,求5T .【答案】(1)3,12,2n n a n n(2)16【解析】【分析】(1)由1(2)n n n a S S n 求通项公式,注意11a S ;(2)从第2项向后用裂项相消法求和.(1)2n 时,2211(1)(1)12n n n a S S n n n n n ,113a S ,所以3,12,2n n a n n ;(2)2n 时,1111()4(1)41n b n n n n,1121113412b a a ,所以11111111[()()(12423341n T n n11128(1)n n ,所以514112866T .13.(2022·江苏·扬州中学模拟预测)已知正项递增的等比数列 n a 满足1330a a ,29a .(1)求 n a 的通项公式;(2)设12311nn n n b a a , n b 的前n 项和为n T ,求n T .【答案】(1)3nn a (2)111431n n T 【解析】【分析】(1)根据已知条件及等比数列通项公式即可求解;(2)根据(1)知3n n a ,得出数列n b ,利用裂项相消法即可求解.(1)设等比数列 n a 的公比为q ,则因为数列 n a 为正项递增等比数列,所以1q ,又1330a a ∵,29a ,∴ 2111309a q a q ,解得133a q ,或12713a q(舍);所以等比数列 n a 的通项公式为111333n n n n a a q .(2)由(1)知3n n a ,所以 1112323111131313131n n n n n n n n n b a a ,所以122231111111313131313131n n n n T b b b111431n .所以 n b 的前n 项和为111431n .14.(2022·天津市滨海新区塘沽第一中学三模)已知数列 n a , n b ,已知对于任意*n N ,都有1n n a ,数列{}n b 是等差数列,11b ,且25b ,41b ,63b 成等比数列.(1)求数列 n a 和 n b 的通项公式;(2)记 *2,21,2n n n a n k c k N b n k .(ⅰ)求13213212log log n i i i c c ;(ⅱ)求211nk k k cc .【答案】(1)3n n a ;21n b n (2)(ⅰ)1121n ;(ⅱ)175402591648n n【解析】【分析】(1)利用等差数列的通项公式及等比中项的性质即可求解;(2)(ⅰ)利用裂项相消法求和即可,(ⅱ)将相邻两项合并成一项,再利用错位相减法求和即可.(1)设数列 n b 的公差为d ,∵25b ,41b ,63b 成等比数列,且11b ,∴ 2426153b b b ,即 223625d d d ,解得2d ,则 12121n b n n ,即13n n n n a ,(2)(ⅰ)由(1)可知,*3,211,2n n n k c k N n n k ,则335212113213213333332222=log log log 3log 3log 3log 3log 3log 3nn n i i i c c 22213352121n n 1111113352121n n1121n ;(ⅱ)由题意,对*n N ,21221212121211222213310213n n n n n n n n n n c c c c n n c c c 102193n n ,设219n n 的前n 项为 n R ,所以 2939219n n R n ,则 2319939219n n R n ,则 212311998929992199221919n n n n n R n n 14558944n n ,所以1458593232n n n R,即211110754025931648nn k k n k n c c R.15.(2022·浙江省杭州学军中学模拟预测)已知数列 n a 的前n 项和为n S ,114a ,且2*1,21n n n S a n n N .(1)求2a 的值,并证明:数列21n a n是一个常数列;(2)设数列 n b满足n bn b 的前n 项和为n T,若2 k T ,求正整数k 的值.【答案】(1)234a,证明见解析.(2)1,2,3k .【解析】【分析】(1)利用1n n n a S S 得到n a 与1n a 的关系,构造数列21n a n即可.(2)先求出n S ,得到8(1)n b n n,裂项求和得到n T ,代入解不等式.(1)当1n 时,1213S a 得:234a .当2n 时,21(1)21 n n n S a n ,则221(1)2121n n n n n a a a n n ,得121212134n n a a a n n ,又1114a 符合上式,即数列21n a n是一个常数列.(2)由(1)可知:2121,44 n n n n a S ,即8118(1)1n b n n n n .12188111k k k T b b b k k ,则8(1)21 k k T k k ,得:13k .即1,2,3k .16.(2022·江苏·南京市江宁高级中学模拟预测)已知数列{}n a 满足11a ,1|121|n n n a a a ,*n N .(1)求4a 的值并求数列{}n a 的通项公式;(2)若333432log log ...log n n b a a a ,求数列1{}nb 的前n 项和.【答案】(1)49a ,21,13,2n n n n a ;(2)21n n .【解析】【分析】(1)根据已知条件及数列的递推公式,取项数n 可得出数列的各项,再利用等比数列的通项公式即可求解;(2)根据对数的运算性质,再利用裂项相消法即可求解.(1)因为1|121|n n n a a a ,又11a ,所以2111211a a a -++,3221213a a a -++,4331219a a a -++.当2n 时,12211n n a a a ,所以1n a ,从而11211213n n n n n n a a a a a a +-,所以数列{}n a 是以首项为21a ,公比为3的等比数列,于是有 221332n n n a n ,又因为11a ,不满足上式,所以数列{}n a 的通项公式为21,13,2n n n n a .(2)由(1)知, 221332n n n a n ,334323lo l 1og g 2n n b a a a n +++l og +=(1)2n n ,故1n b =22n n =1121n n.所以121111112212211113n n b n b b n n 所以数列1n b的前n 项和为21n n .17.(2022·全国·高考真题)记n S 为数列 n a 的前n 项和,已知11,n n S a a 是公差为13的等差数列.(1)求 n a 的通项公式;(2)证明:121112na a a .【答案】(1) 12n n n a(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得 121133n n S n n a ,得到 23n n n a S ,利用和与项的关系得到当2n 时, 112133n n n n n n a n a a S S ,进而得:111n n a n a n ,利用累乘法求得 12n n n a ,检验对于1n 也成立,得到 n a 的通项公式 12n n n a ;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n,进而证得.(1)∵11a ,∴111S a ,∴111S a ,又∵n n S a 是公差为13的等差数列,∴ 121133n n S n n a ,∴ 23n n n a S ,∴当2n 时, 1113n n n a S,∴ 112133n n n n n n a n a a S S ,整理得: 111n n n a n a ,即111n n a n a n ,∴31211221n n n n n a a a a a a a a a a1341123212n n n n n n ,显然对于1n 也成立,∴ n a 的通项公式 12n n n a;(2)12112,11n a n n n n ∴12111n a a a 1111112121222311n n n18.(2022·天津·耀华中学二模)已知 n a 为等差数列,前n 项和为n S , *n N , n b 是首项为2的等比数列,且公比大于0,2312b b ,335b a a ,6112b S .(1)求 n a 和 n b 的通项公式;(2)设10c ,11ln 1n n c c n,*n N ,求n c ;(3)设1113,21ln ,2n n n n n nc n k bd a a n k b ,其中*k N .求 n d 的前2n 项和2n T .【答案】(1)n a n ,2n n b ;(2)ln n c n ;(3)ln(21)4nn .【解析】【分析】(1)根据等差数列的通项公式、前n 项和公式,结合等比数列的通项公式进行求解即可;(2)运用累和法,结合对数的运算性质进行求解即可;(3)根据(1)(2)的结论,结合裂项相消法进行求解即可.(1)设等差数列的公差为d ,等比数列的公比为(0)q q ,由2231222122b b q q q ,或3q 舍去,所以1222n n n b ;35413428434a a b a d a a ,6111121111102642b S a d ,解得:11a d ,即1(1)1n a n n ,所以有n a n ,2n n b ;(2)因为111ln 1ln n n n c c n n,所以当*2,n n N 时,有112211()()()n n n n n c c c c c c c c 12(1)2ln ln ln ln ln 121(1)(2)1n n n n n n n n n ,显然当1n 时也适合,即ln n c n ;(3)由(1)(2)可知:n a n ,2n n b ,ln n c n .当21n k ,*k N 时,2123ln(21)2k k k d,当2n k ,*k N 时,2221ln 212k k k k d ,122221ln 3ln(21)4ln(21)ln(21)21224k k k k k k k k k k d d,21234ln1ln 34ln 3ln 54ln 5ln 74ln(21)ln(21)4444n n n n T112231ln 3ln 3ln 5ln 54ln 7ln(21)ln(21)04444444n n n nln(21)4nn .【点睛】关键点睛:运用裂项相消法是解题的关键.19.(2022·湖北省仙桃中学模拟预测)已知数列{}n a 为等比数列,且6431316,32a a a a (1)求{}n a 的通项公式;(2)若(1)(1)n n n a b n n ,{}n b 的前n 项和为n T ,求满足8n T 的最小正整数n 【答案】(1)2nn a (2)5(1)列方程组求得等比数列{}n a 首项、公比,进而求得其通项公式;(2)先化简{}n b 的通项公式,利用裂项相消法求得{}n b 的前n 项和为n T ,再解8n T ,即可求得满足不等式的最小正整数n .(1)设等比数列{}n a 首项为1a ,公比为q ,则531121131632a q a q a q a ,解之得122a q ,则等比数列{}n a 的通项公式2nn a (2)由2nn a ,可得1(1)2121222(1)111n n n n n n n a b a n n n n n n n n 则{}n b 的前n 项和232435411222222222222232435411n n n n T n n n由12281n n T n ,可得1210100n n 令 1()210101N x f x x x x ,,则1()2ln 2101N x f x x x ,由1()2ln 2100x f x ,可得210log 1 2.85ln 2x由1()2ln 2100x f x ,可得210log 1 2.85ln 2x则有()f x 在 1,2.85单调递减,在 2.85, 单调递增又2(1)21010160f ,5(4)24010180f ,6(5)2501040f 则0(1)(2)f f ,(3)(4)0(5)()f f f f n 即由不等式1210100n n ,可得5,Nn n 则满足8n T 的最小正整数为520.(2022·全国·高考真题)已知函数()e e ax x f x x .(1)当1a 时,讨论()f x 的单调性;(2)当0x 时,()1f x ,求a 的取值范围;(3)设n Nln(1)n .【答案】(1) f x 的减区间为 ,0 ,增区间为 0, .(2)12a【分析】(1)求出()f x ¢,讨论其符号后可得 f x 的单调性.(2)设 e e 1ax x h x x ,求出 h x ,先讨论12a 时题设中的不等式不成立,再就102a 结合放缩法讨论 h x 符号,最后就0a 结合放缩法讨论 h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt 对任意的1t 恒成立,从而可得 ln 1ln n n*n N 恒成立,结合裂项相消法可证题设中的不等式.(1)当1a 时, 1e x f x x ,则 e x f x x ,当0x 时,()0f x ¢<,当0x 时,()0f x ¢>,故 f x 的减区间为 ,0 ,增区间为 0, .(2)设 e e 1ax x h x x ,则 00h ,又 1e e ax x h x ax ,设 1e e ax x g x ax ,则22e e ax x g x a a x ,若12a ,则 0210g a ,因为 g x 为连续不间断函数,故存在 00,x ,使得 00,x x ,总有()0g x ¢>,故 g x 在 00,x 为增函数,故 00g x g ,故 h x 在 00,x 为增函数,故 01h x h ,与题设矛盾.若102a ,则 ln 11e e e e ax ax ax x x h x ax ,下证:对任意0x ,总有 ln 1x x 成立,证明:设 ln 1S x x x ,故 11011x S x x x,故 S x 在 0, 上为减函数,故 00S x S 即 ln 1x x 成立.由上述不等式有 ln 12e e e e e e 0ax ax x ax ax x ax x ,故 0h x 总成立,即 h x 在 0, 上为减函数,所以 01h x h .当0a 时,有 e e e 1100ax x ax h x ax ,所以 h x 在 0, 上为减函数,所以 01h x h .综上,12a.(3)取12a ,则0x ,总有12e e 10x x x 成立,令12e x t ,则21,e ,2ln x t t x t ,故22ln 1t t t 即12ln t t t 对任意的1t 恒成立.所以对任意的*n N ,有 整理得到:ln 1ln n nln 2ln1ln 3ln 2ln 1ln n n ln 1n ,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。

题型专练04-新高考开放性试题(解析版)

题型专练04-新高考开放性试题(解析版)
1
C.此人第二天走的路程占全程的
4
D.此人走的前三天路程之和是后三天路程之和的 8 倍
【答案】ABD
【解析】设此人第
n
天走
an
里路,则 {an } 是首项为
a1 ,公比为
q
1 2
的等比数列,由 S6 =378
求得首项,然后逐一分析四个选项得答案
根据题意此人每天行走的路程成等比数列,
设此人第
n
天走
an
都相等,且它们彼此的夹角都是 60°,下列说法中正确的是( )
2 2
A. AA1 AB AD 2 AC
C.向量 B1C 与 AA1 的夹角是 60°
B. AC1 AB AD 0
D. BD1 与 AC 所成角的余弦值为
6 3
【答案】AB 【解析】直接用空间向量的基本定理,向量的运算对每一个选项进行逐一判断.
2.已知 A、B 两点的坐标分别是 (1, 0), (1, 0) ,直线 AP、BP 相交于点 P,且两直线的斜率之积为 m,
则下列结论正确的是( )
A.当 m 1时,点 P 的轨迹圆(除去与 x 轴的交点)
B.当 1 m 0 时,点 P 的轨迹为焦点在 x 轴上的椭圆(除去与 x 轴的交点)
而2
AC
2
2
AB AD
2
2
A2 11 2
1 2
2
3
6

所以 A 正确.
AC1 AB AD AA1 AB AD AB AD
AA1
AB
AA1
AD
2 AB
AB
AD
AD
AB
2 AD
=0,所以 B 正确.
向量 B1C A1D ,

热点04 1语法填空(全篇有提示词) 专练(新高考专用)(教师版)

热点04 1语法填空(全篇有提示词) 专练(新高考专用)(教师版)

04-1热点语法填空(全篇有提示词) 专练(新高考专用)从本系列专题《重难点04语法填空之题型剖析》中对三年(2020-2022)新高考卷语法填空题考情统计看:语法填空的选裁要么是说明文,要么就是记叙文;有提示词与无提示词占比一般为7:3,不过2022年新高考I卷为6:4,2023年高考是否维持6:4的比例或回归7:3的比例,笔者以为维持6:4的可能性最大。

1.提示词为动词:考查谓语动词的时态、语态和主谓一致;考查非谓语动词(不定式、-ing<又叫做动名词或现在分词>与过去分词)。

考查动词转换成名词(包括其复数形式)或者转换成形容词;另外特别要注意:由动词的-ing和过去分词转化而来的形容词。

2.提示词为名词:考查可数名词的复数、名词的所有格、名词转换为动词或形容词;3.提示词为形(副)词:考查形容词和副词间相互转换(多为形容词转换成副词),以及其比较级或最高级;4.提示词为代词:考查其宾格、名词性或形容词性物主代词以及反身代词。

此外,还有提示词为数词的:考查转换成序数词。

1.判别词性判别所给提示词的词性,为分析考向奠基,这也是解题所需要的最基本的要求;2.分析考向根据所给提示词的词性,借助《重难点04语法填空之题型剖析》中所介绍的有提示词考查热点解读内容分析命题的意图,即考向,以确保解题方向和方法的正确性;3.确定词形结合语境,借助语法、词法和句法确定答案的正确词形。

【经典考例】(改编自2022·新高考I卷)The Chinese government recently finalized a plan to set up a Giant Panda National Park(GPNP). ___56___(cover)an area about three times the size of Yellowstone National Park, the GPNP will be one of the ___57___(one)national parks in the country. The plan will extend protection to a significant number of areas that ___58___ (be)previously unprotected,bringing many of the existing protected areas for giant pandas under one authority ___59___(increase)effectiveness and reduce inconsistencies in management.After a three-year pilot period, the GPNP will be ___60___(official)set up next year. The GPNP___61___(design)to reflect the guiding principle of “protecting the authenticity and integrity(完整性)of natural ecosystems, preserving biological diversity, protecting ecological buffer zones, and leaving behind precious natural assets(资产)for future generations”. The GPNP’s main goal is to improve connectivity between separate ___63___(population)and homes of giant pandas, and ___64___(eventual)achieve a desired level of population in the wild.Giant pandas also serve as an umbrella species(物种), ___64___(bring)protection to a host of plants and animals in the southwestern and northwestern parts of China. The GPNP is intended to provide stronger protection for all the species that live within the Giant Panda Range and ___65___(significant)improve the health of the ecosystem in the area.【语篇导读】中国计划设立大熊猫国家公园,以维护生态系统完整性和原真性,探索生态文明建设新模式,实现人与自然的和谐共生。

高考数学复习热点01 多选题、多空题、多条件解答题(解析版)-2021年高考数学专练(新高考)

高考数学复习热点01   多选题、多空题、多条件解答题(解析版)-2021年高考数学专练(新高考)

热点01 多选题、多空题、多条件解答题【命题形式】1、新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

2、新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度。

3、选择题部分与之前的一大区别就是强化了对不等式的考察。

新高考解答题中删除了对不等式选讲的考察,因此在选择题之中,不等式的考察有所强化。

4、填空题,会对多空题(有一个空变成了两个空)加大考察力度,难度加大,但所占的分值比重与全国卷的相当。

5、解答题与之前相比,新高考数学试卷删除了选考题(坐标系与参数方程与不等式选讲)的题目,数列与三角函数由原来的每年二选一考试,变成了均为必考题,凸显了对于主干知识的重视,6、解答题与之前相比,出现了新题型,从三个条件中选一个条件作答,体现了高考试卷的灵活性,同时也给考生以选择的余地,有利于考生选择一个自己擅长的条件参与作答,在一定程度上有利于增加得分率。

【满分技巧】1、掌握规则多项选择题由1个题干和4个备选项组成,备选项中至少有2个正确选项,所选正确答案将是2个、3个或4个。

因此,在做多项选择题时应该注意,如果应考者所选答案中有错误选项,该题得零分;如果全部选对得5分,如果所选答案中没有错误选项,但是正确选项未全部选出,则得3分。

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

第04讲 基本不等式高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)

第04讲  基本不等式高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)

G ( x )万元,且 G ( x )=
2 + 120,0 < ≤ 50,
4 900
201+

− 2 100,50 < ≤ 100,
200万元,且全年内生产的该产品当年能全部销售完.
每台该产品的售价为
(1)写出年利润 W ( x )(单位:万元)关于年产量 x (单位:台)的函数解析式(利润=销售
2.几个重要的不等式

2ab
1a2+b2≥______a,b∈R;

b a

2
2a+b≥___a,b同号且不为零;

当且仅当a=b

2

a+b


3ab≤
时等号成立
a,b∈R;

2

2
2

2

a +b
a+b



4
a,b∈R.

2

2
(2)[2024宁夏银川模拟]已知0< x <4,则 (4 − ) 的最大值为 2
[解析] 0< x <4,则0<4- x <4,由基本不等式可得 (4
.

+4−
− ) ≤
=2,
2
当且仅当 x =4- x ,即 x =2时,等号成立.故 (4 − ) 的最大值为2.
角度2 常数代换法
−4
8
−4
>0,因为 a >0,所以 a >4,所以8 a + b =8 a
+5]≥8×(2 4 +5)=72,当且仅当 a =6时取等号.故选C.
8

4

8

4

解法二 ∵8 a +4 b = ab , a >0, b >0,∴ + =1,∴8 a + b =(8 a + b )( + ) =

三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版

三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版

三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。

2020 新高考 数学 开放性试题题型专练(解析版110页)

2020 新高考 数学 开放性试题题型专练(解析版110页)

{ } (2)在(1)的条件下,当 k =
2
时,设 anbn
=
2n+1 4n2 −1
,求数列
bn
的前 n 项和 Tn .
【解析】(1)①③不能使{an} 成等比数列.②可以:由题意 f (an ) = 4 + (n −1) × 2 = 2n + 2 ,
即 logk
an
= 2n + 2 ,得 an
= k 2n+2 ,且 a1
为椭圆,则 e = 1 = 3 ;当 a = −3 时,曲线为 y2 − x2 = 1,曲线为双曲线, e = 5 = 10 ,
33
23
22
则离心率为: 3 或 10 .故选:BC. 32
3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,
其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{an } 称 为“斐波那契数列”,记 Sn 为数列{an } 的前 n 项和,则下列结论正确的是
1 读万卷书 行万里路
2.已知三个数1, a, 9 成等比数列,则圆锥曲线 x2 + y2 = 1 的离心率为 a2
旗开得胜
A. 5
B. 3 3
C. 10 2
D. 3
【答案】BC
【解析】由等比数列的性质求出 a ,再判断曲线类型,进而求出离心率
由三个数 1, a, 9 成等比数列,得 a2 = 9 ,即 a = ±3 ;当 a = 3 ,圆锥曲线为 x2 + y2 = 1,曲线 32
(1)在下列条件中选择一个________使数列{an} 是等比数列,说明理由;
{ } ①数列 f (an ) 是首项为 2,公比为 2 的等比数列;

高考数学新题型训练-开放型题型

高考数学新题型训练-开放型题型

高考数学新题型训练-开放型题型1.已知等比数列{}n a 满足25320a a +=,则数列{}n a 的通项公式可能是n a =_________.(写出满足条件的一个通项公式即可)2.若周期为2的函数()y f x =,在其定义域内是偶函数,则函数()y f x =的一个解析式为()f x =________.3.满足直线l :0x y m ++=与圆C :222x y +=有公共点的一个整数m =______.4.写出一个与1130-︒终边相同的正角:α=______.(用弧度数表示)5.写出一个满足下列两个条件的复数:z =______.①2z 的实部为5;②z 的虚部不为0.6.请写出一个模长为2的虚数:z =______.7.能说明“若()()2f x f ≤对任意的[]0,2x ∈都成立,则()f x 在[]0,2上单调递增”为假命题的一个函数是_________.8.若抛物线C :22y px =存在以点()3,3为中点的弦,请写出一个满足条件的抛物线方程为_______.9.已知[]3π,3πα∈-,且πcos 62α⎛⎫-= ⎪⎝⎭α的值:_________.10.写出一个同时满足下列条件①②的等比数列{n a }的通项公式n a =___.①10n n a a +<;②1n n a a +>11.若nx⎛+ ⎝的展开式中含有常数项,则正整数n 的一个取值为_________.12.写出一个满足下列条件的正弦型函数,()f x =____________.①最小正周期为π;②()f x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增;③,()2x f x ∀∈≤R 成立.13.已知函数()()23(2)f x a x x =--,当2x =时,()f x 有极小值,则满足条件的一个a的值为__________.14.写出一个11x>的充分条件________.15.已知函数()sin()(02π)f x x ϕϕ=+≤<.若()f x 在区间π,π3⎡⎤⎢⎥⎣⎦上单调递减,则ϕ的一个取值可以为_________.16.写出使“不等式2x x a a -<对一切实数x 都成立”的a 的一个取值______.17.请写出一个幂函数()f x ,满足:0x ∀≥,()()()1f x f x f x =-<+.此函数可以是()f x =______.18.已知()01311(1)22nn n x a a x a x ⎛⎫+=+++++ ⎪⎝⎭,写出满足条件①②的一个n 的值__________.①*3,n n ≥∈N ;②3,0,1,2,,i a a i n ≥= .19.写出一条与圆221x y +=和曲线25y x =+都相切的直线的方程:___________.20.已知()0,0O ,()1,2A ,()3,1B -,若向量m OA∥,且m 与OB 的夹角为钝角,写出一个满足条件的m的坐标为______.21.如图,圆1C 和圆2C 的圆心分别为()12,3C 、()24,3C ,半径都为1,写出一条与圆1C 和圆2C 都相切的直线的方程:_________22.若曲线||y x a =-上恰有四个不同的点(1,2,3,4)i A i =到直线14x =-及点1,04D ⎛⎫ ⎪⎝⎭的距离都相等,则实数a 的一个值可以是______.23.已知点()3,4P ,直线l 与圆:2225x y +=交于AB 两点,若PAB 为等腰直角三角形,则直线l 的方程为______.(写出一条即可)24.写出过点()2,0且被圆224240x x y y -+-+=的一条直线的方程___________.25.写出过抛物线24y x =上的点()1,P t 且与圆()2221x y -+=相切的一条..直线的方程________.26.写出一个使等式)tan10cos 1α︒=成立的角α的值为___________.27.若定义在R 上的函数()f x 满足:,x y ∀∈R ,()()()()2f x y f x y f x f y ++-=,且()01f =,则满足上述条件的函数()f x 可以为___________.(写出一个即可)28.写出同时满足下面两个条件的数列{n a }的一个通项公式n a =________.①{n a }是递减数列;②对任意m ,*n ∈N ,都有n n m n a a a +=+.29.已知()f x 不是常数函数,写出一个同时具有下列四个性质的函数()f x :___________.①定义域为R ;②()2f x f x π⎛⎫=+ ⎪⎝⎭;③()21(2)2f x x f +=;④14f π⎛⎫≠- ⎪⎝⎭.30.在函数()()()sin 20f x x ϕϕ=->图象与x 轴的所有交点中,点,02ϕ⎛⎫⎪⎝⎭离原点最近,则ϕ可以等于__________(写出一个值即可).参考答案:1.2n -(答案不为一,满足首项为2-的等比数列即可)【分析】根据等比数列基本量的计算可得12a =-,进而即可由等比数列的通项即可求解.【详解】由25320a a +=,得4241120a q a q +=,所以12a =-,所以1112n n n a a q q --==-,取2q =,则2nn a =-(写出一个首项为2-的等比数列即可).故答案为:2nn a =-2.cos πx (答案不唯一)【分析】根据奇偶性和周期性直接构造即可.【详解】()cos 0y x ωω=> 为偶函数,若其最小正周期为2,则πω=,∴一个满足题意的解析式为()cos πf x x =.故答案为:cos πx (答案不唯一).3.2(或2-,1-,0,1,只需填写一个答案即可).【分析】利用直线与圆的位置关系求解即可.22m -≤≤.故答案为:2(或2-,1-,0,1,只需填写一个答案即可).4.31π18,(31π2π,18k k α=+∈N 写出一个即可)【分析】终边相同的角之间相差360,k k ∈Z 或2π,k k ∈Z 可得答案.【详解】因为31π1130360431018-︒+︒⨯=︒=,所以与1130-︒终边相同的正角为31π2π,18k k +∈N ,写出一个即可为31π18.故答案为:31π18.5.32i +(答案不唯一)【分析】根据复数运算、实部、虚部的知识写出正确答案.【详解】设()i ,z a b a b =+∈R ,则2222i z a b ab =-+,依题意可得225a b -=,0b ≠.故可取3,2a b ==,32i z =+.故答案为:32i +(答案不唯一)6.2i (答案不唯一)【分析】根据题意直接写即可.【详解】模长为2的虚数:如2i z =.故答案为:2i .7.()2()1f x x =-(答案不唯一)【分析】举例2()(1)f x x =-,结合二次函数的性质,即可求解.【详解】令2()(1)f x x =-,则()(2)≤f x f 对任意的[0,2]x ∈都成立,但()f x 在[0,1]上单调递减,在[1,2]上单调递增,所以函数()f x 在[0,2]上不是增函数.故答案为:2()(1)f x x =-.8.24y x =(答案不唯一)【分析】抛物线存在以点()3,3为中点的弦,则该点在抛物线开口内,列式求解即可.【详解】抛物线存在以点()3,3为中点的弦,则该点在抛物线开口内,即当3x =时,332y p =>⇒>.可取2p =,则满足条件的抛物线方程为24y x =.故答案为:24y x =(答案不唯一)9.π(答案不唯一)【分析】解三角方程求得正确答案.【详解】由于πcos 62α⎛⎫-=- ⎪⎝⎭,所以1π5π2π66k α-=+或2π5π2π66k α-=-,所以12ππk α=+或22π2π3k α=-,其中12,Z k k ∈,由于[]3π,3πα∈-,所以一个满足条件的α的值为π.故答案为:π(答案不唯一)10.112n -⎛⎫- ⎪⎝⎭(答案不唯一)【分析】根据题目所给条件以及等比数列的知识求得正确答案.【详解】依题意,{}n a 是等比数列,设其公比为q ,由于①10n n a a +<,所以0q <,由于②1n n n n a a a q a q +>=⋅=⋅,所以01q <<,所以112n n a -⎛⎫=- ⎪⎝⎭符合题意.故答案为:112n -⎛⎫- ⎪⎝⎭(答案不唯一)11.3(只要是3正整数倍即可)【分析】根据二项式通项公式即可求出结果.【详解】nx⎛ ⎝的展开式的通项为()()321C C kn k n k kk k n n T x x --+=⋅⋅=⋅,nx⎛⎝的展开式中含有常数项需要满足302n k -=,即23n k =,所以n 只要是3正整数倍即可.故答案为:3(只要是3正整数倍即可).12.π2sin 24x ⎛⎫- ⎪⎝⎭(答案不唯一)【分析】设()sin()f x A x ωϕ=+,0ω>,根据,()2x f x ∀∈≤R ,则可设2A =,根据最小正周期为π,可得2ω=,通过整体换元法则可得到π02ϕ-≤≤,取π4ϕ=-即可.【详解】设()sin()f x A x ωϕ=+,0ω>,因为,()2x f x ∀∈≤R ,所以max min ()2,()2f x f x ≤≥-所以||2A ≤,不妨设2A =因为()f x 最小正周期为π,所以2π,2T πωω===()()ππ2sin 2,0,,2,42f x x x x ϕϕϕϕ⎡⎤⎡⎤=+∈+∈+⎢⎢⎥⎣⎦⎣⎦因为()f x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增,所以000πππ,,2π,2π222k k k ϕϕ⎡⎤⎡⎤∃∈+⊆-++⎢⎢⎥⎣⎦⎣⎦Z所以00π2π2π2k k ϕ-+≤≤,当00k =时,π02ϕ-≤≤,不妨设π4ϕ=-所以满足条件之一的()π2sin 24f x x ⎛⎫=- ⎪⎝⎭.故答案为:π2sin 24x ⎛⎫- ⎪⎝⎭.13.7(答案不唯一,满足6a >即可)【分析】由极小值的概念及求导法则即可求解.【详解】由题意得,()()()()()()()()232322236262926f x x a x x x x a x x x a '=--+-⨯-=--++-=----,令()0f x '=,解得2x =或269a x +=,当2629a +>,即6a >时,()f x 在(),2-∞上单调递减,在262,9a +⎛⎫⎪⎝⎭上单调递增,所以()f x 在2x =处取极小值,所以a 的一个取值可取7a =,故答案为:7(答案不唯一,满足6a >即可).14.10,2⎛⎫⎪⎝⎭(答案不唯一)【分析】解不等式11x>得01x <<,只要找01x <<的一个子集即可.【详解】11x>等价于110x ->,即10x x ->,则(1)0x x -<,解得01x <<,所以01x <<的一个充分条件是10,2⎛⎫⎪⎝⎭,故答案为:10,2⎛⎫⎪⎝⎭(答案不唯一).15.π2(不唯一)【分析】根据正弦型函数的单调性进行求解即可.【详解】由ππ,π,π33x x ϕϕϕ⎡⎤⎡⎤∈⇒+∈++⎢⎥⎢⎥⎣⎦⎣⎦,因为()f x 在区间π,π3⎡⎤⎢⎥⎣⎦上单调递减,且0πϕ≤<2,所以有ππππ323π62π2ϕϕϕ⎧+≥⎪⎪⇒≤≤⎨⎪+≤⎪⎩,因此ϕ的一个取值可以为π2,故答案为:π216.12(答案不唯一)【分析】由指数函数的单调性和不等式的性质,可得所求取值.【详解】解:当1a >时,x y a =在R 上单调递增,由2x x >-,可得2x x a a ->;当01a <<时,x y a =在R 上单调递减,由2x x >-,可得2x x a a -<.因为不等式2x x a a -<对一切实数x 都成立,所以01a <<,所以a 的取值可为12.故答案为:12(答案不唯一).17.2x (答案不唯一)【分析】根据给定条件,确定函数()f x 的定义域,及函数()f x 的有关性质,再写出符合的函数解析式作答.【详解】令幂函数()f x x α=(α为常数),由0x ∀≥,()()=f x f x -知,函数()f x 的定义域为R ,()f x 是偶函数,又0x ∀≥,()()1f x f x <+,则函数()f x 在[)0,∞+上单调递增,因此α可以为正偶数,所以此函数可以是2()f x x =.故答案为:2x 18.8,9,10或11.(答案不唯一)【分析】令1x t +=,得到1C ,0,1,2,,2ii i na i n ⎛⎫== ⎪⎝⎭,再由3,0,1,2,,i a a i n ≥= 求解.【详解】解:令1x t +=,得01112nn n t a a t a t ⎛⎫+=+++ ⎪⎝⎭,1C ,0,1,2,,2ii i na i n ⎛⎫∴== ⎪⎝⎭,由条件②知32323234343411C C ,,22811,11C C ,22n n n n a a n a a ⎧⎧⎛⎫⎛⎫≥⎪⎪ ⎪ ≥⎪⎪⎝⎭⎝⎭⇒⇒≤≤⎨⎨≥⎛⎫⎛⎫⎪⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩⎩.又*,n n ∈∴N 的值可以为8,9,10或11.(答案不唯一)故答案为:8,9,10或11.(答案不唯一)19.30y +-=(答案不唯一)【分析】设切线l 与圆221x y +=相切于点()()000,0x y y ≠,得到切线l 的方程,与25y x =+联立,由判别式为零求解.【详解】解:设切线l 与圆221x y +=相切于点()()000,0x y y ≠,则22001x y +=,切线l 的方程为()0000x y y x x y -=--,即001xx yy +=,将001xx yy +=与25y x =+联立,可得2000510y x xx y ++-=,令()2000Δ4510x y y =--=,联立解得0013x y ⎧=⎪⎪⎨⎪=⎪⎩或00,313x y ⎧=-⎪⎪⎨⎪=⎪⎩或00717x y ⎧=⎪⎪⎨⎪=-⎪⎩或001,7x y ⎧=⎪⎪⎨⎪=-⎪⎩所以切线l的方程为30y +-=或30y -+=或70y --=或70y ++=.故答案为:30y +-=(答案不唯一)20.()1,2--【分析】根据向量的共线和向量乘法的坐标计算公式即可求解.【详解】根据题意可得:()1,2OA =,()3,1OB =- ,设(),m x y =,因为向量m OA∥,且m 与OB 的夹角为钝角,所以123(1)03(1)y x x y y x ⋅=⋅⎧⎪⋅+-⋅<⎨⎪⋅≠-⋅⎩所以0x <,不妨令1,x =-所以2,y =-()1,2m =--,故答案为:()1,2--.21.2y =(或4y =或3x =)(答案不唯一)【分析】分析可知两圆外切,根据圆的几何性质以及图形可得出圆1C 、圆2C 的三条公切线的方程.【详解】如下图所示:因为圆1C 和圆2C 的圆心分别为()12,3C 、()24,3C ,半径都为1,且12211C C ==+,所以,圆1C 和圆2C 外切,易知这两个圆的切点为()3,3C ,且12//C C x 轴,所以,这两个圆的公切线共3条,设这三条切线分别为1l 、2l 、3l ,其中,切线1l 过点C ,且1l x ⊥轴,则直线1l 的方程为3x =,设切线2l 分别切圆1C 、圆2C 于点A 、B ,连接1AC 、2BC ,因为121AC BC ==,且12AC l ⊥,22BC l ⊥,所以,12//AC BC ,故四边形21ABC C 为矩形,故212//l C C ,易知直线12C C 的方程为3y =,且直线2l 与直线12C C 间的距离为1,结合图形可知,直线2l 的方程为2y =,同理可知,直线3l 的方程为4y =.故答案为:2y =(或4y =或3x =).(答案不唯一)22.15-(填写区间1,04⎛⎫- ⎪⎝⎭内的任一实数均可)【分析】先求到直线14x =-和点1,04D ⎛⎫ ⎪⎝⎭的距离相等的点的轨迹方程,再由其与曲线||y x a =-有四个交点求出a 的范围,由此可得结论.【详解】到直线14x =-及点1,04D ⎛⎫ ⎪⎝⎭的距离都相等的点的轨迹为以14x =-为准线以1,04D ⎛⎫ ⎪⎝⎭为焦点的抛物线,设其方程为22y px =,则12p =,所以2y x =.由||y x a =-,得()y x a x a =-≥或()y a x x a =-≥.由已知曲线2y x =与曲线||y x a =-有四个交点,因为()y x a x a =-≥与()y a x x a =-≥关于x 轴对称,抛物线2y x =关于x 轴对称,所以曲线2y x =与射线()y x a x a =-≥有两个位于x 轴上方的交点,由2,,y x a y x =-⎧⎨=⎩得20y y a --=,所以20y y a --=有两个正根,所以140a ∆=+>,且0a ->故满足题意的实数a 的取值范围是1,04⎛⎫- ⎪⎝⎭.故答案为:15-(填写区间1,04⎛⎫- ⎪⎝⎭内的任一实数均可)23.340x y +=(或7250x y --=或7250x y ++=)【分析】分90APB ∠=︒、90PBA ∠=︒和90PAB ∠=︒讨论即可得解.【详解】由圆:2225x y +=,得圆心()0,0O ,半径=5r ,223425+= ,P ∴在圆O 上,若90APB ∠=︒,可得AB 过圆心且AB OP ⊥,又404303OP k -==-,34AB k ∴=-,∴直线l 的方程为34y x =-,即340x y +=;若90PBA ∠=︒,可得AP 过圆心且OB AP ⊥,则13443OB k -==-,可得OB 的直线的方程为340x y +=,联立圆方程2225x y +=,解得43x y =-⎧⎨=⎩或43x y =⎧⎨=-⎩,可得B 的坐标为()4,3-或()4,3-,根据圆的对称性易知()3,4A --,∴直线AB 的方程为()()()343443y x ---+=---或()()()343443y x ---=+---,即7250x y --=或7250x y ++=;若90PAB ∠=︒,由,A B 的等价性可知该情况与90PBA ∠=︒一致;综上:直线l 方程为:340x y +=或7250x y --=或7250x y ++=.故答案为:340x y +=(或7250x y --=或7250x y ++=).24.2y x =-(只需填其中的一个即可)【分析】将圆的方程化为标准方程,求出圆心、半径.根据弦长,得出圆心到直线的距离2d =.先判断斜率不存在时是否满足,然后设出斜率,得出直线方程,表示出圆心到直线的距离1d =,得出方程,即可解出k 的值.【详解】圆的方程可化为()()22211x y -+-=,圆心为()2,1,半径1r =,2d ==.当直线斜率不存在时,直线方程为2x =,此时圆心在直线上,弦长为22r =,不满足题意,所以直线的斜率存在.设直线的斜率为k ,则直线的方程为()2y k x =-,即20kx y k --=,此时圆心到直线的距离12d ==,解得1k =±.所以,直线的方程为2y x =-或2y x =-+.故答案为:2y x =-.25.10x -=或34110x y +-=或34110x y --=(写出其中一个即可)【分析】由已知求出点()1,2P 或()1,2P -.先求解直线斜率不存在时的方程;然后设斜率,得出点斜式方程,表示出圆心到直线的距离,列出方程,求解即可得出斜率,进而得出直线方程.【详解】由题意可知,24t =,解得2t =±,所以,点()1,2P 或()1,2P -.又圆()2221x y -+=的圆心()2,0C ,半径1r =.①当点()1,2P 时当直线l 斜率不存在时,此时l 方程为1x =,与圆相切,满足题意;当直线l 斜率存在时,设斜率为1k ,此时直线l 方程为()121y k x -=-,即1120k x y k --+=.因为,直线l 与圆相切,所以圆心()2,0C 到l 的距离1d r =,1==,整理可得,1430k +=,解得134k =-,代入直线方程整理可得,直线方程为34110x y +-=.②当点()1,2P -时当直线l 斜率不存在时,此时l 方程为1x =,与圆相切,满足题意;当直线l 斜率存在时,设斜率为2k ,此时直线l 方程为()221y k x +=-,即2220k x y k ---=.因为,直线l 与圆相切,所以圆心()2,0C 到l 的距离2d r =,1=,整理可得,2430k -=,解得234k =,代入直线方程整理可得,直线方程为34110x y --=.综上所述,直线方程为1x =或34110x y +-=或34110x y --=.故答案为:1x =.26.50︒(答案不唯一)【分析】利用tan 60︒=及二倍角公式公式得到cos cos50α=︒,再根据余弦函数的性质计算可得.【详解】因为)()tan10cos tan 60tan10cos αα-︒=︒-︒sin 60sin10cos cos 60cos10α︒︒⎛⎫=- ⎪︒︒⎝⎭sin 60cos10sin10cos 60cos cos 60cos10α︒︒-︒︒=⋅︒︒()sin 6010cos cos 60cos10α︒-︒=⋅︒︒2sin 50cos cos10α︒=⋅︒sin100cos50cos cos10α︒︒=⋅︒()sin 9010cos50cos cos10α︒+︒︒=⋅︒cos10cos50cos cos10α︒︒=⋅︒cos 1cos50α==︒,所以cos cos50α=︒,则50360k α=︒+⨯︒或50360k α=-︒+⨯︒,Z k ∈,故答案为:50︒(答案不唯一)27.()1f x =(答案不唯一()cos f x x ω=也可)【分析】根据题意可得函数()f x 为偶函数,可取()1f x =,在证明这个函数符合题意即可.【详解】令0x =,则()()()2f y f y f y +-=,所以()()-=f y f y ,所以函数()f x 为偶函数,可取()1f x =,则()()()()1f x y f x y f x f y +=-===,所以,x y ∀∈R ,()()()()2f x y f x y f x f y ++-=,所以函数()1f x =符合题意.故答案为:()1f x =.(答案不唯一()cos f x x ω=也可)28.n -(答案不唯一)【分析】先猜想数列是一个等差数列,进而根据性质②得到首项与公差的关系,然后根据性质①得到答案.【详解】假设数列为等差数列,设其公差为d ,由性质②可得:()()()111111a m n d a m d a n d ++-=+-++-,所以1a d =,再根据①{n a }是递减数列,可知0d <,取1d =-,则11a d ==-,此时1(1)n a a n d n =+-=-,满足题意.故答案为:n -.(答案不唯一)29.()cos8f x x =(答案不唯一)【分析】根据21(2)2()x f f x +=,可得2(2)2()1f x f x =-,进而联想到二倍角的余弦公式,再根据()2f x f x π⎛⎫=+ ⎪⎝⎭,可得函数的周期,然后根据14f π⎛⎫≠- ⎪⎝⎭得到答案.【详解】由21(2)2()x f f x +=,得2(2)2()1f x f x =-,联想到2cos 22cos 1x x =-,可推测()cos f x x ω=,由()2f x f x π⎛⎫=+ ⎪⎝⎭,得()*2N 2||k k ππω=⋅∈,则()*||4N k k ω=∈,又14f π⎛⎫≠- ⎪⎝⎭,所以()()cos 4f x kx =(Z k ∈,k 为偶数,且||1k >),则当k =2时,()cos8f x x =.故答案为:()cos8f x x =(答案不唯一).30.π3(答案不唯一)【分析】先求出()f x 与x 轴的所有交点,再结合题意得到π222k ϕϕ≤+恒成立,整理得π02k k ϕ⎛⎫+≥ ⎪⎝⎭,分类讨论1k ≥,1k ≤-与11k -<<三种情况,结合恒成立可得到π02ϕ<≤,从而得解.【详解】因为()()()sin 20f x x ϕϕ=->,令()0f x =,即()sin 20x ϕ-=,得2π,Z x k k ϕ-=∈,即π,Z 22k x k ϕ=+∈,则()f x 图象与x 轴的所有交点为π,0,Z 22k k ϕ⎛⎫+∈ ⎪⎝⎭,因为其中点,02ϕ⎛⎫ ⎪⎝⎭离原点最近,所以π,Z 222k k ϕϕ≤+∈恒成立,不等式两边平方整理得π02k k ϕ⎛⎫+≥ ⎪⎝⎭,当1k ≥时,π02k ϕ+≥,因为0ϕ>,故π02k ϕ+≥恒成立;当1k ≤-时,π02k ϕ+≤,即π2k ϕ≤-恒成立,因为ππ22k -≥,则π2ϕ≤,故π02ϕ<≤;当11k -<<,即0k =时,显然上述不等式恒成立,综上,由于上述分类情况要同时成立,故π02ϕ<≤,所以ϕ可以等于π3.故答案为:π3(答案不唯一).。

2025新高考数学计算题型精练专题09 三角恒等变换(解析版)

2025新高考数学计算题型精练专题09 三角恒等变换(解析版)

2025新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

新高考数学复习考点知识与题型专题练习4---充分条件和必要条件(解析版)

新高考数学复习考点知识与题型专题练习4---充分条件和必要条件(解析版)

新高考数学复习考点知识与题型专题练习4 充分条件和必要条件一、单选题1.若a ∈R ,则“1a =”是“||1a =”的( )A .充分条件B .必要条件C .充要条件D .无法判断【答案】A【解析】当1a =时,||1a =成立,因此“1a =”是“||1a =”的充分条件;但当||1a =时,1a =±,所以1a =不一定成立,因此“1a =”不是“||1a =”的必要条件.∴.“1a =”是“||1a =”的充分条件,故选:A .2.“x ,y 均为奇数”是“x y +为偶数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当x ,y 均为奇数时,一定可以得到x y +为偶数;但当x y +为偶数时,x ,y 不一定均为奇数,也可能均为偶数.故选:A.3.已知,a b 为实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意得,因为,a b 是实数,所以“0a >且0b >”可推出“0a b +>且0ab >”,“0a b +>且0ab >”推出“0a >且0b >”,所以“0a >且0b >”是“0a b +>且0ab >”的充要条件,故选C .4.设x ,y 是两个实数,命题:“x ,y 中至少有一个数大于1”成立的充分不必要条件是A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1【答案】B【解析】当2x y +>时,显然有“中至少有一个数大于1”,反之,“中至少有一个数大于1”时,不一定有2x y +>,因为“中至少有一个数大于1”包括了,只有一个数大于1和两个数均大于1两种可能情况,.故选B .5.设全集U ,在下列条件中,是B A ⊆的充要条件的有①A B A ⋃=; ②U C A B =∅∩ ③U U C A C B ⊆; ④U A C B U =∪A .1个B .2个C .3个D .4个【答案】D【解析】解:如下图借助Venn 图,可以判断出A B A B A =⇔⊆,U C A B B A φ=⇔⊆∩,U U C A C B B A ⊆⇔⊆,U A C B U B A =⇔⊆∪,故①②③④均正确.故选D .6.设p :函数234y x x m =++的图象与x 轴无交点,2:2q m x ≥-对任意x ∈R 恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】∵234y x x m =++的图象与x 轴无交点,∴16120m ∆=-<,解得43m >. ∵22m x ≥-对任意x ∈R 恒成立,∴22m x ≥-的最大值,∴2m ≥.∵{|2}m m ≥ 4|3m m ⎧⎫>⎨⎬⎩⎭, ∴p 是q 的必要不充分条件.故选:B.7.在下列结论中,正确的有( )A .29x =是327x =-的必要不充分条件B .在ABC ∆中,“222AB AC BC +=”是“ABC ∆为直角三角形”的充要条件C .若,a b ∈R ,则“220a b +≠”是“a ,b 全不为0”的充要条件D .若,a b ∈R ,则“220a b +≠”是“a ,b 不全为0”的充要条件【答案】AD【解析】对于选项A ,由327x =-得293x x =-⇒=,但是3x =适合29x =,推出32727x =≠-,故A 正确;对于选项B ,在ABC ∆中,222AB AC BC ABC +=⇒∆为直角三角形,但ABC ∆为直角三角形222AB AC BC ⇒+=或222AB BC AC +=或2221BC AC AB +=,故B 错误;对于选项C ,由220,a b a b +≠⇒全不为0,由a ,b 全不为2200a b ⇒+≠,故C 错误;对于选项D ,由220,a b a b +≠⇒不全为0,反之,由a ,b 不全为2200a b ⇒+≠,故D 正确;故选:AD .二、填空题8.若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.【答案】充分不必要【解析】命题的充分必要性具有传递性.根据题意得M N P Q ⇒⇔⇒,但Q P ⇒,N P ⇔,且N M ⇒,因此M Q ⇒,但Q M ⇒,故M 是Q 的充分不必要条件.故答案为:充分不必要9.已知:13p x ,若1(0)a x a a -<-<>是p 的一个必要条件,则使a b >恒成立的实数b 的取值范围是________.【答案】{|2}b b【解析】∵111a x a a x a -<-<⇔-<<+,∴{|13}{|11}x x x a x a -<<⊆-<<+,所以11,13,a a -≤-⎧⎨+≥⎩解得2a ≥ 又使a b >恒成立,因此2b <,故实数b 的取值范围是{|2}b b. 故答案为:{|2}b b .10.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补记(,)a b a b ϕ-,那么“(,)0a b ϕ=”是“a 与b 互补”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)【答案】充要【解析】解析若(,)0a b ϕ=,a b =+,平方得0ab =,当0a =b =,所以0b ≥;当0b =a =,所以0a ≥,故a 与b 互补;若a 与b 互补,易得(,)0a b ϕ=.故“(,)0a b ϕ=”是“a 与b 互补”的充要条件故答案为:充要条件11.已知:4p x a -<,:23q x ,且q 是p 的充分不必要条件,则a 的取值范围为________. 【答案】[]1,6- 【解析】解不等式4x a -<,得44a x a -<<+,由于q 是p 的充分不必要条件,()()2,34,4a a -+,4342a a +≥⎧∴⎨-≤⎩,解得16a -≤≤. 当1a =-时,则有()()2,35,3-;当6a =时,则有()()2,32,6.因此,实数a 的取值范围是[]1,6-.故答案为:[]1,6-.三、解答题12.指出下列哪些命题中p 是q 的充分条件.(1)在ABC ∆中,:p A B ∠>∠,:q BC AC >;(2)对于实数x ,y ,:0p xy >,:0q x >,且0y >;(3)已知,x y ∈R ,:1p x =,:(1)(2)0q x x --=.【答案】(1)p 是q 的充分条件(2)p 不是q 的充分条件(3)p 是q 的充分条件【解析】(1)在ABC ∆中,由大角对大边知,A B BC AC ∠>∠⇒>,所以p 是q 的充分条件. (2)对于实数x ,y ,因为0xy >,所以0x >,且0y >或0x <,且0y <,推不出0x >,且0y >,故p 不是q 的充分条件.(3)由1(1)(2)0x x x =⇒--=,故p 是q 的充分条件.故(1)、(3)命题中p 是q 的充分条件.13.判断下列命题中p 是q 的什么条件.(充分不必要条件必要不充分条件,充要条件,既不充分也不必要条件)(1)p :数a 能被6整除,q :数a 能被3整除;(2):1p x >,2:1q x >;(3):p ABC ∆有两个角相等,:q ABC ∆是正三角形;(4)若,a b ∈R ,22:0p a b +=,:0q a b ==;(5):p a b <,:1a q b<. 【答案】(1)p 是q 的充分不必要条件(2)P 是q 的充分不必要条件(3)p 是q 的必要不充分条件(4)p 是q 的充要条件(5)p 是q 的既不充分也不必要条件【解析】解析(1)因为“数a 能被6整除”能推出“数a 能被3整除”,所以p q ⇒,但“数a 能被3整除”推不出“数a 能被6整除”,如9a =,所以q p ⇒/,所以p 是q 的充分不必要条件.(2)因为1x >能推出21x >,即p q ⇒;但当21x >时,如2x =-,推不出1x >,即q p ⇒/,所以P 是q 的充分不必要条件.(3)因为“ABC ∆有两个角相等”推不出“ABC ∆是正三角形”,因此q p ⇒/,但“ABC ∆是正三角形”能推出“ABC ∆有两个角相等”,即q p ⇒,所以p 是q 的必要不充分条件.(4)若220a b +=,则0a b ,即p q ⇒;若0a b ,则220a b +=,即q p ⇒,故p q ⇔,所以p 是q 的充要条件.(5)当2a =-,1b =-时,21-<-推不出211-<-,知1a a b b <<,又当1a =,2b =-时,112<-推不出12<-,知1a a b b <<,所以p 是q 的既不充分也不必要条件.14.已知关于x 的一元二次方程:①2440mx x -+=,②2244450x mx m m -+--=,m ∈Z .求证:方程①和②都有整数解的充要条件是1m =.【答案】证明见解析【解析】证明:方程①有实根的充要条件是0m ≠且16440m ∆=-⨯⨯≥,所以1m 且0m ≠, 方程②有实根的充要条件是()221644450m m m ∆=---≥,解得54m ≥-, 所以方程①②都有实根的充要条件是:514m -≤≤且0m ≠, 又m ∈Z ,故1m =-或1m =,当1m =-时,方程①的解为1,22x =-±当1m =时,方程①的解为2x =,方程②的解为1x =-或5x =,满足题意,从而方程①和②都有整数解1m ⇒=,反之,1m =⇒方程①和②都有整数解,所以方程①和②都有整数解的充要条件是:1m =.15.已知{}210P x x =-<<,{}11S x m x m =-<<+.是否存在实数m ,使得x P ∈是x S ∈的充要条件?若存在,求实数m 的取值范围.【答案】不存在实数m ,使得x P ∈是x S ∈的充要条件【解析】解:因为x P ∈是x S ∈的充要条件,则P S =, 由{}210P x x =-<<,{}11S x m x m =-<<+, 知要使P S =,则12110m m -=-⎧⎨+=⎩,无解, 故不存在实数m ,使得x P ∈是x S ∈的充要条件.。

语用综合题(选择简答)精选20题-【黄金20题】备战2024年新高考语文一轮复习题型专练(解析版)

语用综合题(选择简答)精选20题-【黄金20题】备战2024年新高考语文一轮复习题型专练(解析版)

专题07 语用综合题(选择简答)精选20题(解析版)全国甲卷专用,2024届高考语文精编预测系列一、选择简答字面含义的理解,应用“顾名思义”。

顾名思义:从事物的名称联想到它的含义。

B.“自说自话”多用于表现只顾发表自己的意见,而不考量客观事实或环境的自言自语。

此处只是表达自己说话的语意,应用“自言自语”。

自言自语:指自己对自己说话。

C.“欲速不达”意思是想求快速,反而不能达到目的。

由前文“可是”可知,此处表转折,意为结果与期待相反,应用“适得其反”。

适得其反:恰恰得到与愿望相反的结果。

D.“独树一帜”形容与众不同,自成一家。

语境指李煜的词风与众不同,使用正确。

故选D。

2.本题考查学生语言表达之语句复位的能力。

由“‘小楼’还有一个很重要的作用,就是在空间上将作者与外界隔离开来。

由此,所写之事、所发之感就有了一种作者自说自话、无人知晓、无人懂得的惆怅之感,一腔愁绪,说与谁听?”可知,“这种感受”是指作者无人诉说,无人理会,无人懂得的惆怅和苦闷之情。

A.句意:繁花靠近高楼,远离家乡的我触目伤心,在这全国各地多灾多难的时刻,我登楼观览。

此处说的是作者忧国忧民的情感,衔接不恰当。

B.句意:天上自由自在飘飞的花瓣轻得好像夜里的美梦,天空中飘洒的雨丝细得好像心中的忧愁。

抒发的是淡淡的春愁,衔接不恰当。

C.句意:我狠狠地把亭上的栏杆都拍遍了,也没有人领会我现在登楼的心意。

表达了作者徒有杀敌报国的雄心壮志而又无人理会的惆怅和苦闷之情。

衔接最恰当。

D.句意:登上高楼,极目所见的是一派荒凉冷清的茫茫沙野,如海似天的愁绪油然生起。

此处说的是“高楼”而不是“小楼”,表达作者对友人的思念和贬谪之地的艰苦,衔接不恰当。

故选C。

3.本题考查学生辨析并修改病句的能力。

画波浪线语句中存在病句的应当是第①句。

画线句的语病主要是关联词“在”使用不当,“在阔大的空间”意指所处的空间,一般作句子的状语。

而“带给心灵自由感”中的“带给”,其中的行为接受对象应当是指“幽独情绪愈发浓烈的词人”。

2024年高考数学高频考点(新高考通用)对数与对数函数(精练:基础+重难点)解析版

2024年高考数学高频考点(新高考通用)对数与对数函数(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第11练对数与对数函数(精练)【A组在基础中考查功底】....【答案】A【分析】根据函数的奇偶性和函数值等知识确定正确答案.【详解】依题意ππ),,22y x x⎛⎫=∈- ⎪⎝⎭,cos x为偶函数,则ln(cos)x为偶函数,令1()44g b a b b b=+=+,根据对勾函数的图像与性质易得所以()(1)5g b g >=.故4a b +>故选:C.7.(2023·全国·高三专题练习)已知函数要求积的最大值,....【答案】A【分析】先求出定义域,由)x 为偶函数,结合函数在数值的正负,排除BC ,结合函数图象的走势,排除D ,得到正确答案【详解】()22ln x x f x =变形为,定义域为()(,00,∞-U当01a <<时,函数()lg f x x =在函数()πsin2x g x =在[]0,a 上单调递增,所以所以π1sin22a a a M m -==,解得15.(2023·上海·高三专题练习)若实数x 、y 满足lg x m =、110m y -=,则xy =______________.【答案】10【分析】根据指数式与对数式的关系,将lg x m =转化为指数式,再根据指数运算公式求值.【详解】由lg x m =,得10m x =,所以1110101010m m m m xy -+-=⋅==,【B组在综合中考查能力】A .14B .15C .16D .【答案】D【分析】根据题意可得()10145n-%≤,两边取对数能求出冷轧机至少需要安装轧辊的对数【详解】厚度为10α=mm 的带钢从一端输入经过减薄率为4%的n 对轧辊后厚度为【C组在创新中考查思维】则函数()y f x =的图象关于直线令()t f x =因为函数()()()2g x f x af x =+由题意可知,4cos 25θ=,所以22tan 3tan 2,1tan 4θθθ==-解得tan 因为θ为锐角,所以tan 3,1θ=由对称性,不妨取直线AD 进行研究,则直线。

2022年新高考原创密卷数学试题(四)(含答案解析)

2022年新高考原创密卷数学试题(四)(含答案解析)

2022年新高考原创密卷数学试题(四)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}log 2A x =<,101x B x x ⎧⎫-=>⎨⎬+⎩⎭,则A B = ()A .()1,3B .[]1,3C .()0,1D .[]0,12.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,且焦距为4,其中一条渐近线的方程为3y x =.点P 是该双曲线右支上的动点,则12PF PF -的值为()A B C D 3.已知复数1z ,2z 满足121i z z =-,122i z z ⋅=+(其中i 为虚数单位),则2212z z +的值为()A BC .252D .24.已知函数()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭在π0,3⎛⎫⎪⎝⎭上有最大值,则ω的取值范围为()A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .()2,+∞D .[)2,+∞5.某个用橡皮泥捏成的圆锥的侧面积为1S ,底面积为2S ,底面半径为r ,且122S S =,若用这些橡皮泥重新捏成一个圆柱,该圆柱的底面半径为r ,高为h ,则hr=()A .2B .12C D 6.已知向量a ,b均为单位向量,且a b ⊥ ,向量c 满足2c = ,则()()c a c b -⋅- 的最大值为()A .B .6C .4+D .4+7.已知α,0,2πβ⎛⎫∈ ⎪⎝⎭,且sin sin 1αβ+=,则cos cos αβ+的取值范围为()A .(B .(]1,2C .(D .8.已知函数()f x 为定义在R 上的偶函数,函数()()()1g x f x x f =⋅-为奇函数,且当[]1,1x ∈-时,()2f x x a =-+,则()()()()*12N f f f n n +++∈ 的取值集合为()A .{}0,1B .{}0,1-C .{}0,1,1-D .{}1,1-二、多选题9.在()33x y +的展开式中,下列命题正确的是()A .系数最大的项的系数为8B .所有项的系数和为64C .含22x y 的项的系数为12D .有理项共有4项10.已知等比数列{}n a 的公比为q ,前n 项和为n S ,且()*0N n a n >∈,下列命题正确的是()A .若2q =,则2n nS a >B .若2n n S a <恒成立,则2q ≥C .若n S ,2n S ,3n S 成等差数列,则1q =D .当1q >时,不存在()*2N k n k n <∈<,使得n S ,k S ,3n S 成等差数列11.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,312.已知正方体1111ABCD A B C D -的棱长为2,平面α过点A ,1A H ⊥平面α,且垂足H 在正方体的内部,P 是棱11C D 上的动点,则()A .当//BD 平面α时,H 点的轨迹长度为πB .点H 所形成曲面的面积为2π3C .若仅存在唯一的平面α,使得HC HP ⊥,则1D P =D .若P 为11C D 的中点,则直线PH 与平面1111D C B A 三、填空题13.已知某种病毒在培养的过程中,3个小时内发生变异的概率为12,4个小时内发生变异的概率为56.若已经观测到该病毒在3个小时内未发生变异,则接下来的一小时内发生变异的概率为________.14.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的上、下顶点分别为A ,B ,右顶点为D ,右焦点为F ,直线BF 与直线AD 交于点P ,若2AB OP =,则椭圆C 的离心率为________.15.过原点作曲线ln y x =的切线l ,并与曲线()ln 1y t x t =>交于()11n ,l A x t x ,()22n ,l B x t x 两点,若212x x =,则t =________.四、双空题16.某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角ABC 外接圆的半径为2,且三条圆弧沿ABC 三边翻折后交于点P .若3AB =,则sin PAC ∠=___________;若::6:5:4AC AB BC =,则PA PB PC ++的值为___________.五、解答题17.已知等差数列{}n a 的公差1d =,前n 项和为n S ,等比数列{}n b 的前n 项积为n T ,且11b =,()*2N n S n T n =∈.(1)求数列{}n b 的公比q ;(2)求数列{}n n a b ⋅的前n 项和.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin sin cos tan 2B A A C =+⋅.(1)求C 的值;(2)若()22a b c +=,求ABC 的周长的最大值.19.在第二十四届冬奥会中,中国选手谷爱凌夺得了女子大跳台的金牌,为祖国争得了荣誉.若参与该项目比赛的某选手在训练中只练习M ,N 两个动作,且该选手练习过其中一个动作后,下一次继续练习该动作的概率为13,练习另外一个动作的概率为23,同一个动作不能连续练习四次.已知该选手第一次练习选择动作M 和动作N 的概率均为12.(1)求该选手第四次练习和第一次练习的动作是同一个动作的概率;(2)记连续四次练习中,该选手练习动作M 的次数为随机变量X ,求X 的概率分布和数学期望.20.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//AB CD ,且A ,C 两点均位于以PB 为直径的球面上.已知2AB =,1CD AD ==.(1)证明:平面ABCD ⊥平面APB ;(2)若二面角P BC A --与二面角C PB A --相等,求四棱锥P ABCD -的体积.21.在平面直角坐标系xOy 中,已知抛物线()2:204C y px p =<<的焦点为,02p F ⎛⎫ ⎪⎝⎭,过F 的直线1l 与抛物线C 交于A ,B 两点,过点()2,0P 作直线1l 的平行线2l ,与抛物线C 交于C ,D 两点(A ,C 两点位于x 轴的上方),设直线AC 与直线BD 交于点Q .当1l x ⊥轴时,OP OF ⋅=.(1)求抛物线C 的方程;(2)记OPQ △的面积为1S ,OAB 的面积为2S ,若212S S =,求直线1l 的方程.22.已知函数()()2e 20xf x x ax a =+-+>,其中e 是自然对数的底数.(1)若2a e =+,0x 是函数()f x 的极值点,证明:()00f x x =;(2)设函数()()()g x f f x =,若函数()f x 与函数()g x 的单调区间相同,求a 的取值范围.参考答案:1.A【分析】分别求出集合后,应用交集定义求解即可.【详解】{}{}2A x x =<=<,且y =是单调增函数,所以()0,3A =,因为()(){}101101x B x x x x x ⎧⎫-=>=-+>⎨⎬+⎩⎭,所以()(),11,B =-∞-⋃+∞,所以()1,3A B ⋂=.故选:A.2.D【分析】根据双曲线中a b c ,,的关系列出方程组,再由双曲线的定义求解即可.【详解】由题意可知,24c =,3b a=,即2c =,3b a =,又222c a b =+,解得5a =,所以,由双曲线定义得122PF PF a -==故选:D .3.B【分析】根据复数的乘法运算和除法运算可得213i z =-,2213i 22z +=,进而根据模长公式即可求解.【详解】由题意可知,()()()2111221i 2i 3i z z z z z ⎛⎫⋅=-+=- ⎪⎝⎭=,2221122i 13i 1i 22z z z z z +==+-=,所以2212z z +==故选:B 4.A【分析】整体代入法计算ππ33ω+的范围,根据()f x 有最大值,建立不等关系求解即可.【详解】当π0,3x ⎛⎫∈ ⎪⎝⎭时,ππππ,3333x ωω⎛⎫+∈+ ⎝⎭,若函数()f x 有最大值,则2πππ33ω+>,解得12ω>.故选:A 5.C【分析】根据122S S =可以算出圆锥的母线和高,进而求出结果.【详解】设圆锥母线长为l ,高为0h ,则122π2πS rl lS r r===,所以2l r =,所以0h ==,因为圆锥和圆柱体积相同,所以220ππ3r h r h =,解得3h r =.故选:C.6.D【分析】设a b e +=,由条件可知e =c e ⋅≥- .【详解】设a b e +=,则易知e = ,又0a b ⋅= ,所以()()()24c a c b a b a b c c c e -⋅-⋅+=+-=⋅⋅-,因为cos c e c e c e ⋅=⋅⋅≥- ()()4c a c b -⋅-≤+,所以()()·c a c b --最大值为4+.故选:D.7.C【分析】对两式平方求和,可求出()2cos cos αβ+的范围,即可求出结果.【详解】易知π0,2αβ⎡⎫-∈⎪⎢⎣⎭,且()()()222cos cos 1cos cos sin sin αβαβαβ++=+++,展开整理得()()(]2cos cos 122cos 2,4αβαβ++=+-∈,所以()(]2cos cos 1,3αβ+∈,因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以(cos cos αβ+∈.故选:C 8.B【分析】首先判断函数的对称性和周期性,再根据()10f =,求a 的值,再根据周期性和特殊值求函数值的和.【详解】由题意可知,()()f x f x -=,且()()()()11f x f x f x f x ---=--,所以()()11f x f x --=--,所以函数()1f x -为奇函数,()f x 的图象关于点()1,0-对称,所以()()110f f -==,且()()11f x f x --=+则()()11f x f x +=--,即()()2f x f x +=-,得()()4f x f x +=,所以函数()f x 是周期为4的函数,因为[]1,1x ∈-时,()2f x x a =-+,所以()110f a =-=,即1a =,所以[]1,1x ∈-时,()21f x x =-+,且()f x 的周期4T =,又()()201f f =-=-,()()310f f =-=,()()401f f ==,所以()()()()()121231f f f f f +=++=-,()()()()()112340f f f f f =+++=,所以()()()()*12N f f f n n +++∈ 的取值集合为{}0,1-.故选:B 9.BD【分析】由二项式定理展开式的性质分析ACD 三个选项,赋值法令1x y ==计算B 选项,可得结果.【详解】A 选项:(3x 的展开式中系数分别为:01233333C ,C ,C ,C ,同理)3y 的展开式中系数分别为:01233333C ,C ,C ,C ,则展开式的系数中存在系数为1133C C 9⋅=的项,即A 错误;B 选项:取1x y ==,可得系数和为332264⋅=,即B 正确;C 选项:含22x y 的项为22122233C 9C y x x y ⋅⋅⋅⋅⋅=,即C 错误;D 选项:展开式各项可表示为3922322223333C C C C mn m n m n mmn nm n xy x y xy---+-=⋅⋅⋅⋅⋅⋅⋅⋅,若为有理项,则m 为偶数,n 为奇数,所以m 为0或2,1n =或3,共有四项,即D 正确.故选:BD 10.BCD【分析】根据等比数列求和公式、通项公式及放缩法可判断A ,分类讨论q ,当满足不等式恒成立时可求出2q ≥判断B ,由等差中项及等比数列的通项公式化简可判断C ,由n S ,k S ,3n S 成等差数列及等比数列的求和公式化简得32n n k q q q +=,由均值不等式判断方程无解即可判断D.【详解】当2q =时,()11111222212n n nn na S a a a a -==⋅-<⋅=-,即A 错误;当1q =时,1122n n S a na a <==不恒成立,当1q ≠时,2n n S a <,则()111121n n a q a q q--<-,所以1121nn q q q --<-,若01q <<,上式整理得112n q q -->,不恒成立,若1q >,上式整理得112n q q --<,则20q -≤,所以2q ≥,即B 正确;由题意可知,322n n n S S S +=,所以322n n n n S S S S -=-,所以()2131212n n n n n n n a a q a a a a +++++=++=++ ,所以1q =,即C 正确;因为32n n k S S S +=,所以()()()31111121111n n k a q a q a q q q q---+=---,整理可得32n n k q q q +=,又3222n n n k q q q q +>=>,所以不存在符合题意的k ,即D 正确.故选:BCD 11.BC【分析】根据点到直线的距离以及勾股定理即可求解AB,由三角形的面积公式即可判断C ,根据圆内最大弦长为直径,可得1r >,结合O 在圆内,得最短弦长,即可求解D.【详解】直线l 的斜率为1且过原点,所以直线:l y x =,当圆C 与y 轴相切时,2r =,C到l 的距离d ==所以AB ==A 错误;当3r =时,3OC =<,所以O 在圆C 内,若CA CB ⊥,则C 到l 的距离22d r OC ==<l 符合题意,即B 正确;设ABC 的面积为S ,ACB θ∠=,则21sin 42S r θ==,即22sin 8r r θ≤=,所以r ≥π2θ=时取等,即C 正确;因为存在两条不同l ,使得2AB =,则最大弦长22r >,即1r >,若O 在圆外或圆上,即1r <≤时,显然存在两条,若O 在圆内,即r >2<,所以r <,即D 错误.故选:BC 12.ACD【分析】根据1AH A H ⊥垂直关系可得H 在以1AA 为直径的球面上,根据线面平行可判断H 点轨迹为以1AA 为直径的半圆,即可根据弧长公式求解A ,根据球的表面积公式即可判断B ,根据H 的轨迹以及相切,根据长度关系即可列方程求解C ,根据四点共面以及正切二倍角公式即可判断D.【详解】由于1A H ⊥平面α,AH α⊂,所以1AH A H ⊥,即H 在以1AA 为直径的球面上,因为12AA =,所以球的半径为1R =,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,因为11,,,AC BD AA AC A AA AC ⊥⋂=⊂平面11ACC A ,由于BD ⊥平面11ACC A ,当//BD 平面α时,可知1A H BD ⊥,所以H ∈平面11ACC A ,即H 点轨迹为以1AA 为直径的半圆,所以半圆的弧长为12π1=π2⨯⨯,故H 点的轨迹长度为π,A 正确;因为平面11ABB A ⊥平面11ADD A ,所以点H 形成的曲面是球面的14,所以面积214π4πS R =⨯=,即B 错误;由题意可知,存在唯一的点H ,使得HC HP ⊥,所以以1AA 为直径的球与以CP 为直径的球相切,设1AA 中点为O ,CP 中点为M ,1DD 中点为N ,则ON MN ⊥,设[]()120,1D P x x =∈,则CP==2ON=,1MN x=+,则OM==2CPOM R=+,所以1=x=,所以1D P=C正确;设直线PH与平面1111DCBA所成角最大时,PH与以1AA为直径的球相切,且P,1A,O,H共面,易知1PA与以1AA为直径的球相切,则1POA HPOθ∠∠==,且1tan RPAθ=22tantan21tan2θθθ==-,即D正确.故选:ACD【点睛】方法点睛:本题考查了空间中点线面的位置关系,轨迹弧长的问题,以及空间中的距离最值以及空间角的最值问题.解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.13.23【分析】根据条件概率的计算公式即可求解.【详解】设3个小时内发生变异为事件A,4个小时内发生变异为事件B,易知A B⊆,则()()()()()()23P BA P B P AP B AP A P A-===.故答案为:2314【分析】首先根据几何关系确定AD BF⊥,再根据斜率关系建立关于,,a b c的等式,即可求解斜率.【详解】因为2AB OP=,所以AD BF⊥,所以1AD BFk b bka c=-⋅=-⋅,即2b ac=,所以22a c ac-=,即210e e+-=,解得e=(负值舍去).15.2e ln 2【分析】首先求切线l 的方程,再利用点,,O A B 三点共线,利用斜率公式,转化为方程,即可求解.【详解】1y x '=,设切线l 与曲线相切于点()00,ln P x x ,则()0001ln y x x x x -=-,切线过点()0,0,代入解得0e x =,易知切线l 的方程为1ey x =,所以()1111ln 212e ln t x t x x x ==,由()1111ln 22ln t x t x x x =,解得12x =,所以ln 212e t =,即2e ln 2t =.故答案为:2e ln 216.4234##5.75【分析】第一空,由正弦定理求得3sin 4ACB ∠=,可得cos 4ACB ∠=,利用三角形垂心性质结合三角形诱导公式推得sin cos PAC ACB ∠∠=,即得答案;第二空,设,,CAB CBA ACB ∠θ∠α∠β===,由余弦定理求得它们的余弦值,然后由垂心性质结合正弦定理表示出()4cos cos cos PA PB PC θαβ++=++,即可求得答案.【详解】设外接圆半径为R ,则2R =,由正弦定理,可知324sin sin AB R ACB ACB∠∠===,即3sin 4ACB ∠=,由于ACB ∠是锐角,故cos ACB ∠=又由题意可知P 为三角形ABC 的垂心,即⊥AP BC ,故π2PAC ACB ∠∠=-,所以sin cos 4PAC ACB ∠∠==;设,,CAB CBA ACB ∠θ∠α∠β===,则πππ,,222PAC PBA PAB ∠β∠θ∠α=-=-=-,由于::6:5:4AC AB BC =,不妨假设6,5,4AC AB BC ===,由余弦定理知222222222654345614659cos ,cos ,cos 2654245824616θαβ+-+-+-======⨯⨯⨯⨯⨯⨯,设AD,CE,BF 为三角形的三条高,由于ππ,22ECB EBC PCD CPD ∠+∠=∠+∠=,故EBC CPD ∠=∠,则得πππAPC CPD EBC ABC ∠∠∠=-∠=-=-,所以24ππsin sin sin sin 22PC PA AC ACR APC ABC ∠∠βθ=====⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,同理可得24πsin sin sin 2PB AB ABR APB ACB ∠∠α====⎛⎫- ⎪⎝⎭,所以()319234cos cos cos 448164PA PB PC θαβ⎛⎫++=++=++=⎝⎭,;234【点睛】本题重要考查了正余弦定理在解三角形中的应用,涉及到三角形垂心的性质的应用,解答时要能灵活地结合垂心性质寻找角之间的关系,应用正余弦定理,解决问题.17.(1)2q =(2)()222nn -⋅+【分析】(1)根据公式112,1,2a n n n n b T n T -⎧=⎪=⎨≥⎪⎩,再根据通项公式求公比q ;(2)由(1)知,()112n n n a b n -=-⋅,再利用错位相减法求和.【详解】(1)因为()*2N n S n T n =∈,所以()1122n S n T n --=≥,易知10n T -≠,两式相除,可得()22n an b n =≥,又112ab =,所以()*2N n a n b n =∈,所以()1122n a n b n --=≥,易知10n b -≠,两式相除,可得22d q ==;(2)易知12n n b -=,且由(1)可知,()*2N n a n b n =∈,所以1n a n =-,所以()112n n n a b n -=-⋅,设数列{}n n a b ⋅的前n 项和为n H ,则()012102122212n n H n -=⋅+⋅+⋅++-⋅ ,所以()123202122212nn H n =⋅+⋅+⋅++-⋅ ,两式相减,可得()()()()1121212122221212n n n n n H n n ---=-⋅-+++=-⋅-- ,整理得()222nn H n =-⋅+.18.(1)π3C =(2)12【分析】(1)利用两角和的正弦公式化简即可求解;(2)利用余弦定理和基本不等式即可求出结果.【详解】(1)因为sin sin cos tan 2B A A C =+⋅,所以sin cos sin cos cos sin 2B C A C A C =+,即()2sin cos sin B C A C =+,又πA B C ++=,所以()sin sin 0A C B +=≠,所以1cos 2C =,又0πC <<,即π3C =;(2)因为π3C =,由余弦定理可知,()22222cos 3c a b ab C a b ab =+-=+-,又因为()22a b c +=,所以()()223a b a b ab +=+-,所以()()()223234a b a b ab a b +-+=≤+,解得8a b +≤,当且仅当a b =时,等号成立,所以4c ≤,即12a b c ++≤,所以ABC 周长的最大值为12.19.(1)49(2)概率分布见解析,数学期望为2【分析】(1)根据题意该选手第四次训练和第一次训练的动作是同一个动作,以动作M 开始和以动作N 开始分别有三种情况,根据相互独立事件的乘法公式求解即可;(2)根据题意X 的取值为1,2,3,分析可知()()31P X P X ===,求出各个的概率完成分布列即可求解.【详解】(1)设该选手第四次训练和第一次训练的动作是同一个动作为事件A ,则()1212122211224C 23333333339P A ⎛⎫=⋅⋅⋅⋅+⋅+⋅⋅= ⎪⎝⎭;(2)由题意可知,X 的可能取值为1,2,3,则()222121211112121C 23323232339P X ⎛⎫⎛⎫⎛⎫==⋅⋅+⋅+⋅⋅⋅= ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭,()()2319P X P X ====,()()()521139P X P X P X ==-=-==,所以分布列如下表:X123P295929所以X 的数学期望()2521232999E X =⨯+⨯+⨯=.20.(1)证明见解析(2)1【分析】(1)先根据线面垂直的判定定理证明BC ⊥平面PAC ,从而得出BC PA ⊥,再次根据线面垂直判定定理证明PA ⊥平面ABCD ,由面面垂直判定定理即可证明;(2)建立空间直角坐标系,求出平面PBC 的法向量,易得平面PAB 的法向量,利用向量夹角公式即可求解二面角C PB A --,而二面角P BC A --可由(1)中的证明易得,根据两个二面角相等即可求出AP 的长度,代入棱锥体积公式即可求解四棱锥P ABCD -的体积..【详解】(1)作AB 的中点H ,连接CA ,CH ,如图所示:在直角梯形ABCD 中,因为AB AD ⊥,AB CD ,且2AB =,1AD CD ==,所以四边形ADCH为正方形,所以AC =又1BH CH ==,所以BC =222BC CA AB +=,即AC BC ⊥,因为C 点均位于以PB 为直径的球面上,所以PC BC ⊥,又PC AC C ⋂=,PC ,AC ⊂平面PAC ,所以BC ⊥平面PAC ,因为PA ⊂平面PAC ,所以BC PA ⊥,因为A 点均位于以PB 为直径的球面上,所以PA BA ⊥,又BA BC B ⋂=,BA ,BC ⊂平面ABCD ,所以PA ⊥平面ABCD ,又PA ⊂平面APB ,所以平面ABCD ⊥平面APB ;(2)设AP t =,由(1)可知,AC BC ⊥,PC BC ⊥,即PCA ∠为二面角P BC A --的平面角,又PA ⊥平面ABCD ,`所以cos C PCA A PC =∠=A 为原点,,,AP AB AD 为x ,y ,z 轴,建立空间直角坐标系,如图所示:则(),0,0P t ,()0,2,0B ,()0,1,1C ,()0,0,1D ,所以()0,1,1CB =- ,(),2,0PB t =-,设平面PBC 的法向量为(),,m x y z = ,则020m CB y z m PB tx y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取2x =,则y t =,2z =,所以()2,,2m t =-,由(1)易知,AD ⊥平面PAB ,所以平面PAB 的法向量为()0,0,1n =,设二面角C PB A --为θ,易知θ为锐角,则cos m nm nθ⋅===⋅=2t =,所以该四棱锥的体积()111212132V =⋅⋅+⋅⋅=.21.(1)24y x =y ±+=【分析】(1)根据直线1l x ⊥轴,计算求得直线AC 和BD 的方程,并求得交点Q的坐标,OP OF ⋅=,列等式求p ,即可求解;(2)首先分别设直线,并联立抛物线方程,利用韦达定理表示根与系数的关系,并根据直线AC 和BD 的方程,并求得交点Q 的坐标,并表示1S 和2S ,建立等量关系求直线方程.【详解】(1)当1l x ⊥轴时,,2p A p ⎛⎫ ⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭,则(2,C,(2,D -,所以直线):2AC y x =-+):2BD y x =--两条直线方程联立,解得Q x =,所以)20Q Qy x=-+=,所以OQ又OP OF ⋅=,所以22p⋅=2p =,所以抛物线C 的方程为24y x =;(2)易知()1,0F ,设1:1l x my =+,则2:2l x my =+,设()2,2A a a ,()2,2B b b ,()2,2C c c ,()2,2D d d ,其中a ,0c >,b ,0d <,令直线1l 与抛物线方程联立,214x my y x =+⎧⎨=⎩,消去x ,可得2440y my --=,所以224a b m +=,224a b ⋅=-,即2a b m +=,1ab =-,同理有2c d m +=,2cd =-,所以直线()2:222a c a cAC x y a a y ac ++=-+=-,同理,直线:2b d BD x y bd +=-,两直线联立,消去x ,可得()()()()()22Q a c b d y ac bd a b c d a b c d +--=-=-+++-,所以()()2Q a c b d y m a c b d +--=+--,即2Q y m =,所以112222S m m =⋅⋅=,又()211222S a b a b =⋅⋅-=-==22m =,解得3m =±,所以直线1l 的方程为13x y =±+0y ±=.22.(1)证明见解析(2)(]0,e 2+【分析】(1)先得到()e 2e 2x f x x '=+--,设函数()e 2e 2xh x x =+--,进而得到()0h x '>,结合()10h =,即可得到函数()f x 的单调性,进而求证;(2)与(1)同理可先得到函数()f x 的单调性,进而得到函数()g x 的单调性,进而得到()()0f f x '≥对任意x ∈R 恒成立,即()0f x x ≥恒成立,再结合最值进行求解.【详解】(1)证明:由题意,()()2e e 22x f x x x =+-++,则()e 2e 2xf x x '=+--,令()e 2e 2xh x x =+--,则()e 20'=+>xh x ,所以函数()h x 在R 上单调递增,又()()110f h '==,所以当1x >时,()()0h x f x ='>;当1x <时,()()0h x f x '=<.即函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增,所以01x =是()f x 的极小值点,所以()1e 1e 221f =+--+=,命题得证.(2)由()()2e 20xf x x ax a =+-+>,所以()e 2xf x x a '=+-,设()e 2xu x x a =+-,则()e 20xu x '=+>,所以函数()u x 在R 上单调递增,又()()11120ef u a '-=-=--<,()()e 0af a u a a '==+>,所以存在()01,x a ∈-,使得()000e 20x f x x a '=+-=,即00e 2xa x =+,则当0x x >时,()()0u x f x '=>;当0x x <时,()()0u x f x '=<.即()f x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,所以函数()g x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,由()()()g x f f x =,则()()()()g x f f x f x '''=⋅,所以()()0f f x '≥对任意x ∈R 恒成立,即()0f x x ≥恒成立,所以()()020000min e 2x f x x f x x ax ==+≥+-,将00e 2xa x =+带入上式,整理得()()0001e 220xx x -++≤,因为00e 20x a x =+>,所以000e e 2202x x ax +++=+>,所以01x ≤,所以00e 2e 2xa x =+≤+,即a 的取值范围为(]0,e 2+.【点睛】方法点睛:在利用导数分析函数的单调性时,常常遇见参数的干扰,导致无法进行常规分析导函数的正负,这时经常使用对导函数再次求导的方法进行分析,再结合一些特殊值确定导函数的正负,从而求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(ii)若
,试讨论采用何种检验方式更好?
参考数据:ln2≈0.69,ln3≈1.10,ln5≈1.61,e≈2.72,e2≈7.39,e3≈20.09.
13.(2020•石家庄一模)已知椭圆 C:
1(a>b>0)的左、右焦点分别为 F1(﹣c,0),
F2(c,0),点(1, )在椭圆 C 上,点 A(﹣3c,0)满足以 AF2 为直径的圆过椭圆的上顶点 B. (1)求椭圆 C 的方程; (2)已知直线 l 过右焦点 F2 与椭圆 C 交于 M,N 两点,在 x 轴上是否存在点 P(t,0)使得 • t 为定值?如果存在,求出点 P 的坐标;如果不存在,说明理由.
B.直线 yˆ bˆx aˆ 必经过点 (x, y) C.直线 yˆ bˆx aˆ 表示最接近 y 与 x 之间真实关系的一条直线 D. | r | 1,且 | r | 越接近于 1,相关程度越大; | r | 越接近于 0,相关程度越小 2.已知 A、B 两点的坐标分别是 (1, 0), (1, 0) ,直线 AP、BP 相交于点 P,且两直线的斜率之积为 m,
以顶点 A 为端点的三条棱长都相等, 它们彼此的夹角都是 60°,[来源:学+科+网]
可设棱长为
1,则
AA1
AB
AA1
AD
AD
AB
11
cos
60
1 2
AA1 AB AD
2
2 = AA1
AB
2
AD
2
+2 AA1
AB+2 AB
AD+2 AA1
AD
11132 1 6 2
(2)设{an}既是等差数列又是“H 数列”,且 a1=6,a2∈N*,a2>6,求公差 d 的所有可能值;
9.在① tan 4 3 ,② 7 sin 2 2 sin ,③ cos 2 7 这三个条件中任选一个,补充在下 27
面问题中,并解决问题.
已知
0,
2

0,
2

cos(
/6、【答案】9,3
【解析】因为正数 x,y 满足 x+y=1,

1 x
4 y
=(
1 x
4 y
)(x+y)=5+
y x
4x y
≥5+4=9,
当且仅当
y x
4x y

x+y=1

x=
1 3
,y=
2 3
时取等号,此时取得最小值
9,
y 1 = y x y = y x 1 2 y x 1 3,
xy x y xy

4
(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan45°)= .
6.已知正数
x,y
满足
x+y=1,则
1 x
4 y
的最小值等于
; y 1 的最小值等于 xy

7.(2020•北京模拟)已知{an}是公比为 q 的无穷等比数列,其前 n 项和为 Sn,满足 a3=12,___.是 否存在正整数 k,使得 Sk>2020?若存在,求 k 的最小值;若不存在,说明理由.
设此人第
n
天走
an
里路,则 {an } 是首项为
a1 ,公比为
q
1 2
的等比数列.
所以
S6
=
a1(1 q6 ) 1 q
a1[1
(
1 2
6
)]
1 1
378 ,解得
a1
192

2
a3
a1q 2
192
1 4
48 ,所以
A
正确,
由 a1 192 ,则 S6 a1 378 192 186 ,又192 186 6 ,所以 B 正确.[来源:学科网ZXXK]
xy
当且仅当
y x
x y

x+y=1
即x=y=ຫໍສະໝຸດ 1 2时取等号,此时取得最小值
3.
故答案为:9,3. /7、【解析】选择①.∵a3=12,∴a1×22=12,解得 a1=3.
∴Sn ( ) 3(2n﹣1),∴3(2k﹣1)>2020,解得 k>9.
∴存在正整数 k,使得 Sk>2020,k 的最小值为 10.
从①q=2,②q ,③q=﹣2 这三个条件中任选一个,补充在上面问题中并作答.
8.给定数列{An},若对任意 m,n∈N*且 m≠n,Am+An 是{An}中的项,则称{An}为“H 数列”.设数
列{an}的前 n 项和为 Sn.
(1)请写出一个数列{an}的通项公式
,此时数列{an}是“H 数列”;
果的概率为 p(0<p<1). (1)假设有 5 份血液样本,其中只有 2 份样本为阳性,若采用逐份检验方式,求恰好经过 2 次 检验就能把阳性样本全部检验出来的概率;
(2)现取其中 k(k∈N*且 k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为 ξ1,采用混合检验方式,样本需要检验的总次数为ξ2. (i)若 Eξ1=Eξ2,试求 p 关于 k 的函数关系式 p=f(k):
都相等,且它们彼此的夹角都是 60°,下列说法中正确的是( )
2 2
A. AA1 AB AD 2 AC
B. AC1 AB AD 0
C.向量 B1C 与 AA1 的夹角是 60°
D. BD1 与 AC 所成角的余弦值为
6 3
5. 若α,β为锐角 ,且 ,则(1+tanα)(1+tanβ)=
(1)求证:A1D⊥平面 BCED; (2)在线段 BC 上是否存在点 P,使直线 PA1 与平面 A1BD 所成的角为 60°?若存在,求出 PB 的长;若不存在,请说明理由.
12.(2020•天河区二模)某医院为筛查某种疾病,需要检验血液是否为阳性,现有 n(n∈N*)份 血液样本,有以下两种检验方式:①逐份检验,则需要检验 n 次:②混合检验,将其中 k(k∈ N*且 k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这 k 份的血液全为阴性, 因而这 k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这 k 份血液究竟哪 几份为阳性,就要对这 k 份再逐份检验,此时这 k 份血液的检验次数总共为 k+1 次.假设在接 受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结
则下列结论正确的是( )
A.当 m 1时,点 P 的轨迹圆(除去与 x 轴的交点) B.当 1 m 0 时,点 P 的轨迹为焦点在 x 轴上的椭圆(除去与 x 轴的交点) C.当 0 m 1时,点 P 的轨迹为焦点在 x 轴上的抛物线
D.当 m > 1 时,点 P 的轨迹为焦点在 x 轴上的双曲线(除去与 x 轴的交点) 3. 在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,
如此六日过其关”.则下列说法正确的是( ) A.此人第三天走了四十八里路 B.此人第一天走的路程比后五天走的路程多六里
1
C.此人第二天走的路程占全程的
4
D.此人走的前三天路程之和是后三天路程之和的 8 倍
4. 如图,一个结晶体的形状为平行六面体 ABCD A1B1C1D1 ,其中,以顶点 A 为端点的三条棱长
/8、【解析】如:an=2n. 对任意 m,n∈N*且 m≠n,an+am=2(n+m)=am+n∈{an}. 因此数列{an}为“H 数列”. (2)设{an}既是等差数列又是“H 数列”,且 a1=6,a2∈N*,a2>6, an=6+(n ﹣1)d,6+d>6,即 d>0.且 d∈N*, a1+a2=6+6+d=12+d, 则 a1+a2=ak, 若 a1+a2=a3=6+2d,则 d=6.an=6n,{an}是“H 数列”, 若 a1+a2=a4=6+3d,则 d=3.an=3n+3,{an}是“H 数列”, 若 a1+a2=a5=6+4d,则 d=2.an=2n+4,{an}是“H 数列”,
D.相关系数 r 的绝对值越接近于1,表示相关程度越大,越接近于 0 ,相关程度越小,故 D 正
确.[来源:学科网 ZXXK]
故选:BCD. 2、【答案】ABD
【解析】M 的坐标为 (x, y) ,直线 AP
的斜率为 kAP
x
y
1
x
1 , kBM
x
y
1
x
1
由已知得, y y m x 1
x 1 x 1
新高考开放性试题题型专练 04 1.在统计中,由一组样本数据 x1, y1 , x2, y2 , xn , yn 利用最小二乘法得到两个变量的回归
直线方程为 yˆ bˆx aˆ ,那么下面说法正确的是()
A.直线 yˆ bˆx aˆ 至少经过点 x1, y1 , x2, y2 , xn , yn 中的一个点
m
对 D, m > 1 ,方程为 x2 y2 1 x 1 ,表示双曲线线,故 D 正确;
m
故选:ABD.
3、【答案】ABD
【解析】设此人第 n 天走
an
里路,则{an}是首项为 a1 ,公比为
q
1 2
的等比数列,由 S6 =378
求得首项,然后逐一分析四个选项得答案
根据题意此人每天行走的路程成等比数列,
BD1 AC AD AA1 AB AB AD 1
所以 cos
BD1,AC
= BD1 AC =
|BD1|| AC|
相关文档
最新文档