“三角形定则”处理动态平衡问题-带解析

合集下载

“三角形”定则与力学中的动态变化问题-人教版

“三角形”定则与力学中的动态变化问题-人教版

“三角形”定则与力学中两种典型的动态变化问题张 静(江苏省淮阴中学 江苏 淮安 223002)一、由“平行四边形”定则到“三角形”定则互成角度的两个力F 1、F 2与它们的合力F 之间满足“平行四边形”定则,如图1所示。

这个平行四边形中有两个全等的三角形,故可将“平行四边形”定则简化,将F 2、沿F 1的方向平移F 1长,得到图2,一个三角形,图2中,两个分力F 1、F 2首尾相接,合力F 从总的起点指向总的末端点,这样这得到了力的合成与分解的“三角形”定则:将两分力首尾相接,则从总的起点指向总的末端点的有向线段表示这两个力的合力。

关于“三角形”定则有以下几点说明:1、三角形定则只是一种运算方法,各有向线段的起点并不是该力的作用点。

但各有向线段的方向一定与力的方向相同,长度也和对应力的大小成比例。

2、与“平行四边形”定则一样,任何矢量的“和”及“差”运算都遵循“三角形”定则,因此也称之为矢量的“三角形”定则。

3、可将“三角形”定则推广为矢量的“多边形”定则。

求三个力F 1、F 2、F 3的合力:先利用“三角形”定则求F 1、F 2的合力F 12,再据“三角形”定则将F 12与F 3合成得合力F ,如图3所示。

可发现三个分力F 1、F 2、F 3依次首尾相接,合力F 从总的起点指向总的末端点。

依此类推,N 个力的合力,就是将这N个力首尾相接,则从总的起点指向总的末端点的有向线段表示这N 个力的合力。

如图4所示,类似一多边形。

4、如果几个力的首尾相接能构成一个封闭的多边形,则这几个力的合力为零。

5、一个重要结论:若一个物体在几个(三个以上)共点力作用下平衡,则这几个力首尾相连可构成一个封闭的多边形,特别是,若三个共点力合力为零,则三个力依次首尾相连构成一个封闭的三角形,如图5所示。

虽然“三角形”定则中是由“平行四边形”定则延伸出来的,但是它比“平行四边形”定则少了两条线,在运用的过程中会发现它非常简洁,同时也具有很强的灵活性,熟练地掌握它,会对解题有很大的帮助。

相似三角形法分析动态平衡问题

相似三角形法分析动态平衡问题

相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。

(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。

相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。

例1、半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化的情况是()A、N变大,T变小B、N变小,T变大C、N变小,T先变小后变大D、N不变,T变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg不变,支持力N,绳子的拉力T一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N的大小和方向、绳子的拉力T的大小和方向,所以还要利用其它条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式: R N R h mg L T =+=可得:mg R h L T +=运动过程中L 变小,T 变小。

mg R h R N += 运动中各量均为定值,支持力N 不变。

正确答案D 。

例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。

动态平衡三角形法-概述说明以及解释

动态平衡三角形法-概述说明以及解释

动态平衡三角形法-概述说明以及解释1.引言1.1 概述概述动态平衡三角形法是一种应用于工程领域的平衡技术,通过对物体的重心和惯性中心进行调整,使其在运动过程中保持平衡。

该方法结合了动态平衡和三角形法的原理,能够有效地解决物体在高速旋转或振动过程中出现的失衡现象。

本文将详细介绍动态平衡三角形法的概念、基本原理和应用,通过案例分析和实践经验,探讨其在工程领域中的优势和发展前景。

希望通过本文的阐述,读者能更深入地了解这一平衡技术,并在实际工程中加以运用和推广。

1.2文章结构文章结构部分将主要包括引言、正文和结论三个部分。

在引言中我们将对动态平衡三角形法进行概述,并介绍文章的结构和目的。

在正文部分,我们将详细讨论动态平衡的概念、三角形法的基本原理以及动态平衡三角形法的应用。

最后在结论部分,我们将总结动态平衡三角形法的优势,展望未来在工程领域的发展,并提出结论和建议。

通过这样的结构,读者将能够全面了解动态平衡三角形法的相关概念和应用,以及对未来研究方向的展望和建议。

1.3 目的:本文的主要目的是介绍动态平衡三角形法这一工程技术方法,并探讨其在各种工程领域的应用。

通过深入分析动态平衡的概念和三角形法的基本原理,我们将阐明动态平衡三角形法在解决机械设备不平衡问题中的有效性和性能优势。

同时,我们还将总结这一方法的优势,并展望其在未来在工程领域中的发展趋势。

最终,我们将通过结论和建议部分提出对于动态平衡三角形法在工程实践中的应用和推广建议,以期能够为工程领域的发展和进步做出贡献。

2.正文2.1 动态平衡的概念动态平衡是指在机械系统中,通过调整系统内部的结构或参数,使整个系统在运转过程中减小或消除振动或不平衡现象的过程。

在实际工程中,动态平衡是非常重要的,因为振动或不平衡会导致机械系统的不稳定性,影响系统的性能和寿命。

动态平衡在许多领域中都有着广泛的应用,特别是在旋转机械设备中更为突出。

例如,汽车发动机、风力发电机、离心风扇等都需要进行动态平衡处理,以确保设备在运转时保持稳定且减小能量消耗。

动态平衡问题(含解析)

动态平衡问题(含解析)

动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。

专题--图解法处理动态平衡问题

专题--图解法处理动态平衡问题

练习、如图所示,硬杆BC的一端固定在墙上的B点,另一端 装有滑轮C,重物D用绳拴住通过定滑轮固定于墙上的A点, 若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点 稍向下移,则在移动过程中() A.绳的拉力、滑轮对绳的作用力增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变hLFG′R
F2
F2 R RG F2 G hR hR
(定值)
LG F (变小) hR
G
拓展链接3、如图所示,绳与杆均不计重力,所承受弹力的最大值一定,A 端用铰链固定,滑轮O在A点正上方(滑轮大小及与绳间的摩擦均可忽略), B端吊一重物P。现施拉力FT将B端缓慢上拉(绳、杆均未断),在杆达到 竖直前,下列说法中正确的是( A.绳子越来越容易断 )。

解析法
• 例、如图所示,质量分别为M,m的两个物体系在一根通过 轻滑轮的轻绳两端,M放在水平地面上,m被悬在空中,若 将M沿水平地面向右缓慢移动少许后M仍静止,则 ( ) • A 绳中张力变大 • B 滑轮轴所受的压力变大 • C M对地面的压力变大 • D M所受的静摩擦力变大
整体法解决动态问题
三角形法则的应用 在限定条件下力的分解
1 已知一分力 F1 的方向与合力F 的大小,求另 一个分力F2
ⅰ. 当 F2< F0 时, 无解; ⅱ. 当 F2=F0 时, ⅳ. 当 F2≥F 时, 有一组解; 有一组解
θ
ⅲ. 当 F0<F2<F 时, 有无数组解;
F
O
F0 F1
2 已知两分力的方向:唯一解
3、具体做法: (1)用变化的平行四边形分析: 对研究对象在状态变化过程中的若干 状态进行受力分析,在同一图中作出物体 在若干状态下力的平衡图(力的平行四边 形),依据某一参量的变化,再根据平行四边 形定则画出动态力的平行四边形各边长度 变化及角度变化,确定力的大小及方向的 变化情况.

动态平衡中的三力平衡

动态平衡中的三力平衡

动态平衡中的三力问题方法一:三角形图解法。

特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例 1.1 如图 1 所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。

F1的方向不变,但方向不变,始终与斜面垂直。

F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图1-3 中一画出的一系列虚线表示变化的F2。

由此可知,F2先减小后增大,F1 随增大而始终减小。

同种类型:例1.2 所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。

特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变, 其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到 力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相 连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的 性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问 题进行讨论。

高三受力分析动态平衡模型总结(解析版)

高三受力分析动态平衡模型总结(解析版)

动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。

基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。

然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案D方法二:相似三角形法。

特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。

(完整版)相似三角形法分析动态平衡问题)

(完整版)相似三角形法分析动态平衡问题)

相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。

(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。

相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。

例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。

mg Rh RN +=运动中各量均为定值,支持力N 不变。

正确答案D 。

例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

相似三角形法分析动态平衡问题含答案

相似三角形法分析动态平衡问题含答案

相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。

(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。

相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。

1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。

由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。

实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RN R h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。

mg Rh RN +=运动中各量均为定值,支持力N 不变。

正确答案D 。

2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。

相似三角形分析动态平衡问题

相似三角形分析动态平衡问题

二、重难点提示相似关系的寻找。

动态平衡问题还有一类处理方法是使用相似三角形法。

选定研究对象后,倘若物体受三个力作用而平衡,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。

例题1 如图所示,杆BC的B端铰接在竖直墙上,另一端C为一滑轮,重力为G的重物上系一绳经过滑轮固定于墙上A点处,杆恰好平衡,若将绳的A端沿墙向下移,再使之平衡(BC杆、滑轮、绳的质量及摩擦均不计),则()A. 绳的拉力增大,BC杆受压力增大B. 绳的拉力不变,BC杆受压力增大C. 绳的拉力不变,BC杆受压力减小D. 绳的拉力不变,BC杆受压力不变思路分析:(1)本题比较的是轻绳的A端移动前后的两个平衡状态,两个状态下,滑轮上所受三力均平衡;(2)B端是铰链,BC杆可以自由转动,所以BC杆受力必定沿杆;(3)绳绕过滑轮,两段绳力相等,要保证合力沿杆(否则杆必转动),则杆必处于两绳所构成角的平分线上。

方法一:选取滑轮为研究对象,对其受力分析,如图所示。

绳中的弹力大小相等,即T1=T2=G,T1、T2、F三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。

方法二:图中,矢量三角形与几何三角形ABC 相似,因此Fmg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。

方法三:将绳的A 端沿墙向下移,T 2大小和方向不变,T 1大小不变,但与T 2所夹锐角逐渐增大,再使之平衡时,画出两段绳子拉力与轻杆的弹力所构成的封闭三角形如图所示,显然F ′大于F ,即轻杆的弹力变大,根据牛顿第三定律,BC 杆受压力增大。

3.8力的动态分析_平衡三角形法

3.8力的动态分析_平衡三角形法

利用“平衡三角形”处理力的动态分析问题的步骤 1. 受力分析 2. 平移成首尾相接的三角形——“平衡三角形” 3. 明确每个力的特点——大小、方向是否改变 4. 旋转方向改变的力 5. 判断每个力的大小变化
课后作业
1.课件上的题作本上
下课了啦!
继续努力!
下次课见!
温故而知新
三角形定则
温故而知新
三角形定则的应用

如图所示,大小分别为F1、F2、F3的三个力 恰好围成一个闭合的三角形,且三个力的大 小关系是F1<F2<F3,则下列四个图中,这 三个力的合力最大的是( )
力的动态分析 之 平衡三角形法
刘雨雷老师
知识点/例题/课堂练习/
要点一 了解平衡三角形
要点二 利用“平衡三角形”处 理力的动态分析问题的步骤
知识点/例题/课堂练习/
练习2 如图所示,电灯悬挂于两墙壁之 间,更换水平绳OA,使连接点A向上移动而 保持O点的位置和OB绳的位置不变,则在A 点向上移动的过程中( ) A.绳OB的拉力逐渐增大 B.绳OB的拉力逐渐减小 C.绳OA的拉力先增大后减小 D.绳OA的拉力先减小后增大
课堂小结
平衡三角形 受到三个力而平衡的物体,把它受到的三个力 经过平移,一定能组成首尾相接的三角形 另外,受到多个力而平衡的物体则能组成首尾 相接的多边形
知识点/例题/课堂练习/
平衡三角形
• 受到三个力而平衡的物体,把 它受到的三个力经过平移,一 定能组成首尾相接的三角形 • 另外,受到多个力而平衡的物 体则能组成首尾相接的多边形
知识点/例题/课堂练习/
1
3 O F 2 F3 2
F1
F1
1 O F2 2
3 F3
知识点/例题/课堂练习/

动态三角形解平衡问题

动态三角形解平衡问题

动态三角形解平衡问题在这个忙碌的生活中,动态三角形解平衡问题听上去好像是个高深莫测的东西,其实呢,咱们都可以轻松理解一下。

想象一下,你和朋友们正在公园里玩飞盘,正当大家热火朝天地比拼的时候,突然有人一脚踢到了飞盘。

飞盘飞得老远,大家一起追,场面可热闹了。

这就像是三角形里的各个点,彼此之间的关系总是紧密相连,有点小波动就能引发一场大混乱。

你说说,这样的动态平衡,谁能做到呢?说到平衡,那可真是个神奇的词。

生活中我们每天都在追求这个东西,吃饭要均衡,工作要平衡,休息也不能少。

就像三角形的三条边,要是有一条短了,其他两条就得拼命拉扯着,试图保持这个形状。

可这可不是一件容易的事,毕竟,生活的压力就像是风,随时可能把我们的三角形吹得东倒西歪,哎,这就需要我们学会怎么把这些力量搞定。

如果说三角形的平衡是一道数学题,那动态的部分就像是生活的变化,今天这个朋友开心,明天那个朋友烦心,大家的情绪就像飞盘在空中飞舞,总是没有一个定数。

你得时刻关注这些变化,找准那个能让大家心情愉悦的平衡点。

这就好比你在和一群人聊天,突然发现某个话题不对劲了,气氛瞬间冷了下来,这个时候,你可得赶紧换个话题,不然大家都得沉默得像块石头,真是让人心累。

动态平衡也有点像骑自行车,骑得稳了就能一直往前冲,要是倾斜了一下,立马就得调整身体的重心,才能稳住不摔倒。

生活中也是如此,面对各种突发状况,不能慌,得冷静分析一下,这样才能找到解决问题的办法。

比如说,今天心情不好,不妨给自己放个假,去吃点好吃的,心情一好,整个世界都亮了。

我们在追求平衡的时候,别忘了给自己一些空间和时间。

再说到这些平衡的力量,咱们可以把它想象成一根弹簧,拉得越紧,它就越有力量。

但是,要是拉得太过,弹簧就会断掉,事情就会变得一团糟。

这就像我们在工作和生活中,太过用力总是会适得其反,得学会适可而止,保持那种微妙的状态,才能长久。

这样想来,其实生活就像一场游戏,大家都在寻找那个最完美的平衡点。

相似三角形法 解决动态平衡问题

相似三角形法  解决动态平衡问题

相似三角形法 解决动态平衡问题 首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。

例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。

绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC 段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。

图中,矢量三角形与几何三角形ABC 相似,因此F mg BC AB =,解得F =ABBC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。

例题2 如图所示,固定在竖直平面内的光滑圆环的最高点处有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端拴着小球,上端穿过小孔用手拉住。

现拉动细线,使小球沿圆环缓慢上移,在移动过程中,手对线的拉力F 和轨道对小球的弹力N 的大小的变化情况是( )A. F 大小将不变B. F 大小将增大C. N 大小将不变D. N 大小将增大对小球受力分析,其受到竖直向下的重力G ,圆环对小球的弹力N 和线的拉力F 作用,小球处于平衡状态,G 大小方向恒定,N 和F 方向不断在变化,如图所示,可知矢量三角形AGF 1与长度三角形BOA 相似,得出:ABF OA N OBG 1==,又因为在移动过程中,OA 与OB 的长度不变,而AB 长度变短,所以N 不变,F 1变小,即F 变小,故C选项正确。

动态平衡的几种解法

动态平衡的几种解法

动态平衡问题的几种解法刘金艳在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:三角形法则。

原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1.如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随β增大而始终减小。

图2点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法。

原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的( )图3A. 绳子的拉力F 不断增大B. 绳子的拉力F 不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G 、浮力F 浮、水的阻力f 、绳子拉力F 。

动态平衡问题的几种解法

动态平衡问题的几种解法

动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“三角形定则”处理动态平衡问题相互作用专题二一、单选题(本大题共11小题,共44.0分)1.质量分别为m和2m小球a、b用细线相连后,再用细线悬挂于O点,如图所示。

用力F拉小球b,使两个小球都处于静止状态,且细线OA与竖直方向的夹角保持,则F的最小值为2.A. B. mg C. D.【答案】D【解析】【分析】以两个小球组成的整体为研究对象,当F垂直于Oa线时取得最小值,根据平衡条件求解F 的最小值。

本题是隐含的临界问题,关键运用图解法确定出F的范围,得到F最小的条件,再由平衡条件进行求解。

【解答】以两个小球组成的整体为研究对象,分析受力,作出F在三个方向时整体的受力图,根据平衡条件得知:F与T的合力与重力mg总是大小相等、方向相反,由力的合成图可知,当F与绳子Oa垂直时,F有最小值,即图中2位置,F的最小值为:根据平衡条件得:,故ABC错误,D正确。

故选D。

3.如图,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平现保持O点位置不变,改变OB绳长使绳末端由B点缓慢上移至点,此时与OA之间的夹角设此过程中OA、OB的拉力分别为、,下列说法正确的是( )A. 逐渐减小,逐渐增大B. 逐渐减小,先减小后增大C. 逐渐增大,逐渐减小D. 逐渐增大,先减小后增大【答案】B【解析】【分析】以结点O为研究对象,分析受力,作出轻绳在B和两个位置时受力图,由图分析绳的拉力变化。

本题运用图解法研究动态平衡问题,也可以根据几何知识得到两绳垂直时,轻绳OB的拉力最小来判断。

【解答】以结点O为研究对象,分析受力:重力G、绳OA的拉力和绳BO的拉力,如图所示,根据平衡条件知,两根绳子的拉力的合力与重力大小相等、方向相反,作出轻绳OB在两个位置时力的合成图如图,由图看出,逐渐减小,先减小后增大,当时,最小。

故选B。

4.如图所示,光滑小球置于竖直墙壁和挡板间,挡板绕O点于图示位置缓慢转至水平的过程中,球对墙壁和挡板的压力如何变化( )A. 对墙壁的压力减小,对挡板的压力也减小B. 对墙壁的压力减小,对挡板的压力增大C. 对墙壁的压力减小,对挡板的压力先增大后减小D. 对墙壁的压力先增大后减小,对挡板的压力增大【答案】A【解析】【分析】对球进行正确受力分析,把握其受力特点:一个力大小和方向不变重力,一个力方向不变墙给球的支持力,另一个力的大小、方向均发生变化挡板给球的作用力,对于这类动态平衡问题,即可以采用“图解法”进行。

熟练掌握分析动态平衡的各种方法,正确分析动态平衡问题是对学生的基本要求,在平时训练中要加强这方面的能力培养。

【解答】以小球为研究对象,处于平衡状态,根据受力平衡,有:由图可知,墙壁给球的压力逐渐减小,挡板给球的支持力逐渐减小,根据牛顿第三定律可知小球对竖直墙壁的弹力逐渐减小,小球对挡板的压力逐渐减小。

故选A。

5.如图所示,一根细绳的上端系在O点,下端系一个重球B,放在斜面体A上斜面体放置水平地面上,所有接触面光滑,现用水平推力F向右推斜面体使之在光滑水平面上向右缓慢运动一段距离细绳尚未到达平行于斜面的位置在此过程中A. 斜面对小球B的支持力减小B. 绳对小球B的拉力增大C. 地面对斜面体的支持力不变D. 水平推力增大【答案】D【解析】【分析】先对球受力分析,受重力、支持力、拉力,根据平衡条件并结合合成法作图分析得到拉力和支持力的变化情况;再对斜面体受力分析,受推力、重力、支持力和压力,根据平衡条件并结合正交分解法列式分析本题关键是先后隔离球和斜面体进行受力分析,根据平衡条件并结合正交分解法列式分析,不难。

【解答】解:AB、对球受力分析,如图所示:根据平衡条件,在向右缓慢运动过程中,细线的拉力逐渐变得与斜面平行,故细线的拉力在减小,支持力在增加,故A错误,B错误;CD、根据牛顿第三定律,球对斜面体的压力也增加,对斜面体分析,受推力、支持力、重力和压力,如图所示:根据平衡条件,有:由于N增加,故支持力和推力F均增加,故C错误,D正确;故选:D。

6.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置绕O点缓慢转至水平位置,则此过程中球对挡板的压力和球对斜面的压力的变化情况是A. 和都一直在增大B. 和都一直在减小C. 先增大后减小,一直减小D. 先减小后增大,一直减小【答案】D【解析】【分析】小球受三个力作用而保持静止状态,其中重力大小、方向都不变,斜面对球的支持力方向不变,大小变,挡板对球的支持力的大小和方向都变化,根据三力平衡的条件,结合平行四边形定则作图分析即可。

本题关键对小球受力分析,然后将两个力合成,当挡板方向变化时,将多个力图重合在一起,直接由图象分析出各个力的变化情况。

【解答】小球受重力、挡板弹力和斜面弹力,将与合成为F,如图所示:小球一直处于平衡状态,三个力中的任意两个力的合力与第三个力等值、反向、共线,故F和合成的合力F一定与重力等值、反向、共线;从图中可以看出,当挡板绕O点逆时针缓慢地转向水平位置的过程中,先变小,后变大,越来越小;故ABC错误,D正确。

故选D。

7.如图所示,一铁球放在板与竖直墙之间,当板向下缓慢放下,使角变大时,下面说法正确的是( ).A. 球对墙的压力将变大B. 球对墙的压力不变C. 球对板的压力将变大D. 球对板的压力将变小【答案】D【解析】【分析】球受重力和两个支持力而平衡,将重力按照作用效果进行分解,结合图示法分析即可。

本题是三力平衡问题中的动态分析问题,关键是作图分析,可以用合成法、分解法考虑,不难。

【解答】将重力沿着垂直墙面和垂直直板方向分解,如图所示:球体对墙面弹力大小等于图中的,对直板压力大小的大小等于;若板绕其下端O点缓慢顺时针转动,使直板与墙面间夹角增大一些,由图得到变小,也变小;故球体对墙面弹力大小和对直板压力大小的均变小,故D正确,ABC错误。

故选D。

8.如图所示,两个完全相同的小球P、Q,放置在墙壁和斜木板之间,当斜木板和竖直墙壁的夹角缓慢减小时,下列说法错误的是( )A. 墙壁、木板受到P球的压力均增大B. 墙壁、木板受到P球的压力均减小C. Q球对P球的压力增大,对木板的压力减小D. P球受到墙壁、木板和Q球的作用力的合力不变【答案】B【解析】【分析】对球进行受力分析,把握其受力特点:一个力大小方向不变重力,一个力方向不变,另一个力大小方向均发生变化,对这类动态平衡问题可以采用“图解法“进行.熟练掌握分析动态平衡的各种方法,正确分析动态平衡问题是对学生的基本要求,在平时训练中要加强这方面的能力培养.【解答】以小球P,Q为研究对象,处于平衡状态,根据受力平衡,由图可知,墙壁对球的压力逐渐增大,木板对球的支持力逐渐增大,根据牛顿第三定律可知墙壁受到的压力增大,木板受到的压力增大,故A正确,B错误;C.以小球Q为研究对象,根据受力平衡,P球对Q球的支持力,木板给Q的支持力,当斜木板和竖直墙壁的夹角缓慢减小时,P对Q的支持力增大,挡板给的支持力减小,根据牛顿第三定律可知,Q对P的压力增大,对木板的压力减小,故C正确;D.小球P为研究对象,处于平衡状态,合外力为零,P受到重力,墙壁对球的压力,木板对球的支持力和Q球对P的压力,故P受到墙壁,木板和Q球的作用力的合力与P球受到的重力大小相等,方向相反,故D正确.本题选择错误的,故选B.9.如图所示,桌面上固定一个光滑的竖直挡板,现将一个质量一定的重球A与截面为三角形的垫块B叠放在一起,用水平外力F可以缓缓向左推动B,使球慢慢升高,设各接触面均光滑,则该过程中A. A和B均受三个力作用而平衡B. B对桌面的压力越来越大C. A对B的压力越来越小D. 推力F的大小恒定不变【答案】D【解析】【分析】先以小球A和B为研究对象,分析受力情况,根据平衡条件,运用图解法得到柱状物体对球的弹力和挡板对球的弹力如何变化,再对整体研究,分析推力F和地面的支持力如何变化。

本题首先要对小球受力分析,根据共点力平衡条件分析小球受力情况,再运用整体法研究地面的支持力和推力如何变化,关键是灵活运用整体法与隔离法对对象进行受力分析。

【解答】A.先以小球AA为研究对象,分析受力情况:重力、墙的弹力和斜面的支持力三个力;B受到重力、A的压力、地面的支持力和推力F四个力的作用,故A错误;当柱状物体向左移动时,斜面B对A的支持力和墙对A的支持力方向均不变,根据平衡条件得知,这两个力大小保持不变,则A对B的压力也保持不变,对整体分析受力可知,由平衡条件得知,恒力F与墙对A的支持力平衡,墙对A的支持力不变,则推力F不变,地面对整体的支持力与系统的总重平衡,保持不变,则由牛顿第三定律可知B对地面的压力不变,故BC错误,D正确。

故选D。

10.一个挡板固定于光滑水平地面上,截面为圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示现在对甲施加一个水平向左的力F,使甲沿地面极其缓慢地移动,直至甲与挡板接触为止设乙对挡板的压力,甲对地面的压力为,在此过程中( )A. 缓慢增大,缓慢增大B. 缓慢增大,不变C. 缓慢减小,不变D. 缓慢减小,缓慢增大【答案】C【解析】【分析】先以小球为研究对象,分析受力情况,根据平衡条件,运用图解法得到柱状物体对球的弹力和挡板对球的弹力如何变化,再对整体研究,分析推力F和地面的支持力如何变化。

本题首先要对小球受力分析,根据共点力平衡条件列式求解出小球受到的支持力表达式,再进行讨论再运用整体法研究地面的支持力和推力如何变化。

【解答】先以小球为研究对象,分析受力情况,当柱状物体向左移动时,与竖直方向的夹角减小,由图1看出,柱状物体对球的弹力与挡板对球的弹力均减小,则由牛顿第三定律得知,球对挡板的弹力减小,再对整体分析受力如图2所示,由平衡条件得知,,推力F变小地面对整体的支持力总,保持不变则甲对地面的压力不变,故C正确,ABD错误。

故选C。

11.如图所示,半球形物体A和小球B紧靠着放在一固定斜面上,并处于静止状态,忽略小球B表面的摩擦,用水平力F沿物体A表面将小球B缓慢拉至物体A的最高点C,物体A始终保持静止状态,则下列说法中正确的是( )A. 物体A受到斜面的摩擦力大小始终不变B. 物体A受到4个力的作用C. 小球B对物体A的压力大小始终不变D. 小球B对物体A的压力大小一直增加【答案】B【解析】解:A、对A、B整体分析,受拉力、重力、支持力和静摩擦力,根据平衡条件,有:,其中为斜面的坡角,由于F减小,故拉力F减小,故静摩擦力减小。

故A错误;B、由题意可知,物体A受重力、压力、支持力和静摩擦力共4个力作用。

故B正确;CD、对球B进行受力分析,受到水平拉力、重力和支持力作用下而处于平衡,因此这三个力构成首尾相连的矢量三角形,如下图所示:将小球B缓慢拉至物体A的最高点过程中,变小,故支持力N变小,拉力F也变小,根据牛顿第三定律可知压力也减小。

相关文档
最新文档