人教版八年级数学第十二章单元测试题
人教版八年级上册数学第12章全等三角形_单元测试试卷A及答案解析
第十二章 全等三角形 单元测试(A )答题时间:120满分:150分、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号 填在下面的表格中)题号12345678910答案1,下列判断中错界.的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角 形全等D.有一边对应相等的两个等边三角形全等 2 .如图,ZXDAC 和4EBC 均是等边三角形, AE, BD 分别与CD, CE 交于点M, N,有如下结论:①△ACE^zXDCB;② CM CN ;③ AC DN . 其中,正确结论的个数是( ) A. 3个 B. 2个C. 1个D. 0个3 .某同学把一块三角形的玻璃打碎了 3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法 是()A.带①去B.带②去C.带③去D.带①②③去4 . AABC^ADEF, AB=2 , AC=4,若△ DEF 的周长为偶数,则EF 的取值为()A. 3B. 4C. 5D. 3 或 4 或 55 .如图,已知,△ ABC 的三个元素,则甲、乙、丙三个三角形中,和^ ABC 全等的图形是( )A,甲和乙 B.乙和丙C.只有乙D.只有丙6.三角形ABC 的三条内角平分线为AE 、BF 、CG 、中楠固境法中正确的个数有((第2题))①4ABC 的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分 A. 1个 B. 2个 C. 3个 D. 4个7 .如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处, /BAF=600,那么 / DAE 等于( )A. 150B. 300C. 450D. 6008 .如图所示,△ ABE ADC ABC 分别沿着AB, AC 边翻折180°形成的,若/ 1 : / 2 : / 3=28 : 5 : 3, WJ/q 的度数为 ( )A. 80°B. 100°C. 60°D. 45°9 .在MBC 和△ ABC 中,已知 A A , AB AB ,在下面判断中错误的是() A.若添加条件AC AC ,贝fMABCW^ABC8 .若添加条件BC BC ,贝^J△ABC0△ABCC.若添加条件 B B ,则△ABC^^ABCD.若添加条件 C C ,则△ ABCW△ ABC10 .如图,在^ABC 中,/C=90o ,AD 平分/ BAC, DELAB 于 E,则下列结论:①AD 平分/ CDE ;②/ BAC=/ BDE;③DE 平分/ ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4 个二、填空题(每题3分,共30)11 .如图,AB, CD 相交于点O, AD = CB,请你补充一个条件,使得△ AOD^zX COB .你(第7题)(第8题)第10题补充的条件是_________________________________12.如图,AC, BD相交于点O, AC=BD, AB = CD,写出图中两对相等的角14.如图,直线AE//BD,点C在BD上,若AE = 4, BD = 8, z\ABD的面积为16,则4ACE的面积为.15.在4ABC 中,/C=90°, BC=4CM, / BAC 的平分线交BC 于D,且BD: DC=5: 3,则D到AB的距离为:16.如图,4ABC是不等边三角形,DE=BC,以D , E为两个顶点作位置不同的三角形,使所作的三角形与4ABC全等,这样的三角形最多可以画出_________________ 个.(第16题)17.如图,AD, AD分别是锐角三角形ABC和锐角三角形ABC中BC,BC边上的高,且ABAB, AD AD .若使△ABC^^ABC ,请你补充条件:(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是:19.如图,已知在ABC中, A 90 , AB AC,CD平分ACB , DE BC于E ,若BC 15cm ,则ADEB的周长为cm .20.在数学活动课上,小明提出这样一个问题:/ B=/C=90°, E是BC的中点,DE平分/ADC, /CED=35°,如图16,则/ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是 .三、解答题(每题9分,共36分)21.如图,O为码头,A, B两个灯塔与码头的距离相等,OA, OB为海岸线,一轮船从码头开出,计划沿/ AOB的平分线航行,航行途中,测得轮船与灯塔A, B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.22.如图,在△ ABC 中,BD=DC, /1 = /2,求证:ADXBC.23.如图,OM 平分/ POQ, MA±OP,MB±OQ, A、B 为垂足,AB 交OM 于点N.求证:/ OAB=/OBA24.如图,已知AD//BC, /PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP于D.求证:AD+BC=AB.四、解答题(每题10分,共30分)25.如图,△ ABC中,AD是/CAB的平分线,且AB=AC+CD,求证:/ C=2/BA26.如图①,E、F分别为线段AC上的两个动点,且DELAC于E, BFLAC于F, 若AB=CD, AF=CE, BD 交AC 于点M.(1)求证:MB=MD, ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC//AB,且DC=AE, E为AB的中点, (1)求证:△ AED^AEBC.五、(每题12分,共24分)28.如图,△ ABC 中,/BAC=90 度,AB=AC, BD 是/ABC 的平分线, 线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. BD的延长(2)观看图前,在不添辅助线的情况下,除^ EBC外,请再写出两个与^ AED 的面积相等的三角29.已知:在△ ABC中,/ BAC=90o, AB=AC, AE是过点A的一条直线,且BDLAE于D,CELAE 于E.⑴ 当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;⑶归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.参考答案一、选择题1.B 2.B 3.C 4.B 5.B 6.B 7.A 8.A 9.B 10. C二、填空题11. /A=/C 或/ADO=/CBO 等(答案不口t一)1 2. / A= / D 或/ABC= / DCB 等(答案不唯一)13. 5 14. 8 1 5. 1.5cm 16. 4 17. BD=B'D'或/B=/B ’ 等(答案不唯一) 18.互补或相等19.15 20.350三、解答题21.此时轮船没有偏离航线.画图及说理略22.证明:延长AD 至H 交BC 于H;BD=DC;所以:/DBC=/^ DCB;/ 1 = / 2;/DBC+/ 1 = /角DCB+/2;/ABC=/ACB;所以:AB=AC;三角形ABD 全等于三角形ACD;/ BAD= / CAD;AD 是等腰三角形的顶角平分线所以:AD 垂直BC23.证明:因为AOM与MOB都为直角三角形、共用OM ,且/ MOA= / MOB所以MA=MB所以/ MAB= / MBA因为/ OAM= / OBM=90 度所以/ OAB=90- / MAB / OBA=90- / MBA所以/ OAB= Z OBA24.证明:做BE的延长线,与AP相交于F点,v PA//BC•./PAB+/CBA=180° ,又丁,AE, BE 均为 / PAB 和 / CBA 的角平分线•. / EAB+/ EBA=90 ° . ./AEB=90° , EAB 为直角三角形在三角形ABF中,AEXBF,且AE为/ FAB的角平分线•••三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,/EBC=/DFE,且BE=EF, /DEF=/CEB,•••三角形DEF与三角形BEC为全等三角形,「. DF=BCAB=AF=AD+DF=AD+BC四、25.证明:延长AC至E,使CE=CD,连接EDv AB=AC+CDAE=AB. AD 平分 / CAB/ EAD= / BADAE=AB/ EAD= / BADAD=AD.•.△ADE^AADB. E=/B且/ ACD= / E+/ CDE,CE=CD・ ./ACD=/E+/CDE=2/E=2/B即 / C=2Z B26.分析:通过证明两个直角三角形全等,即Rt^DEC^RtABFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE, DF.. DELAC 于E, BFLAC 于F,,•./DEC=/BFA=90° , DE//BF,在RtADEC 和RtABFA 中,. AF=CE, AB=CD ,,RtADEC^ RtABFA,•.DE=BF.••・四边形BEDF是平行四边形.•.MB=MD , ME=MF ;(2)连接BE, DF.. DE^AC 于E, BF^AC 于F,,•./DEC=/BFA=90° , DE//BF,在RtADEC 和RtABFA 中,. AF=CE, AB=CD ,,RtADEC^ RtABFA,•.DE=BF.••・四边形BEDF是平行四边形.•.MB=MD , ME=MF .(2)成立27.(1)证明:= DC=1/2 AB, E 为AB 的中点,•.CD=BE=AE .又 : DC // AB ,」•四边形ADCE是平行四边形.•.CE=AD, CE//AD.•./BEC=/BAD ..-.△BEC^AEAD(2)AAEC, ACDA, △ CDE五、28.证明:因为/ CEB=/CAB=90°所以:ABCE四点共元又因为:/ AB E= ZCB E所以:AE=CE所以:/ECA=/EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:/GAB=/ABG而:/ECA=/GBA (同弧上的圆周角相等)所以:/ ECA= / EAC= / GBA= / GAB而:AC=AB所以:△AEC^^AGB所以:EC=BG=DG所以:BD=2CE29 解:(1)在△ ABC 中,/BAC=90° ,・ ./BAD =90° -ZEACo又「BD^AE 于D, CELAE 于E, ・./BAD =90° -ZEAC=ZACEo 而AB=AC ,于是△ ABD全等于△ CAE , BD=AE,AD=CE。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
人教版八年级数学上册《第十二章全等三角形》单元练习题(含答案)
第十二章《全等三角形》单元练习题一、选择题1.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A. 4B. 3C. 6D. 52.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等3.如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C,D,则点P到∠AOB两边距离之和()A.小于CDB.大于CDC.等于CDD.不能确定4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°5.已知,如图,AC=BC,AD=BD,下列结论中不正确的是()A.∠ACD=∠BDCB.∠ACO=∠BCOC.CD平分∠ACD和∠ADBD.AB平分∠CAD和∠CBD6.如图所示,△ABC≌△DEC,则边AB的对应边是()A.DEB.DCC.ECD.BC7.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是()A.仅①B.仅①③C.仅①③④D.仅①②③④8.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∠A=40°,则∠BOC的大小为().A. 110°B. 120°C. 130°D. 140°二、填空题9.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是.10.如图:已知∠1=∠2,要根据SAS判定△ABD≌△ACD,则需要补充的条件为.11.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是 ___________.12.下列条件中,能判定两个直角三角形全等的个数有________个.①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一条直角边对应相等;④面积相等.13.如图,△ABC中,AB=AC,AE=CF,BE=AF,则∠E=________,∠CAF=__________.14.如图,已知AB=AD,∠BAE=∠DAC,要用SAS判定△ABC≌△ADE,可补充的条件是.15.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.三、解答题(共5小题,每小题分,共0分)17.已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.18.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.19.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?20.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.21.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.第十二章《全等三角形》单元练习题答案解析1.【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.2.【答案】D【解析】已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.3.【答案】A【解析】如图,过点P作PE⊥OA于E,PF⊥OB于F,则PE、PF分别为点P到∠AOB两边的距离,∵PE<PC,PF<PD,∴PE+PF<PC+PD,∴PE+PF<CD,即点P到∠AOB两边距离之和小于CD.故选A.4.【答案】B【解析】∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选B.5.【答案】A【解析】在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACD=∠BCD,∠ADC=∠BDC,∴故选项B、C、D不符合要求;根据已知不能推出∠ACD=∠BDC,故本选项正确;故选A.6.【答案】A【解析】根据全等三角形中互相重合的边是对应边,则可得到结论.7.【答案】D【解析】∵Rt△ABE≌Rt△ECD,∴AE=ED,①成立;∵Rt△ABE≌Rt△ECD,∴∠AEB=∠D,又∠DEC+∠D=90°,∴∠DEC+∠ABE=90°,即∠AED=90°,∴AE⊥DE,②成立;∵Rt△ABE≌Rt△ECD,∴AB=EC,BE=CD,又BC=BE+EC,∴BC=AB+CD,③成立;∵∠B+∠C=180°,∴AB∥DC,④成立,故选D.8.【答案】A【解析】∵O到三角形三边距离相等,∴AO,BO,CO都是三角形的角平分线,∴有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∴∠ABC+∠ACB=180-40=140,∴∠OBC+∠OCB=70,∴∠BOC=180-70=110°.9.【答案】全等三角形的对应角相等【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',利用全等三角形的对应角相等,得到∠A′O′B′=∠AOB.10.【答案】BD=CD【解析】如图,∵在△ABD与△ACD中,∠1=∠2,AD=AD,∴添加BD=CD时,可以根据SAS判定△ABD≌△ACD,故答案是BD=CD.11.【答案】AB=AC【解析】由题中点定义可知BD=CD,图中公共边AD=AD,要想用SSS判定△ABD≌△ACD,只要添加AB=AC即可.12.【答案】3【解析】①两条直角边对应相等,利用SAS,故本选项正确;②斜边和一锐角对应相等,符合判定AAS或ASA,故本选项正确;③斜边和一条直角边对应相等,符合判定HL;④面积相等不一定全等,故本选项错误.故答案为3.13.【答案】∠F;∠ABE【解析】∵AB=AC,AE=CF,BE=AF,∴△AEB≌△CFA(SSS),∴∠E=∠F,∠CAF=∠ABE.14.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC≌△ADE(SAS).15.【答案】∠ADB=∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△COB中,∴△ABD≌△CDB(SAS),故答案为∠ADB=∠CBD.16.【答案】(-2,0)【解析】∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(-2,0).故答案为(-2,0).17.【答案】解:∵△ABC≌△DFE,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB∴∠E=180°-100°-50°=30°,∵DF=12cm,∴AB=12cm.【解析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E的度数,再根据DF=AB,即可求出AB的长.18.【答案】解:(1)∵在△ADE和△CBF中,∴△ADE≌△CBF(SSS),∴∠D=∠B.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,∴∠AEO=∠CFO,∴AE∥CF.【解析】(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可;(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.19.【答案】(1)解:∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE.(2)解:△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),∴∠BDE=180°-90°=90°=∠E,∴BD∥CE.【解析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.20.【答案】证明:∵AE⊥AB,∴∠BAE=90°,∵△ACE≌△AFB,∴∠CAE=∠BAF,∠ACE=∠F,∴∠CAB+∠BAE=∠BAC+∠CAF,∴∠CAF=∠BAE=90°,而∠ACE=∠F,∴∠FMC=∠CAF=90°,∴CE⊥BF.【解析】先利用垂直定义得到∠BAE=90°,再利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.21.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE 和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC-BC=DB-BC,即AB=CD.【解析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.。
【八年级数学试题】八年级数学上册第十二章全等三角形单元检测试卷(人教版附答案)
八年级数学上册第十二章全等三角形单元检测试卷(人教版附答案)第十二全等三角形单元测试卷得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.如图,△AcB≌△A′cB′,∠AcA′=30°,则∠BcB′的度数为(B)A.20° B.30° c.35° D.40°(第1题图) (第2题图) (第3题图)2.(2018·怀化)如图,P为∠AB的角平分线,Pc⊥A,PD⊥B,垂足分别是c,D,则下列结论错误的是(B)A.Pc=PD B.∠cPD=∠DP c.∠cP=∠DP D.c=D3.(2018·永州)如图,点D,E分别在线段AB,Ac上,cD与BE 相交于点,已知AB=Ac,现添加以下的哪个条仍不能判定△ABE≌△AcD(D)A.∠B=∠c B.AD=AE c.BD=cE D.BE=cD4.如图,∠B=∠D=90°,Bc=cD,∠1=40°,则∠2=(B) A.40° B.50° c.60° D.75°(第4题图) (第6题图) (第7题图)5.下列说法不正确的是(D)A.全等三角形的对应边上的中线相等 B.全等三角形的对应边上的高相等c.全等三角形的对应角的角平分线相等 D.有两边对应相等的两个等腰三角形全等6.如图,点A,D,c,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,Ac=6,则cD的长为(A)A.2 B.4 c.45 D.37.如图所示,在△ABc中,∠B=∠c=50°,BD=cF,BE=cD,则∠EDF的度数是(A)A.50° B.60° c70° D.100°8.(2018·淮安)如图,在Rt△ABc中,∠c=90°,以顶点A为圆心,适当长为半径画弧,分别交Ac,AB于点,N,再分别以点,N 为圆心,大于12N的长为半径画弧,两弧交于点P,作射线AP交边Bc于点D,若cD=4,AB=15,则△ABD的面积是(B)A.15 B.30 c.45 D.60(第8题图) (第9题图) (第10题图)9.如图,在四边形ABcD中,AB=cD,BA和cD的延长线交于点E,若点P使得S△PAB=S△PcD,则满足此条的点P(D)A.有且只有1个B.有且只有2个c.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10如图,在△ABc,△ADE中,∠BAc=∠DAE=90°,AB=Ac,AD=AE,点c,D,E三点在同一条直线上,连接BD,BE以下四个结论中①BD=cE;②∠AcE+∠DBc=45°;③BD⊥cE;④∠BAE+∠DAc =180°正确的个数是(D)A.1个 B.2个 c.3个 D.4个二、填空题(每小题3分,共24分)11.如图,△ABc≌△BAD,若AB=6,Ac=4,Bc=5,则△BAD 的周长为15(第11题图) (第12题图) (第13题图) (第14题图)12.如图,△ABc中,∠c=90°,AD平分∠BAc交Bc于点D已知BD∶cD=3∶2,点D到AB的距离是6,则Bc的长是15 13.如图,BE,cD是△ABc的高,且BD=Ec,判定△BcD≌△cBE的依据是“HL”.14.如图,AD=AB,∠c=∠E,∠cDE=55°,则∠ABE=125°15.如图所示,已知△ABc的周长是20,B,c分别平分∠ABc和∠AcB,D⊥Bc于点D,且D=3,则△ABc的面积是30(第15题图) (第16题图) (第17题图) (第18题图)16.如图,在平面直角坐标系中,∠AB=90°,A=B,若点A的坐标为(-1,4),则点B的坐标为(-4,-1).17.(2018·南京)如图,四边形ABcD的对角线Ac,BD相交于点,△AB≌△AD下列结论①Ac⊥BD;②cB=cD;③△ABc≌△ADc;④DA =Dc其中正确的是①②③(填序号)18.(2018·抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,Bc⊥轴,垂足分别为A,c,点D为线段A的中点,点P从点A出发,在线段AB,Bc上沿A→B→c运动,当P=cD时,点P的坐标为(2,4)或(4,2).三、解答题(共66分)19.(8分)如图,为码头,A,B两个灯塔与码头的距离相等,A,B为海岸线.一轮船从码头开出,计划沿∠AB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.解此时轮船没有偏离航线.理由由题意知A=B,P=P,PA=PB,∴△AP≌△BP(SSS),∴∠AP=∠BP∴此时轮船没有偏离航线20.(8分)(2018·岳阳)如图,在长方形ABcD中,点E在边AB 上,点F在边Bc上,且BE=cF,EF⊥DF,求证BF=cD证明∵四边形ABcD是长方形,∴∠B=∠c=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠cFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠cFD,在△BEF和△cFD中,∠BEF=∠cFD,BE=cF,∠B =∠c,∴△BEF≌△cFD(ASA),∴BF=cD21.(8分)在数学实践上,老师在黑板上画出如图的图形,(其中点B,F,c,E在同一条直线上).并写出四个条①AB=DE,②∠1=∠2③BF=Ec,④∠B=∠E,交流中老师让同学们从这四个条中选出三个作为题设,另一个作为结论,组成一个真命题.(1)请你写出所有的真命题;(2)选一个给予证明.你选择的题设______;结论______.(均填写序号)解(1)情况一题设①②④;结论③;情况二题设①③④;结论②;情况三题设②③④;结论① (2)选择的题设①③④,结论②(答案不唯一).理由∵BF=Ec,∴BF+cF=Ec+cF,即Bc=EF,在△ABc和△DEF中,AB=DE,∠B=∠E,Bc=EF,∴△ABc≌△DE F(SAS),∴∠1=∠222.(10分)(2018·南充)已知△ABN和△Ac位置如图所示,AB =Ac,AD=AE,∠1=∠2(1)求证BD=cE;(2)求证∠=∠N(1)证明在△ABD和△AcE中,AB=Ac,∠1=∠2,AD=AE,∴△ABD≌△AcE(SAS),∴BD=cE (2)证明∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE,即∠BAN=∠cA,由(1)得△ABD≌△AcE,∴∠B=∠c,在△Ac和△ABN中,∠c=∠B,Ac=AB,∠cA=∠BAN,∴△Ac≌△ABN(A SA),∴∠=∠N23.(10分)(2018·河北)如图,点B,F,c,E在直线l上(点F,点c之间不能直接测量),点A,D在l异侧,测得AB=DE,Ac=DF,BF=Ec(1)求证△ABc≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明∵BF=cE,∴BF+Fc=Fc+cE,即Bc=EF,在△ABc和△DEF中,AB=DE,Ac=DF,Bc=EF,∴△ABc≌△DEF(SSS) (2)结论AB∥DE,Ac∥DF理由∵△ABc≌△DEF,∴∠ABc=∠DEF,∠AcB =∠DF E,∴AB∥DE,Ac∥DF24.(10分)如图,已知△ABc中,∠c=90°,AD平分∠BAc交Bc于点D,DE⊥AB于点E,点F在Ac上,且BD=FD,求证AE-BE =AF证明∵AD平分∠BAc交Bc于D,DE⊥AB于E,∠c=90°,∴Dc =DE,在Rt△AcD和Rt△AED中,Dc=DE,Ac=Ac,∴Rt△AcD≌Rt△AED(HL),同理可得Rt△FcD和Rt△BED,∴Ac=AE,cF=BE,∴AE-BE=AF25.(12分)(2018·达州)△ABc中,∠BAc=90°,AB=Ac,点D为直线Bc上一动点(点D不与B,c重合),以AD为边在AD右侧作正方形ADEF,连接cF(1)观察猜想如图①,当点D在线段Bc上时,①Bc与cF的位置关系为__垂直__;②Bc,cD,cF之间的数量关系为__Bc=cD+cF__.(将结论直接写在横线上)(2)数学思考如图②,当点D在线段cB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.解(1)①垂直②Bc=cF+cD (2)cF⊥Bc成立;Bc=cD+cF不成立,cD=cF+Bc∵正方形ADEF中,AD=AF,∵∠BAc=∠DAF=90°,∴∠BAD=∠cAF,在△DAB与△FAc中,AD=AF,∠BAD=∠cAF,AB =Ac,∴△DAB≌△FAc,∴∠ABD=∠AcF,∵∠BAc=90°,AB=Ac,∴∠AcB=∠ABc=45°∴∠ABD=180°-45°=135°,∴∠BcF=∠AcF-∠AcB=135°-45°=90°,∴cF⊥Bc∵cD=DB+Bc,DB=cF,∴cD=cF+Bc参考答案1.B 2B 3D 4B 5D 6A 7A 8B 9D 10D 1115 1215 13HL 14125° 1530 16.(-4,-1) 17①②③18.(2,4)或(4,2)19.解此时轮船没有偏离航线.理由由题意知A=B,P=P,PA =PB,∴△AP≌△BP(SSS),∴∠AP=∠BP∴此时轮船没有偏离航线20.证明∵四边形ABcD是长方形,∴∠B=∠c=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠cFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠cFD,在△BEF和△cFD中,∠BEF=∠cFD,BE=cF,∠B =∠c,∴△BEF≌△cFD(ASA),∴BF=cD 21解(1)情况一题设①②④;结论③;情况二题设①③④;结论②;情况三题设②③④;结论① (2)选择的题设①③④,结论②(答案不唯一).理由∵BF=Ec,∴BF+cF =Ec+cF,即Bc=EF,在△ABc和△DEF中,AB=DE,∠B=∠E,Bc =EF,∴△ABc≌△DEF(SAS),∴∠1=∠2 22(1)证明在△ABD和△AcE 中,AB=Ac,∠1=∠2,AD=AE,∴△ABD≌△AcE(SAS),∴BD=cE (2)证明∵∠1=∠2,∴∠1+∠DAE=∠2+∠D AE,即∠BAN=∠cA,由(1)得△ABD≌△AcE,∴∠B=∠c,在△Ac和△ABN中,∠c=∠B,Ac=AB,∠cA=∠BAN,∴△Ac≌△ABN(ASA),∴∠=∠N 23(1)证明∵BF=cE,∴BF+Fc=Fc+cE,即Bc=EF,在△ABc 和△DEF中,AB=DE,Ac=DF,Bc=EF,∴△ABc≌△DEF(SSS) (2)结论AB∥DE,Ac∥DF理由∵△ABc≌△DEF,∴∠ABc=∠DEF,∠AcB =∠DFE,∴AB∥DE,Ac∥DF 24证明∵AD平分∠BAc交Bc于D,DE⊥A B 于E,∠c=90°,∴Dc=DE,在Rt△AcD和Rt△AED中,Dc=DE,Ac=Ac,∴Rt△AcD≌Rt△AED(HL),同理可得Rt△FcD和Rt△BED,∴Ac=AE,cF=BE,∴AE-BE=AF25.解(1)①垂直②Bc=cF+cD (2)cF⊥Bc成立;Bc=cD+cF 不成立,cD=cF+Bc∵正方形ADEF中,AD=AF,∵∠BAc=∠DAF=90°,∴∠BAD=∠cAF,在△DAB与△FAc中,AD=AF,∠BAD=∠cAF,AB=Ac,∴△DAB≌△FAc,∴∠ABD=∠AcF,∵∠BAc=90°,AB=Ac,∴∠AcB=∠ABc=45°∴∠ABD=180°-45°=135°,∴∠BcF =∠AcF-∠AcB=135°-45°=90°,∴cF⊥Bc∵cD=DB+Bc,DB =cF,∴cD=cF+Bc。
人教版八年级数学上《第12全等三角形》单元测试含答案解析
《第12章全等三角形》一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD 周长最小,并求这个最小周长.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.《第12章全等三角形》参考答案与试题解析一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连结BE,证明△ADC≌△EDB就可以得出BE=AC,根据三角形的三边关系就可以得出结论.【解答】解:延长AD到E,使AD=DE,连结BE.∵AD是△ABC的中线,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE.∵AB﹣AE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC.∵AB=8,AC=5,∴1.5<AD<6.5.【点评】本题考查了全等三角形的判定及性质的运用,三角形的中线的性质的运用,三角形三边关系的性质的运用,解答时证明三角形全等是关键.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】答:BE+CF>FP=EF.证明:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,(垂直平分线上的点到线段两端点距离相等)在△CFP中,CP+CF=BE+CF>FP=EF.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,再证明ED=EC即可.【解答】证明:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD.【解答】证明:如图,延长AD至F,使得CF⊥AC.∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,在△ABM与△CAF中,,∴△ABM≌△CAF(ASA),∴∠BMA=∠F,AM=CF,在△FCD与△MCD中,,∴△FCD≌△MCD(SAS),∴∠F=∠CMD,∴∠AMB=∠DMC.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和全等三角形的判断与性质进行解答即可.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】将△ADQ绕点A顺时针旋转90°得到△ABE,根据旋转的性质可得BE=DQ,AE=AQ,∠BAE=∠DAQ,然后求出∠EAP=∠PAQ=45°,再利用“边角边”证明△APE和△APQ全等,根据全等三角形对应边相等可得PQ=PE,再根据PE=PB+BE等量代换即可得证.【解答】证明:如图,将△ADQ绕点A顺时针旋转90°得到△ABE,由旋转的性质得,BE=DQ,AE=AQ,∠BAE=∠DAQ,∵∠PAQ=45°,∴∠EAP=∠PAQ=45°,在△APE和△APQ中,,∴△APE≌△APQ(SAS),∴PQ=PE,∵PE=PB+BE,∴PQ=PB+DQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用旋转作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AC到E,使CE=BM,连接DE,求证△BMD≌△CDE可得∠BDM=∠CDE,进而求证△MDN ≌△EDN可得MN=NE=NC+CE=NC+BM,即可计算△AMN周长,即可解题.【解答】解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.【点评】本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证MN=NE=NC+CE=NC+BM是解题的关键.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】此题考查全等三角形的判定与性质,注意分类讨论思想的渗透.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】几何综合题.【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.【解答】题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.【考点】全等三角形的判定与性质;角平分线的性质;等边三角形的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等直接回答;(2)过P作OA、OB的垂线,构造图①的图形,利用(1)的结论证明PC、PD所在的三角形全等;(3)仿(2)的证明可得PC=PD.【解答】解:(1)证明:∵OP平分∠AOB,PC⊥OA于C,OM平分∠AOB,∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,∴PD⊥OB于D,∴PC=PD.(角平分线上的点到角的两边的距离相等)(2)解:PC=PD.过P点作PQ⊥OA于Q,PN⊥OB于N.由(1)得 PQ=PN.∵∠AOB=120°,∴∠QPN=360°﹣90°﹣90°﹣120°=60°.∴∠QPC=∠NPD=60°﹣∠CPN.∴△PQC≌△PND.(ASA)∴PC=PD.(3)解:PC=PD.【点评】此题考查全等三角形的判定和性质,由易到难层层递进,把握解题思路是关键.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.【考点】全等三角形的判定与性质.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG 可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可.【解答】(1)证明:在△ABD和△CDB中∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得,或,解得(舍去),当F由B到C,即时,有,解得,或,解得,综上可知共有三次,移动的时间分别为2秒、4秒、5秒,移动的距离分别为6、6、5.【点评】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等,从而得到方程解得.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【考点】正方形的性质;全等三角形的判定与性质.【专题】动点型;操作型.【分析】(1)根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;(2)结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.【点评】此题考查的知识点是正方形的性质,解答本题关键要充分利用正方形的特殊性质,利用三角形全等论证.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形,再由HL定理得出△DOP′≌△DOP,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP中∵,∴△DOP′≌△DOP.同理可得,△EOP″≌△EOP′∴∠P OP″=2α;(2)成立.如图2,当点P在∠AOB内时,∵同(1)可得,△DOP′≌△DOP,EOP″≌△EOP′,∴∠POD=∠P′OD,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P在∠AOB的边上时,∵同(1)可得△EOP″≌△EOP,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)【考点】作图—应用与设计作图.【分析】根据角平分线的作法,作出铁路与公路所形成的角的平分线,角平分线与河流的交点即为所求.【解答】解:如图所示:,点Q即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握角平分线上的点到角两边的距离相等.15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L 上键一个水坝站P ,使向A′B 两村送水所用水管PA+PB 最短,水坝站P 应建何处?【考点】轴对称-最短路线问题;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠AOB 的平分线和线段CD 的中垂线,两者的交点就是P ;(2)作出A 关于m 的对称点A',连接A'B 于直线m 的交点就是P .【解答】解:如图所示:【点评】本题考查了基本作图,理解角平分线的性质、以及线段的中垂线的性质是关键.16.已知,P 为∠AOB 内一点,PO=24cm ,∠AOB=30°,试在OA 、OB 上分别找出两点C 、D ,使△PCD 周长最小,并求这个最小周长.【考点】轴对称-最短路线问题.【分析】分别作点P 关于OA 、OB 的对称点P 1、P 2,连P 1、P 2,交OA 于C ,交OB 于D ,△PCD 的周长=P 1P 2,然后证明△OP 1P 2是等边三角形,即可求解.【解答】解:分别作点P 关于OA 、OB 的对称点P 1、P 2,连P 1、P 2,交OA 于C ,交OB 于D , 则OP 1=OP=OP 2,∠P 1OA=∠POA ,∠POB=∠P 2OB ,CP=P 1C ,PD=P 2D ,则△PCD 的周长的最小值=P 1P 2,∴∠P 1OP 2=2∠AOB=60°,∴△OP 1P 2是等边三角形,△PCD 的周长=P 1P 2,∴P 1P 2=OP 1=OP 2=OP=24cm .【点评】本题考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(1)如图1,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a 、b 、c 三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.【考点】作图—应用与设计作图.【分析】(1)利用线段垂直平分线的性质得出P 点即可;(2)利用角平分线的性质分别得出符合题意的答案.【解答】解:(1)如图所示:P 点即为所求;(2)如图所示:D ,E ,F ,G 点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.。
人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析
人教版八年级数学上册第十二章 全等三角形 单元测试卷(含答案)
人教版八年级数学上册第十二章全等三角形单元测试卷(含答案)一、单选题(共10题;共30分)1. ( 3分) 如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A. AB∥DE,且AC不平行于DF.B. BE=EC=CFC. AC∥DF.且AB不平行于DED. AB∥DE,AC∥DF.2. ( 3分) 如图(1),若△ABC与△DEF全等,请根据图中提供的信息,得出x的值为()A. 20B. 18C. 60D. 503. ( 3分) 如图,将长方形纸片沿对角线折叠,重叠部分为△BDE,则图中全等三角形共有()A. 0对B. 1对C. 2对D. 3对4. ( 3分) 如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°5. ( 3分) 如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A. ∠B=∠CB. BE=CDC. BD=CED. ∠ADC=∠AEB6. ( 3分) 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 17. ( 3分) 下列各组中的两个图形属于全等图形的是()A. B. C. D.8. ( 3分) 下列说法正确的是()A. 周长相等的两个三角形全等B. 面积相等的两个三角形全等C. 三个角对应相等的两个三角形全等D. 三条边对应相等的两个三角形全等9. ( 3分) 下列数据能唯一确定三角形的形状和大小的是()A. AB=4,BC=5,∠C=60°B. AB=6,∠C=60°,∠B=70°C. AB=4,BC=5,CA=10D. ∠C=60°,∠B=70°,∠A=50°10. ( 3分) 如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A. SSSB. ASAC. AASD. SAS二、填空题(共8题;共24分)11. ( 3分) 如图所示,AC=DF,BD=EC,AC∥DF,∠ACB=80°,∠B=30°,则∠F= 1 .12. ( 3分) 如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是________.(不添加任何字母和辅助线)13. ( 3分) 如图,△ACE ≅△DBF,如果DA=12,CB=6,那么线段AB的长是________.14. ( 3分) 三个全等三角形按如图的形式摆放,则∠1+∠2+∠3=________度.15. ( 3分) 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.若CD=3,AB=8则△ABD的面积是________。
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。
最新人教版初二八年级上册数学第12章《全等三角形》单元测试(含答案)
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.作者留言:您好!非常感谢!您浏览到此文档。
八年级数学上册《第十二章 三角形全等的判定》单元测试卷及答案(人教版)
八年级数学上册《第十二章三角形全等的判定》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图的四个三角形中,与ΔABC全等的是()A. B. C. D.2.下列命题中,正确的是()A.周长相等的两个等腰三角形全等B.三个角分别相等的两个三角形全等C.有两边及一个角对应相等的两个三角形全等D.三边分别相等的两个三角形全等3.如图,点E、F在BC上AB=CD,AF=DE,AF、DE相交于点G,添加下列哪一个条件,可使得△ABF≌△DCE()A.∠B=∠C B.AG=DG C.∠AFE=∠DEF D.BE=CF4.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=7厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.5厘米D.7厘米5.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有()A.2对B.3对C.4对D.5对6.如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1和∠2的关系是()A.∠2=2∠1B.∠2−∠1=90°C.∠1+∠2=90°D.∠1+∠2=180°7.如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD平分∠BAE,CE=3,AB=13,则CF=( )A.10 B.8 C.7 D.68.如图,在△ABC中∠B=∠C,BF=CD,BD=CE,∠FDE=65°则∠A的度数是()A.45°B.70°C.65°D.50°二、填空题9.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则需要添加的一个条件是.10.如图,已知 AB//CF,E为DF的中点,若AB=13cm,CF=7cm,则BD= cm .11.如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为.12.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD= 3,BD=8,则线段AF的长度为.三、解答题13.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示AB=AE,AC=AD,BC= DE,∠C=48°求∠D.14.如图,点A,F,C,D在同一直线上AF=DC,∠B=∠E,BC∥EF求证:△ABC≌△DEF.15.如图,已知在△ABC和△DBE中,AB=DB,∠1=∠2,∠A=∠D.求证:BC=BE.16.如图BE=BC,∠A=∠D.(1)求证:△ABC≅△DBE;(2)求证:AE=DC.17.如图D、C、F、B四点在一条直线上AB=DE,AC⊥BD,EF⊥BD垂足分别为点C、点F,CD= BF.(1)求证:△ABC≌△EDF.(2)连结AD、BE,求证:AD=EB.18.如图,在四边形ABCD中E,F分别是边AB,AD上一点CD=CE,∠BEC=∠D,∠BAD+∠BCF=180°.(1)求证:EB=DF;(2)连接AC,若AC平分∠BCF,求证:AB=AF.参考答案1.B2.D3.D4.A5.C6.D7.C8.D9.AC=AD或BC=BD10.611.30cm12.513.解:在△ABC和△AED中{AB=AE BC=DE AC=AD∴△ABC≌△AED(SSS)∴∠D=∠C=48°.14.解:证明:∵AF=DC∴AF+CF=DC+CF,即AC=DF ∵BC∥EF∴∠BCA=∠EFD在△ABC和△DEF中{∠B=∠E∠BCA=∠EFDAC=DF∴△ABC≌△DEF(AAS).15.证明:∵∠1=∠2∴∠1+∠ABE=∠2+∠ABE即∠DBE=∠ABC在△ABC与△DBE中∵{∠A =∠DAB =DB∠DBE =∠ABC(ASA ) ∴△ABC ≌△DBE∴BC=BE.16.(1)证明:在△ABC 与△DBE 中{∠A =∠D∠B =∠B BC =BE∴△ABC ≅△DBE(AAS)(2)证明:∵△ABC ≅△DBE∴AB =DB又已知BE =BC∴AB −BE =DB −BC即:AE =DC17.(1)证明:∵AC ⊥BD ,EF ⊥BD ∴△ABC 和△DEF 是直角三角形 又∵CD =BF∴CD+CF =BF+CF∴DF =BC又∵AB=DE∴Rt △ABC ≌Rt △EDF (HL ).(2)证明:∵△ABC ≌△EDF ∴AC =EF∵AC ⊥BD ,EF ⊥BD∴∠ACD =∠EFB又∵CD=BF∴△ACD ≌△EFB (SAS )∴AD =BE .18.(1)证明:∵在四边形ABCD 中∠BAD +∠BCF =180° ∴∠CFA +∠ABC =180° ∵∠CFA +∠CFD =180°∴∠CFD =∠ABC∵{∠CFD =∠ABC ∠D =∠BEC CD =CE∴△DFC ≌△FBC (AAS) ∴EB =DF ;(2)证明:∵△DFC ≌△FBC ∴FC =BC∵{FC =CB∠ACF =∠ACB AC =AC∴△AFC ≌△ABC (SAS) ∴AB =AF .。
(完整版)新人教版八年级数学上册第十二章测试题
ABCEF第十二章测试题姓名: 班级:一、选择题.1. 不能判定两个三角形全等的条件是( ) A. AASB. SASC. SSAD. ASA2. 使两个直角三角形全等的条件是( ) A. 一锐角对应相等 B. 两锐角对应相等C. 一条边对应相等D. 两条边对应相等3. 如图,点D 、E 在BC 上,且△ABE ≌△ACD ,对于结论①AB=AC,②∠BAE=∠CAD,③BE=CD, ④AD=DE,其中正确的个数是( )个 A. 1 B. 2 C. 3D. 44. 如图,AC 和BD 交于点O ,若OA=OD ,用“SAS ”证明△AOB ≌△DOC 还需( ) A. AB=DCB. OB=OCC. ∠A=∠DD. ∠AOB=∠DOC5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( ) A. △ABD 和△CDB 的面积相等 B. △ABD 和△CDB 的周长相等 C. ∠A+∠ABD=∠C+∠CBD D. AD∥BC,且AD =BC6. 如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB=120°,∠ADB =30°,则∠BCF= ( )A. 150°B. 40°C. 80°D. 90°7. 如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC=54°,则∠E=( )A. 25°B. 27°C. 30°D. 45°8. △ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证明△ABC ≌△DEF ,还需补充一个条件,错误的补充方法是( ) A. ∠B=∠EB. ∠C=∠FC. BC=EFD. AC=DF9. 如图,Rt △ABC 沿直角边BC 所在直线向右平移得到△DEF ,下列结论中错误的是( ) A. △ABC ≌△DEF B. ∠DEF=90° C. AC=DF D. EC=CF10. 如图,右a 、b 、c 三条公路的位置成三角形,现决定在三条公路之间修建一个购物 超市,使超市到三条公路的距离相等,则超市应建在( ) A. 在a 、b 两边高线的交点处 B. 在b 、c C. 在a 、b 两边中垂线的交点处D. 在∠1二、填空.11. 如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点,若AB=6cm ,BD=5cm ,AD=4cm , 则BC=_________12. 如图,△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=5013. 如图,AB ∥CD ,AD ∥BC ,OE =OF 14. 如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB . 15. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的 距离是________16. 如图,AC ⊥BD 于O ,BO=OD ,则图中有全等三角形________对17. 如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于E ,若AB=10cm ,则△DEB 的周长是_______18. 如图,AD 与BC 互相平分,且相交于点O ,则AB 与CD 的关系是_________ABCDE3题图ABCDO 4题图AB DEF┐9题图abc1 210题图ADBCEFDACEBDACB5题图7题图6题图 ABCD E 12题图11题图ABDABDC CBADE CBAD OOABCD14题图1315题图16题图17题图18题图三、解答题19.(6分) 已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .20.(6分) 如图,已知AB DC AC DB ==,.求证:12∠=∠.21. (6分) 已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 交于点F ,求证:BE =CD .22. (6分) 如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 过点C ,且AD ⊥MN 于D , BE ⊥MN 于E ,求证:AD=CE23.(8分) 如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.24. (6分) 如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.25. (8分) 如图,四边形ABCD 的对角线AC 与BD 相交于O 点。
【精品】人教版八年级数学上册第12章全等三角形单元测试(3)【3套】试题
人教版八年级数学上册第12章全等三角形单元测试(3)一、选择题(每小题3分,共30分)1、如图1所示,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A 600B 700C 750D 8502、下列条件能判断两个三角形全等的是( )①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等A ①③B ②④C ①②④D ②③④3、△ABC≌△DEF,且△ABC的周长为100 cm,A、B分别与D、E对应,且AB=35 cm,DF=30 cm,则EF的长为( )A 35 cmB 30 cmC 45 cmD 55 cm4、如图2所示,在ΔABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,图3的垂线BF上取两点C、D,可以证明△EDC ≌△ABC,,A.边角边公理B.角边角公理;C.边边边公理D.斜边直角边公理6、如图4所示,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A 1:2B 1:3C 2:3D 1:47、如图5,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A 小于B 大于C 等于D 不能确定NMCB A图4 图5 8、根据下列条件,能判定△ABC ≌△A′B′C′的是( ). A AB=A′B′,BC=B′C′,∠A=∠A′ B ∠A=∠A′,∠B=∠B′,AC=B′C′ C ∠A=∠A′,∠B=∠B′,∠C=∠C′D AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长9、在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )A 145°B 180°C 225°D 270°10、如图7,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A PA PB = B PO 平分APB ∠C OA OB =D AB 垂直平分OP二、填空题11、如图8,沿AM 折叠,使D 点落在BC 上,如果AD=7cm ,DM=5cm ,∠DAM=30°,则AN=_________cm ,∠NAM=_________.NMDCB A12、如图9,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对.O 图7BAP图11图9 图1013、已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为________ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________cm .14、如图10所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).15、工人师傅常用角尺平分一个任意角.做法如下:如图11所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的根据是______16、小明用同种材料制成的金属框架如图12所示.已知∠B =∠E ,AB =DE ,BF =EC ,其中框架△ABC 的质量为840克,CF 的质量为106克,则整个金属框架的质量为______17、如图13所示,三角形纸片ABC ,AB=10厘米,BC=7厘米,AC=6厘米.沿 过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为______厘米EDC BA18、已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标:_________19、如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.AD C B20、在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是___ ___ABCDE三、解答题21、如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE=FE ,FC ∥AB ,求证:AD=CF .22、(如图,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.23、如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.已知: 求证:BEADFCDACFEB 证明:24、如图所示,P 是∠BAC 内的一点,PE AB PF AC ⊥⊥,,垂足分别为点E F ,, AE=AF .求证:(1)PF PE =;(2)点P 在∠BAC 的角平分线上.PFEC BA25、△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE,F 是垂足,过B作BD ⊥BC 交CF 的延长线于点D. (1)求证:AE=CD ; (2)AC=12cm,求BD 的长.26、已知:在△ABC 中,∠BAC=90,AB=AC,AE 是过点A 的一条直线,且BD ⊥AE 于D, CE ⊥AE 于E.(1)当直线AE 处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由; (3)归纳(1)、(2),请用简洁的语言表达BD 、DE 、CE 之间的关系.参考答案一、选择题1、B2、C3、A4、A5、B6、D7、B8、D9、C 10、B 二、填空题 11、5,30° 12、4; 13、10,16;14、∠CAD=∠BAD 或∠B=∠C 或DC=DB ;15、∠B=∠E ,角边角公理(ASA)或∠A=∠D ,角角边公理(AAS) 16、1574克 16、8; 17、918、答案不唯一,如(4,0) 19、5 20、35° 三、解答题21、证明:因为FC ∥AB ,所以∠A=∠ECF ,在△ADE 和△CFE 中,A ECF AED CEF DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以△ADE ≌△CFE ,所以AD=CF .22、连接ME 、MF ,因为AB ∥CD ,所以∠B=∠C ,又因为M 为BC 的中点,所以BM=CM ,在△BEM 和△CFM 中,BE CFB C BM CM =⎧⎪∠=∠⎨⎪=⎩,所以△BEM ≌△CFM ,所以∠BME=∠CMF ,所以E 、M 、F 在一条直线上,即三个小石凳是否在一条直线上 23、情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠)情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 24、证明:(1)如图1,连结AP ,,,AC PF AB PE ⊥⊥∴∠AEP=∠AFP=90,又AE=AF ,AP=AP ,∴Rt △AEP ≌Rt △AFP ,∴PE=PF .(2)∵Rt △AEP ≌Rt △AFP ,∴∠EAP=∠FAP ,∴AP 是∠BAC 的角平分线, 故点P 在∠BAC 的角平分线上25、(1)证明:因为CF ⊥AE ,所以∠CFA=90°,所以∠ACF+∠CAF=90°,又因为∠ACF+∠BCD=90°,所以∠CAF=∠BCD ,因为BD ⊥BC ,所以∠DBC=90°,所以∠ECA=∠DBC ,在△EAC 和△DBC 中,CAF BCDAC BC ECA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以△EAV ≌△DBC ,所以AE=CD(2)因为AC=12cm, AC=BC,所以BC=12cm,因为E 是BC 中点,所以CE=6cm ,因为△EAV ≌△DBC ,所以BD=CE=6cm26、(1)证明:∵BD ⊥AE,CE ⊥AE , ∴∠BDA=∠AEC=90, ∴∠1+∠3=90 ∵∠BAC=90,∴∠2+∠3=90,∴∠1=∠2在△ABD 和△CAE 中,12∠=∠⎧⎪∠=∠⎨⎪=⎩ADB CEA AB CA , ∴△ABD ≌△CAE(AAS)∴AD=CE,BD=AE ,∵AE=AD+DE ,∴BD=DE+CE(2)BD=DE-CE理由:同(1)可证△ABD ≌△CAE ,∴AD=CE,BD=AE ,∵AE=DE-AD ,∴BD=DE-CE (3)当D 、E 位于直线BC 异侧时,BD=DE+CE ; 当D 、E 位于直线BC 同侧时,BD=DE-CE.人教新版八年级数学上册第12章全等三角形单元练习试题一.选择题(共8小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图,△ABC≌△A′B′C,点B′在边AB上,线段A′B′与AC交于点D,若∠A=40°,∠B=60°,则∠A′CB的度数为()A.100°B.120°C.135°D.140°3.如图,已知AB=AC,AD⊥BC,AE=AF,图中共有()对全等三角形.A.5B.6C.7D.84.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1B.2C.3D.45.如图,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠DBE的度数是()A.10°B.15°C.30°D.45°6.如图,点C是△ABE的BE边上一点,点F在AE上,D是BC的中点,且AB=AC=CE,给出下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是()A.4B.3C.2D.58.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10B.7C.5D.4二.填空题(共7小题)9.如图,在△ABC与△ADE中,点E在BC上,AC=AE,且EA平分∠CED,请你添加1个条件使△ABC≌△ADE,你添加的条件是:.10.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.11.如图,AB⊥CD,且AB=CD.点E,F是AD上的两点,CE⊥AD,BF⊥AD.若CE=5,BF=4.EF=3,则AD的长为.12.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.15.如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.三.解答题(共6小题)16.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,AD=DC=2.5,BC=4.(1)求∠CBE的度数.(2)求△CDP与△BEP的周长和.18.如图,AC与BD相交于点E,AB=CD,∠A=∠D.(1)试说明△ABE≌△DCE;(2)连接AD,判断AD与BC的位置关系,并说明理由.19.如图1,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE;20.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,求AC的长.21.已知:AB∥CD,BE、CF分别是∠ABC、∠BCD的角平分线,O是BC中点,则线段BE与线段CF有怎样的关系?请说明理由.参考答案一.选择题(共8小题)1.解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.2.解:∵△ABC≌△A′B′C,∴∠A′=∠A=40°,∠A′B′C=∠B=60°,CB=CB′,∴∠A′CB′=80°,∠BCB′=60°,∴∠A′CB=∠A′CB′+∠BCB′=140°.故选:D.3.解:∵AB=AC,AD⊥BC于D,∴BD=CD,又AD=AD,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵AE=AF,AO=AO,∴△AFO≌△AEO(SAS),∵∠BAE=∠CAF,∴△AEB≌△AFC(SAS),∴∠ABO=∠ACO,∵∠FOB=∠EOC,∴△FOB≌△EOC(AAS),进一步证得△CFB≌△BEC,△OBD≌△OCD,△AOB≌△AOC共7对.故选:C.4.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;②底边及底边上的高分别相等的两个等腰三角形全等,正确;③两边分别相等的两个直角三角形不一定全等;④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;故选:A.5.证明:∵AD=BD,AD⊥BC∴∠BAD=∠ABD=45°∵∠DAC=∠BAC﹣∠BAD∴∠DAC=75°﹣45°=30°∵AD=BD,∠ADB=∠ADC,DE=DC∴△BDE≌△ADC(SAS)∴∠DAC=∠DBE=30°故选:C.6.解:①∵D是BC的中点,AB=AC,∴AD⊥BC,故①正确;②∵F在AE上,不一定是AE的中点,AC=CE,∴无法证明CF⊥AE,故②错误;③无法证明∠1=∠2,故③错误;④∵D是BC的中点,∴BD=DC,∵AB=CE,∴AB+BD=CE+DC=DE,故④正确.故其中正确的结论有①④,共两个.故选:B.7.解:如图,作DH⊥AB于H.∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DH(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DH=4,即点D到AB的距离是4.故选:A.8.解:作EF⊥BC于F,∵S△BCE=10,∴×BC×EF=10,即×5×EF=10,解得,EF=4,∵BE平分∠ABC,CD⊥AB,EF⊥BC,∴DE=EF=4,故选:D.二.填空题(共7小题)9.解:添加∠B=∠D或BC=DE或∠BAC=∠DAE或∠BAD=∠EAC(答案不唯一),∵EA平分∠CED,∴∠AED=∠AEC,∵AC=AE,∴∠C=∠AEC,∴∠AED=∠C,当∠B=∠D时,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS),故答案为:∠B=∠D.10.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.11.证明:∵AB⊥CD,CE⊥AD,∴∠AFB=∠CED=90°,∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴BF=DE=3,CE=AF=5,∵AE=AF﹣EF=5﹣2=3,∴AD=AE+DE=6;故答案为:6.12.解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB=20米,故答案为:20米.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.15.解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,此时,6=8﹣3t,解得t=,∴BP=CQ=2,此时,点Q的运动速度为2÷=3厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为6÷=厘米/秒;故答案为:3或.三.解答题(共6小题)16.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=28°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=9cm,BC=5cm,∴AB+CD=9﹣5=4cm,∴AB=2cm.17.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=5,BE=BC=4,∴△CDP与△BEP的周长和=DC+DP+PC+BP+PE+BE=DC+DE+BC+BE=2.5+5+4+4=15.5.18.证明:(1)∵AB=CD,∠A=∠D,∠AEB=∠DEC∴△ABE≌△DCE(AAS)(2)AD∥BC理由如下:如图,连接AD∵△ABE≌△DCE;∴AE=DE,BE=CE,∴∠ADE=∠DAE,∠BCE=∠CBE∵∠AEB=∠ADE+∠DAE=∠BCE+∠CBE∴∠ADE=∠EBC∴AD∥BC19.解:如图1,过A作AF⊥BC于F,∵AB=AC,AD=AE,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,即BD=CE;20.解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2+×AC×2,∴AC=3.21.解:BE=CF,理由如下:∵AB∥CD,∴∠ABC=∠BCD.∵BE、CF分别是∠ABC、∠BCD的角平分线,∴∠EBO=∠ABC,∠FCO=∠BCD.∴∠EBO=∠FCO.又∠EOB=∠FOC,BO=CO,∴△BEO≌△CFO(ASA).∴BE=CF.人教版八年级上册第十二章全等三角形单元测试一、单选题1.已知图中的两个三角形全等,则∠α的度数是()A.80°B.60°C.90°D.50°2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD 的理由是()A.SSS B.AAS C.SAS D.HL3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去4.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,BD、CE交于点O,AB=AC,∠B=20°,则∠AOD=()A.20°B.40°C.50°D.55°5.两个三角形具备下列()条件,则它们一定全等.A.两边和其中一边的对角对应相等B.两个角对应相等C .三条边对应相等D .两边及第三边上的高对应相等6.如图,在五边形ABCDE 中,对角线AC=AD ,AB=DE ,BC=EA ,∠CAD=65°,∠B=110°,则∠BAE 的大小是( )A .135°B .125°C .115°D .105°7.如图所示,等腰Rt ABC ∆中,90C ∠=︒,AD 平分CAB ∠,交BC 于D ,过D 作DE AB ⊥于E ,若CD b =,BD a =,那么AB 的长度是( )A .+a bB .2+a bC .2a b +D .22a b +8.如图所示,在ABC ∆和DEC ∆中,AC DC =.若添加条件后使得ABC DEC ∆≅∆,则在下列条件中,添加不正确的是( )A .BC EC =,BCE DCA ∠=∠B .BC EC =,AB DE = C .B E ∠=∠,AD ∠=∠ D .AB DE =,B E ∠=∠9.如图所示,在ABC ∆中,AC BC =,90ACB ∠=,直线MN 过点C ,并交AB 边于点D ,点A 到直线MN 的距离2AE =,点B 到直线MN 的距离5BF =,则线段EF 的长是( )A .2B .3C .5D .710.如图,OB 、OC 分别是ABC ∠、∠ACB 的平分线,80A =∠,则O ∠=( )A .80B .100C .120D .13011.射线BD 在内部,下列各式中不能说明BD 是的角平分线的是( ) A.B. C. D.12.己知如图,等腰ABC ∆,AB AC =,120BAC ︒∠=,AD BC ⊥于点D .点P 是延长线上一点,点O 是线段上一点,OP OC =下面的结论: ①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③OPC ∆是等边三角形④.AB AO AP =+其中正确的是( )A .①③④B .①②③C .①③D .①②③④二、填空题 13.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是_____.14.如图,在ABC △中,AB AC =,高BD ,CE 交于点O ,连接AO 并延长交BC 于点F ,则图中共有______________________组全等三角形.15.如图,△ABC ≌△ADE ,其中,点B 与D 、点C 与E 是对应点.若∠BAE=120°,∠BAD=40°,则∠BAC 的大小为_______.16.如图,在ABC △中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,若6AB cm =,则DBE ∆的周长是___________cm .三、解答题17.将两块大小相同的含30°角的直角三角板(BAC B A C ''∠=∠=30°)按图1的方式放置,固定三角板A´B´C 然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB 与A´C 交于点E ,AC 与A´B´交于点F ,AB 与A´B´交于点O.(1)求证:BCE B CF '≅V V ;(2)当旋转角等于30°时,AB 与A´B´垂直吗?请说明理由。
人教版八年级上册数学第十二章单元练习卷含答案(全等三角形)
人教版八年级上册数学第十二章单元练习卷含答案全等三角形一、填空题1.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.2.如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= °.3.把两根钢条AA、BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。
8.如图5,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件,则有ΔAOC≌ΔBOC。
9.如图6,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF=10.如图7,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠ =∠或∥,就可证明ΔABC≌ΔDEF。
二、选择题11.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF12.已知,如图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO13.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点.()(A)高(B)角平分线(C)中线(D)垂直平分线已知14.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.15.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F,AC=DF(B)AB=DE,BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F(D)AB=DE,△ABC的周长等于△DEF的周长16.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1个(B)2个(C)3个(D)4个三、解答题:17.如图,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。
人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)
第十二章 全等三角形一、单选题1.下列各选项中的两个图形属于全等形的是( )A .B .C .D . 2.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等3.△ABC≌≌ECD≌≌A≌48°≌≌D≌62°,点B≌C≌D 在同一条直线上,则图中∠B 的度数是( )A .38°B .48°C .62°D .70°4.如图,在ABC 中,D E 、分别是AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C 的度数是( )A .15B .20C .25D .305.如图,BE=CF ,AB∥DE ,添加下列哪个条件不能证明∥ABC∥∥DEF 的是( )A .AB=DEB .∥A=DC .AC=DFD .AC∥DF6.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则∠BED 的度数为( )A .100°B .120°C .135°D .150°7.如图,在△ABC 中,AC =5,BC =12,AB =13,AD 是角平分线,DE ⊥AB ,垂足为E ,则△BDE 的周长为( )A .17B .18C .20D .258.如图,在OA ,OB 上分别截取OD ,OE ,使OD OE =,再分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线OC ,OC 就是AOB ∠的角平分线.这是因为连CD ,CE ,可得到COD COE ∆∆≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ∆∆≌的条件是( )A .SASB .AASC .ASAD .SSS9.如图≌在≌ABC 中≌AB ≌AC ≌D 是BC 的中点≌AC 的垂直平分线交AC ≌AD ≌AB 于点E ≌O ≌F ≌则图中全等三角形的对数是≌ ≌A .1对B .2对C .3对D .4对10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题11.如图,图中由实线围成的图形与①是全等形的有______.(填番号)12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.14.如图,ABC ∆和DCE ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,42EBD ∠=︒,则AEB ∠=___________度.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知点B≌E≌C≌F在一条直线上,AB=DF≌AC=DE≌∠A=∠D≌1≌求证:AC∥DE≌≌2≌若BF=13≌EC=5,求BC的长.17.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.18.在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.答案1.A2.C3.D4.D5.C6.C7.C8.D9.D10.B11.②③12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.514.13215.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.解:(1)在≌ABC 和≌DFE 中 AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DFE (SAS ),≌≌ACE=≌DEF ,≌AC≌DE ;(2)≌≌ABC≌≌DFE ,≌BC=EF ,≌CB ﹣EC=EF ﹣EC ,≌EB=CF ,≌BF=13,EC=5,≌EB=4,≌CB=4+5=9.17.(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE +CE =BD +BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠EAB =∠DAE +∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE .18.(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE,在△ACD与△CBE中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第5题) 昭君中学八年级(上)数学第十二章检测题
姓名 ( 满分:120分) 分数 一、选择题(每小题3分,共45分) 1.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等
B .有两边和一角对应相等的两个三角形全等
C .有两边和其中一边上的中线对应相等的两个三角形全等
D .有一边对应相等的两个等边三角形全等
2.如图,DAC △和EBC △均是等边三角形,AE BD ,分别与
CD CE ,交于点M N ,,有如下结论:
①ACE DCB △≌△;②CM CN =;③AC DN =. 其中,正确结论的个数是( ) A .3个
B .2个
C .1个
D .0个
3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去
配一
块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去
4.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数,则EF 的取值为( ) A .3 B .4 C .5 D .3或4或5
5.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( )
A .甲和乙
B .乙和丙
C .只有乙
D .只有丙
6.如图,△ABD ≌△CDB ,下面四个结论中,不正确的是( )
A .△ABD 和△CD
B 的面积相等 B .△ABD 和△CDB 的周长相等
C .∠A +∠AB
D =∠C +∠CBD D .AD ∥BC ,且AD =BC
,第6题图 ,第7题图 ,第8题图
7.如图,小强利用全等三角形的知识测量池塘两端M ,N 的距离,如果△PQO≌△NMO ,则只需测出其长度的线段是( )
A .PO
B .PQ
C .MO
D .MQ 8.如图,B
E ⊥AC 于点D ,且AD =CD ,BD =ED ,则∠ABC=54°,则∠E=( ) A .25° B .27° C .30° D .45°
,
第9题图 ,第10题图 ,第11题图 ,第12题图
9.如图,AB ∥DE ,AC ∥DF ,AC =DF ,下列条件中不能判断△ABC≌△DEF 的是( ) A .AB =DE B .∠B =∠E C .EF =BC D .EF ∥BC
10.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A .线段CD 的中点 B .OA 与OB 的中垂线的交点
C .OA 与C
D 的中垂线的交点 D .CD 与∠AOB 的平分线的交点
11.如图,已知AB =DC ,AD =BC ,E ,F 是DB 上两点且BF =DE ,若∠AEB=100°,∠ADB =30°,则∠BCF=( )
A .150°
B .40°
C .80°
D .70°
12.如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则( ) A .∠1=∠EFD B .BE =EC C .BF =DF =CD D .FD ∥BC
13.如图,在△ABC 中,AB =AC ,AD 是角平分线,BE =CF ,则下列说法正确的个数是( ) (1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD =CD ;(4)AD ⊥BC . A .1个 B .2个 C .3个 D .4个
,
第13题图 14题图
14.如图,在△ABC 中,AB =AC ,点E ,F 是中线AD 上的两点,则图中可证明为全等三角形的有( )
A .3对
B .4对
C .5对
D .6对
15.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )
A .相等
B .不相等
C .互余或相等 D. 互补或相等 二、解答题(共75分)
16.(6分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:△ABC≌△DEF
(第3题)
B
E
C
D
A
N
M (第2题)
17.(6分)如图,CD =CA ,∠1=∠2,EC =BC.
求证:DE =AB.
18、(7分)如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE , FC ∥AB ,AE 与CF 有什么关系?证明你的结论.
19、(7分)如图1,已知AB=AD ,∠BAE=∠DAC ,要使△ABC ≌△ADE ,可补充的条件是 (写出一个即可).并证明。
20.(8分)如图,AE ⊥BE ,AD ⊥DC ,CD =BE ,∠DAB =∠EAC .求证:AB =AC .
21.(8分)如图,E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D ,连接CD 交OE 于F.
求证:(1)EC =ED ;
(2)OC =OD ; (3)DF =CF.
22. (10分)如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .
(1)求证AD=AE ;
(2)连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.
23. (11分)二选一,用你所学的全等三角形的知识解决下列实际问题,写出方案,画图,并加以证明。
一、测量河两岸A,B 的距。
二、测量池塘两端A,B 的距离。
24.(12分)
A
C
E B D 图1
E A
B
C D
1
2。