有理数的加法(1)教案
《有理数加法》教案
《有理数加法》教案第一章:有理数加法概念引入1.1 教学目标(1)让学生了解有理数加法的概念;(2)让学生掌握有理数加法的基本法则;(3)培养学生运用有理数加法解决实际问题的能力。
1.2 教学内容1.2.1 有理数加法的定义引导学生通过数轴理解有理数加法的意义,即在数轴上,两个有理数相加,就是将它们的终点位置相连,得到一条新的射线。
1.2.2 有理数加法的基本法则讲解同号有理数相加、异号有理数相加、互为相反数的有理数相加、零的加法等基本法则。
1.3 教学活动1.3.1 课堂讲解通过数轴示例,讲解有理数加法的定义和基本法则。
1.3.2 学生练习布置练习题,让学生运用有理数加法的基本法则进行计算。
1.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法的理解和掌握程度。
第二章:有理数加法计算2.1 教学目标(1)让学生掌握有理数加法的计算方法;(2)培养学生运用有理数加法解决实际问题的能力。
2.2 教学内容2.2.1 有理数加法的计算方法讲解加法运算中的括号去除、正负号转换等计算技巧。
2.2.2 实际问题解决通过实际问题,让学生运用有理数加法计算方法进行求解。
2.3 教学活动2.3.1 课堂讲解讲解有理数加法的计算方法和实际问题解决方法。
2.3.2 学生练习布置练习题,让学生运用有理数加法计算方法进行计算。
2.4 教学评价检查学生练习题的完成情况,评估学生对有理数加法计算方法的掌握程度。
第三章:有理数加法在实际问题中的应用3.1 教学目标(1)让学生学会将有理数加法应用于实际问题中;(2)培养学生运用有理数加法解决实际问题的能力。
3.2 教学内容3.2.1 实际问题引入通过生活实例,引入有理数加法在实际问题中的应用。
3.2.2 实际问题解决方法讲解将有理数加法应用于实际问题中的方法,如购物、长度测量等。
3.3 教学活动3.3.1 课堂讲解讲解有理数加法在实际问题中的应用方法和示例。
3.3.2 学生练习布置练习题,让学生运用有理数加法解决实际问题。
《有理数的加法(一)》教学设计
4.有理数的加法(一)教学目标知识与技能:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;过程与方法:培养学生的数学交流和归纳猜想的能力;情感态度价值观:渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
教学重点:有理数加法法则的探索过程,利用有理数的加法法则进行计算。
教学难点:异号两数相加的法则。
教学方法: “引导——分类——归纳”。
三、教学过程(一)温故知新1、什么样的两个数互为相反数?2、一个数的绝对值代表什么意思?(二)新知探究:1、引例:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明。
引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.2猜想结论:通过以上探索,你来观察一下,在两个有理数相加的过程中“和的符号”怎样确定?“和的绝对值”怎样确定?一个有理数同0相加,和是多少?你能得出什么结论?3、归纳有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
例题讲解总结步骤(-4) + (- 8) =-( 4 + 8 ) = - 12(-9) + (+2) =-( 9 – 2 ) = - 7运算步骤:1、先判断题的类型(同号`异号) ;2、再确定和的符号;3、后进行绝对值的加减运算。
(三)验证明确结论:例1 计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)(四)运用巩固:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3);(3) (+4)+(-3); (4) (+3)+(-4);(5) (+4)+(-4); (6) (-3)+0; (7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。
有理数的加法的教学设计(精选11篇)
有理数的加法的教学设计(精选11篇)有理数的加法的教学设计第1篇《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。
重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。
最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。
)二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
有理数的加法教案-经典教学教辅文档[1]
4有理数的加法第1课时有理数的加法(1)【教学目标】知识与技能使先生了解有理数加法的意义,理解有理数加法运算的法则,能纯熟地进行有理数加法运算.过程与方法在有理数加法法则的导出和运用的过程中,留意培养先生独立分析成绩和口头表达的能力和运用数形结合的方法解决成绩的能力.情感、态度与价值观经过观察、归纳、比较,体验数学学习交流的探求性和创造性,在运用知识解决成绩时体验成功的喜悦.【教学重难点】重点:有理数加法法则.难点:异号两数相加的法则.【教学过程】一、复习引入师:同学们,在小学里我们曾经学过了正整数、正分数及数0的四则运算.如今引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?请同学们看下方的这个成绩.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他如今位于本来地位的哪个方向,相距多少米?师:我们知道,求两次运动的总结果,可以用加法来解答.可是上述成绩不能得到确定的答案,由于成绩中并未指出行走的方向.二、讲授新课1.发现、总结.师:同学们,我们必须把成绩说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是:(+20)+(+30)=+50,即这位同学位于本来地位的东边50米处.这一运算在数轴上表示,如图所示:(2)若两次都向西走,则他如今位于本来地位的西边50米处,写成算式就是:(-20)+(-30)=-50.考虑:还有哪些可能情形?你能把问题补充残缺吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示:如图所示:写成算式是(+20)+(-30)=-10,即这位同学位于本来地位的西边10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是(-20)+(+30)=( ),即这位同学位于本来地位的( )方( )米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号仿佛不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有甚么关系吗?(+4)+(-3)=( );(-6)+2=( ).再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=( ).(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=( ).2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相反的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.留意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习的加法运算不同.三、例题讲解教师出示例题.【例1】计算以下各题:(1)180+(-10);(2)(-10)+(-1);(3)5+(-5); (4)0+(-2).解:(1)180+(-10)(异号两数相加)=+(180-10)(取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值)=170;(2)-(10)+(-1)(同号两数相加)=-(10+1)(取相反的符号,并把绝对值相加)=-11;(3)5+(-5)(互为相反数的两数相加)=0;(4)0+(-2)(一个数同0相加)=-2.【例2】某市今天的最高气温为7 ℃,最低气温为0 ℃.据天气预告,两天后一股强冷空气将影响该市,届时将降温5 ℃.问两天后该市的最高气温、最低气温各约为多少摄氏度?解:气温降落5 ℃,记为-5 ℃.7+(-5)=2(℃);0+(-5)=-5(℃).答:两天后该市的最高气温约为2 ℃,最低气温约为-5 ℃.四、课堂小结1.这节课我们从实例出发,经过比较、归纳,理解了有理数加法的法则.今后我们经常要用类似的思想方法研讨其他成绩.2.运用有理数加法法则进行计算时,要同时留意确定“和”的符号与计算“和”的绝对值这两个成绩.第2课时有理数的加法(2)【教学目标】知识与技能理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算.过程与方法经过灵活运用加法运算律优化运算过程,培养先生观察、比较、归纳及运算的能力.情感、态度与价值观在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习气.【教学重难点】重点:有理数加法的运算律.难点:灵活运用运算律使运算简便.【教学过程】一、复习引入师:上节课我们学习了甚么,一同来复习一下吧!1.指名先生叙说有理数的加法法则.2.计算:(1)6.18+(-9.18);(2)(+5)+(-12);(3)(-12)+(+5);(4)3.75+2.5+(-2.5);(5)12+(-23)+(-12)+(-13). 阐明:经过练习巩固加法法则,突出计算简化成绩,引入新课.二、讲授新课1.发现、总结.(1)提出成绩:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探求:任意选择两个有理数(最少有一个是负数),分别填入以下□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(最少有一个是负数),分别填入以下□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让先生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的地位,和不变,即a +b =b +a .加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a +b )+c =a +(b +c ).这样,多个有理数相加,可以任意交换加数的地位,也可先把其中的几个数相加,使计算简化.三、例题讲解教师板书例题,并和先生共同完成.【例1】 计算:(1)(+26)+(-18)+5+(-16);(2)(-2.48)+4.33+(-7.52)+(-4.33);(3)(-123)+(112)+(+714)+(-213)+(-812). 解:(1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3;(2)原式=(-2.48)+(-7.52)+4.33+(-4.33)=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=(-10)+0=-10;(3)原式=[(-123)+(-213)]+[112+(-812)]+714=(-4)+(-7)+714=(-4)+[(-7)+714]=(-4)+14=-(4-14)=-334. 从几个例题中你能发现运用运算律时,通常将哪些加数结合在一同可以使运算简便吗?【例2】 运用加法运算律计算以下各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5);(2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512); (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56). 解:(1)原式=(66+11.3+8.1)+[(-12)+(-7.4)+(-2.5)]=85.4+(-21.9)=63.5;(2)原式=(3+25)+(5+35)+[-(2+78)]+[-(1+18)]+(5+512)+[-(3+512)]=3+5+25+35+(-2)+(-1)+(-78)+(-18)+5+(-3)+512+(-512)=7; (3)原式=(+614)+(-6.25)+(12+13)+(-56)+(-79)=-79. 总结:利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相反的分数结合起来,将带分数拆开,计算比较简便.必然要留意不要遗漏括号.相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或经过拆数、部分结合凑成相反数抵消掉,计算比较简便.【例3】小明遥控一辆玩具赛车,让它从点A出发,先向东行驶15 m,再向西行驶25 m,然后又向东行驶20 m,再向西行驶35 m.问玩具赛车最初停在何处?一共行驶了多少米?分析:在解题过程中,可以画出如下的表示图帮助考虑.解:规定向东行驶为正.(+15)+(-25)+(+20)+(-35)=(15+20)+[(-25)+(-35)]=35+(-60)=-25(m).|+15|+|-25|+|+20|+|-35|=15+25+20+35=95(m).答:玩具赛车最初停在点A西面25 m处,一共行驶了95 m.【例4】有一批食品罐头,标准质量为每听454 g.现抽取10听样品进行检测,结果如下表:听号12345678910质量444459454459454454449454459464 /g这10听罐头的总质量是多少?解:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:这10听罐头与标准质量差值的和为(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g).因而,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).四、课堂小结教师引导先生小结:三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的地位,简化运算.常见的技巧有:1.凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.2.同号集中:按加数的正负分成两类分别结合相加,再求和.3.同分母结合:把分母相反或容易通分的结合起来。
有理数的加法第一课时教学设计
有理数的加法(1)教学设计本节课选自人教版教材七年级(上),是本册书第一章第三节第一课时的内容。
下面我从教学内容分析、教学目标设置、学生学情分析、教学策略分析、教学过程五个方面谈一谈我对本节课的理解与设计。
一、教学内容分析有理数的有关概念和运算是整个学段“数与代数”领域内容的基础,直接关系到实数运算、代数式运算、解方程等内容的学习。
有理数的加法是本章的一个重点,是学生接触的第一种有理数运算,又因为减法运算可以统一为加法运算,所以学生能否接受和形成在有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。
在学习有理数的加法之前,教材从实例出发引出负数,接着引进数轴、相反数、绝对值等关于有理数的一些概念,一方面加深对有理数(特别是负数)的认识,另一方面,也为学习本节有理数的加法做准备。
在此基础上,通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,即为什么要进行运算,运算意味着什么;同时在学生体会运算应用的过程中,培养学生一定的应用意识和能力。
因此,本节课的教学重点是:有理数加法法则的理解与运用。
在法则的探索过程中,利用数轴体现了数形结合的基本思想,而法则的归纳总结,渗透了有特殊到一般的思想。
二、教学目标设置《数学课程标准》要求,学生通过义务教育阶段的数学学习,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
有理数一章的学习,要使学生能够进行有理数的运算,并能解决一些简单的实际问题。
根据课程标准和以上对教学内容的分析,制定教学目标如下:1、通过实例,了解有理数加法的意义;2、经历探索法则的过程,培养学生归纳总结的能力;3、会根据有理数加法法则进行有理数的加法运算;4、在探索的过程中,感受数形结合的数学思想,渗透由特殊到一般的辩证唯物主义思想。
三、学生学情分析小学阶段算术运算的学习,是学生学习有理数加法的一个前提;负数、数轴、相反数、绝对值的学习,既加深了对有理数的认识,也已经为学习有理数的加法做好了准备。
2.1.1有理数的加法(1)-加法法则(教案,新教材)-七年级数学上册(人教版2024)
2.1.1有理数的加法(1)----加法法则(教案,新教材)【教学目标】1.借助生活中的实例经历探索有理数加法法则的过程,理解有理数加法法则;2.能熟练掌握有理数的加法运算;3.体会有理数与实际生活的广泛应用.【教学重点】有理数加法的运算.【教学难点】有理数加法法则的理解.【教学过程】一、情境导入-,这一天北京的温差是多少?问题1.北京冬季某一天的气温为33o C问题2.李明同学经常对家里的生活垃圾分类,并卖出积攒的可回收物.下表是他某个月零花钱的部分收支表这里,“结余12.0”和“结余-3.2”是怎么得到的?--,18.5+(-6.5),12.0+(-15.2).要解决上面的问题,就要计算3(3)从本节课开始进一步学习有理数的运算,今天开始学习有理数的加法----加法法则(板书课时)二、合作探究活动一:有理数的相加有几种情况教师活动:启发学生,小学加法运算有正数与正数相加,正数与0相加,0与0相加,引入负数后,在有理数范围内还有哪些情况?学生活动:讨论归纳,有负数与负数,负数与正数,正数与负数,负数与0,0与负数相加.活动二:两个同号有理数加法借助具体情境和数轴来讨论有理数加.问题3.一物体沿一条直线做左右方向运动,规定向右为正,向左为负.(1)如果物体先向右运动5 m,再向右运动3 m,那么两次运动的最后结果是什么?可以怎样表示?+=.学生活动:画出数轴,得出:538教师活动:指出如何利用数轴解决问题. 观察它们是符号相同(“+”号)的两个数相加,观察它们和的符号及绝对值,让学生归纳说出结论.(2)如果物体先向左运动5 m,再向左运动3 m,那么两次运动的最后结果是什么?可以怎样表示?-+-=-.学生活动:画出数轴,得出:(5)(3)8教师活动:引导学生观察,它们是两个符号相同(“-”号)的两个数相加,观察和的符号及和绝对值,让学生归纳说出结论.师生活动:共同总结法则,符号相同的两个数相加,和的符号不变,和的绝对值等于加数绝对值的和.活动三:两个异号有理数加法(3)如果物体先向右运动5 m,再向左运动3 m,那么两次运动的最后结果是什么?可以怎样表示?+-=.学生活动:画出数轴,得出:5(3)2教师活动:引导学生观察,它们是异号的两个数相加,观察和的符号及和绝对值,让学生归纳说出结论.(4)如果物体先向左运动5 m,再向右运动3 m,那么两次运动的最后结果是什么?可以怎样表示?-+=-.学生活动:画出数轴,得出:(5)32教师活动:引导学生观察,它们是异号的两个数相加,观察和的符号及和绝对值,让学生归纳说出结论.师生活动:共同总结法则,符号不同的两个数相加,和的符号取绝对值较大数的符号,和的绝对值等于加数绝对值较大的数与较小数的差.问题4.把上面(3)(4)中的5、3换成其它数据,试一试上面结论是否成立.师生活动:学生自主探究,教师检查结果(让学生体会上述结论对任何有理数都适合).活动四:互为相反数的两个数相加,一个数与0相加学生利用数轴容易归纳结果.活动五:总结有理数加法法则师生共同归纳法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数. 两个有理数相加,和是一个有理数. 活动六:有理数加法法则应用例1.计算:()()39++-;()80-+; ()128+-;()4.7 3.9-+;1122⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭. 师生共同活动:确定一个数先要确定符号,再确定绝对值;按照法则进行计算.例2.请用生活中的例子解释一下“()()321++-=”的意义. 师生活动:教师引导学生畅言,体验生活中实际意义.例3. 股民张大爷上周交易截止前以收盘价每股50元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?学生活动:学生小组合作,弄清题意,体会有理数加法实际应用.(1)用买进的价格加上星期一、星期二、星期三的涨跌价格,然后根据有理数加法运算法则进行计算. 50+(+4)+(+4.5)+(-1)=57.5(元).(2)星期一:50+4=54(元),星期二:54+4.5=58.5(元),星期三:58.5+(-1)=57.5(元),星期四:57.5+(-2.5)=55(元),星期五:55+(-6)=49(元).∴本周内每股最高价为57.5元,最低价49元.教师活动:帮助学生理解股票每天的涨跌都是在前一天的基础上进行的,不能理解为每天都是在50元的基础上涨跌,体验有理数与生活相关联.三、强化巩固 1.练习1、2、3抽学生板演,其余学生独立完成.2.计算:(1)(-0.9)+(-0.87); (2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312;(3)(-5.25)+514; (4)(-89)+0.抽学生板演,其余学生独立完成.(答案:(1)(-0.9)+(-0.87)=-1.77;(2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312=113;(3)(-5.25)+514=0;(4)(-89)+0=-89.) 教师订正并强调:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与和的绝对值.3.已知|a |=3,b 的相反数为2,则a +b =________.学生交流完成,教师订正,并强调在解决绝对值问题时要注意考虑全面,避免漏解. 四、总结拓展学生小组合作对知识总结:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数. 两个有理数相加,和是一个有理数.学生小组合作对数学思想方法总结:体会到了有理数与实际生活的广泛应用,体验分类、数形结合、由特殊到一般等数学思想的应用.五、作业布置必做作业:1.课本练习第4题2. 课本习题2.1第1题的(1)(3)(5)(7)(9) 选做作业:1.课本习题2.1第1题的(2)(4)(6)(8)2.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米).14+,9-,8+,7-,13+,6-,12+,5-,2+.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地有多少千米? (2)救灾过程中,冲锋舟离出发点A 最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?。
有理数的加法教案优秀15篇
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
七年级上册数学教案---有理数的加法(1)
3、结合例题,总结出有理数加法的计算步骤
课堂练习
(难点巩固)
申明:
本课设计的初衷,是为了让学生在家完成预习。所以没有课堂练习的部分。
小结
总结出有理数加法的计算步骤
教师姓名
单位名称
填写时间
学科
数学
年级/册
七年级上册
教材版本
人教版
课题名称
1
从知识角度分析为什么难
初一的学生刚从小学升入初中,几乎没有负数的概念,小学的算术都是整数之间的加减,不涉及负数的运算,所以,本节课中和的符号的确定是一个难点。
从学生角度分析为什么难
学生从小学升入初中,初次学习负数,有理数的加法中特别是涉及负数的加法时,又可能颠覆了他对加法运算的已有认识,和的符号的确定很让部分学生经常出错。
难点教学方法
通过老师的讲授,示范。并归纳出具体的操作步骤
教学环节
教学过程
导入
直截了当的给出加法的法则
知识讲解
(难点突破)
1、利用自己编辑的表格讲解法则的具体情景及操作
有理数的加法教案(优秀7篇)
有理数的加法教案(优秀7篇)有理数的加法公开课教案篇一一、学情及学习内容分析“有理数的加法与减法”是基于规则为主的新授课型有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。
本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作------有理数减法算式-------有理数减法法则-------有理数减法的应用二、教学目标及教学重(难)点教学目标:1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动活动1:计算温差师:有理数加减3_百度文库生1:利用温度计的刻度直观得到算式5 + 3 = 8生2:利用日温差的定义可得到算式:5 -(-3)= 8师:比较两式,我们有什么发现吗?生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
有理数的加法(第一课时)教案精选全文完整版
可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。
《有理数加法》教案优秀11篇
《有理数加法》教案优秀11篇《有理数的加法》教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及定值与两个加数的符号及其定值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与定值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在较后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示例,其它的留给学生独立得出或合作完成。
最新2024人教版七年级数学上册2.1.1 第1课时 有理数的加法法则--教案
2.1.1 有理数的加法第 1 课时有理数的加法法则主要师生活动一、创设情境,导入新知魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?请思考有负数的加法如何计算?师生活动:教师引导学生观察,写出算式.二、小组合作,探究概念和性质知识点一:有理数的加法探究一一个物体作左右方向的运动,我们规定向左为负,向右为正. 向右运动5m 记作5m ,向左运动5m 记作-5m.1. 如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:师:引导学生注意在确定结果时必须确定其位置的“方向”和“距离”,从而认识到有理数加法必须确定和的符号和绝对值,为以下几种情形的探索作铺垫. 教师引导学生共同归纳:两次运动的最后结果是两次运动结果的累积,物体从起点向右运动了8 m,写成算式就是:(+3) + (+5) = +8.2. 如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:教师引导学生共同归纳:两次运动的最后结果是,物体从起点向左运动了8 m,写成算式是:-3 + (-5) = -8.师生活动:通过以上两个活动的探究,初步体会同号的两个数加法的规律:同号两数相加,符号不变.典例精析:例1 填表:师生活动:通过例1的探究,进一步归纳同号的两个数加法的规律:同号两数相加,取相同的符号,并把绝对值相加;3.如果物体先向左运动3 m,再向右运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:教师引导学生共同归纳:两次运动的最后结果是,小球从起点向右运动了2m,用算式表示:(-3 )+ 5 = +2.4. 如果物体先向右运动3 m,再向左运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:共同归纳:写成算式就是:3 + (-5) = -2.师:引导学生类比上述探究在确定结果时必须确定其位置的“方向”和“距离”.5. 如果物体先向左运动5 m,再向右运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:共同归纳:写成算式就是:5+(-5)=06. 如果物体第1s 向右(或左)运动5 m,第2s 原地不动,那么2s 后物体从起点向右(或左)运动了多少,请列出算式.师生活动:共同归纳:写成算式就是:5+0=5 或-5+0=-5师生活动:师:从上述算式可以得出什么结论?(也就是结果的符号怎么定? 绝对值怎么算? )先让学生思考,师生交流,师引导学生观察和的正负号和绝对值的关系入手,发现规律.生:大胆说出自己的不同想法,相互交流、补充,概括法则,再由学生自己归纳出有理数加法则: 例2 计算: (1) (-3)+(-9); (2) (-8)+0; (3) 12+(-8); (4) (-4.7)+3.9; (5) (−12) + (+12)师生活动:师生共同完成,教师规范写出解答过程,注意解答过程中讲解对法则的应用教师点评法则 运用过程中的注意点:有理数加法运算,先定符号,再算绝对值. 想一想 任何一个数加上一个正数,和与原来的数有怎样的大小关系?加上一个负数呢?请你先借助数轴直观地得出结论,再利用有理数的加法法则进行说明. 师生活动: 教师在黑板画数轴,可以先用具体的数字来解释: 提问:“如果给数字 3 加上正数 2,在数轴上会有什么变化?” 学生:“会向右移动 2 个单位长度,到 5 的位置。
《有理数的加法》教案【优秀4篇】
《有理数的加法》教案【优秀4篇】《有理数的加法》教案篇一教学目标:1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:准确、熟练地进行加减混合运算教学过程一、课前预习1、有理数的加法法则是什么?2、有理数的减法法则是什么?3、有理数的加法有什么运算律?具体内容是什么?4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索根据有理数减法法则,有理数的加减混合运算可以统一为加法运算例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)____统一为加法= 26+(-42)____运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)=(-6)+(+13)+(-5)+(-3)+(+6)__统一加号=-6+13-5-3+6____省略加号=-6-5-3+13+6____-运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)例4、若a=-2,b=3,c=-4,求值(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 __ [ 数据代入时,注意括号的运用](2) (3)(4)例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?(2)这小组这一天共走了多少千米三、学习小结这节课你学会了哪几种运算?四、随堂练习A类1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)(3)(+ )-(- )+(- )-(+ )(4) -7.52+ -1.48(5)21-12+33+12-67 (6)-3.2+5.8-8.6+122 计算(1) 1+2-3-4+5+6-7-8++97+98-99-100(2) 66-12+11.3-7.4+8.1-2.5(6)-2.7-[3-(-0.6+1.3)]B类3. 计算(1) + + ++ (2) + + ++《有理数的加法》教案篇二教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
新人教版六年级数学下册《有理数的加法(1)》教案
7.3.1 第一课时 有理数的加法一、教学目标(一)学习目标1.经历探索有理数加法法则的过程;2.初步理解有理数的加法法则;3.会正确进行有理数的加法运算.(二)学习重点有理数的加法法则的理解和运用.(三)学习难点异号两数相加.二、教学设计(一)课前设计1.预习任务有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.预习自测(1)计算-2+3的结果是( )A .-5B .1C .-1D .5【知识点】有理数的加法【解题过程】解:1)23(32=-+=+-【思路点拨】根据绝对值不相等的异号两数相加的法则即可求解.【答案】B(2)下列计算结果是负数的是( )A .0+[-(-3)]B .21211+-C .75.2431+-D .|)31(21-+-| 【知识点】有理数的加法法则【解题过程】解:[]330)3(0=+=--+;121211-=+-;175.2431=+-;65)31(21=-+-.故应选B. 【思路点拨】根据有理数的加法法则即可求解.【答案】B(3)下列运算中正确的是( )A .0)7(7=-+-;B .17107-=+- ;C .21)43(41=++- ;D .6)313()322(-=-+--. 【知识点】有理数的加法【解题过程】解:14)7(7-=-+-,故A 错误;3107=+-,故B 错误;21)43(41=++-,C 正确;32)313(322)313()322(-=-+=-+--,故D 错误. 【思路点拨】根据有理数的加法法则即可求解.【答案】C(4)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃ B.9℃ C.-1℃ D.-9℃【知识点】有理数的加法【解题过程】解:小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为-5+4=-1℃.【思路点拨】根据有理数的加法法则即可求解.【答案】C.(二)课堂设计1.知识回顾(1)数轴的三要素是什么?(2)绝对值的法则是什么?2.问题探究探究一 探索有理数加法法则★●活动我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.【设计意图】通过情景引入,让学生体会有理数的加法在实际生活中运用的必要性.●活动②看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.●活动③:1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向左运动了 2 m;(2)先向右运动5m,再向左运动5m,物体从起点向左/右运动了0 m;(3)先向左运动5m,再向右运动5m,物体从起点向左/右运动了0 m.【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.同时通过学生之间的互助与合作,激发学生学习数学的热情.探究二初步理解有理数的加法法则★●活动①:师问:你能从算式中发现有理数加法的运算法则吗?学生举手抢答总结:有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注:进行有理数的加法运算时,一定是先确定结果的符号,再定结果的绝对值.【设计意图】通过小组合作学习及老师问题的层层设置,培养学生团结协作的能力以及归纳总结的能力,激发学生学习的热情.探究三 会正确进行有理数的加法运算★▲.●活动①:例1 计算:(1))9()3(-+-;(2))5()8(++-【知识点】有理数的加法【解题过程】解:(1)12)93()9()3(-=+-=-+-;(2)3)58()5(8-=--=++-【思路点拨】利用有理数的加法法则即可求解.【答案】(1)-12; (2)-3练习:计算:(1)(+5)+(+7);(2)(-3)+(-8);(3)(-7)+(+5) ;(4)(-3)+(+8)【知识点】有理数的加法【解题过程】(1)12)75()7(5+=++=+++;(2)(-3)+(-8)=-(3+8)=-11;(3)(-7)+(+5)=-(7-5)=-2;(4)(-3)+(+8)=+(8-3)=+5【思路点拨】根据有理数的加法法则即可求解.【答案】(1)+12;(2)-11; (3)-2; (4)+5【设计意图】通过练习,让学生能根据算式的结构,合理选择相应的计算法则,同时学会有理数加法运算的简单书写过程.●活动②例2 计算:(1)9.3)7.4(+-;(2))32(21-+. 【知识点】有理数的加法【解题过程】解:(1)8.0)9.37.4(9.3)7.4(-=--=+-(2)61)2132()32(21-=--=-+.【思路点拨】根据有理数的加法法则即可求解.【答案】(1)8.0-; (2)61-. 练习:计算:(1))213(312-+;(2))6.7(525-+;(3))69.1()71.2()533(++-+-. 【知识点】有理数的加法.【解题过程】解:(1)67)312213()213(312-=--=-+ (2)2.2)4.56.7()6.7(525-=--=-+; (3)62.4)69.171.26.3()69.1()71.2()533(-=-+-=++-+- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)67-;(2)2.2-; (3)62.4-. 【设计意图】通过练习,使学生能灵活运用有理数的加法法则进行计算,让学生在运算中提升计算能力.●活动例3 甲地海拔高度是-28 m ,乙地比甲地高32 m ,求乙地的海拔高度.【知识点】有理数的加法【解题过程】解:甲地海拔高度是-28 m ,乙地比甲地高32 m ,则乙地的海拔高度为 -28+32=4m .【思路点拨】根据有理数的加法法则即可求解.【答案】-28+32=4m练习:一个数是11,另一个数比11的相反数大2,求这两个数的和【知识点】有理数的加法【解题过程】解:由题意可得: 2119,9211=+--=+-【思路点拨】根据有理数的加法法则即可求解.【答案】2.【设计意图】通过练习,让学生会用有理数的加法解决实际问题,提高学生解决实际问题的能力.●活动④例4 若3||=x ,2||=y ,且y x <,求y x +的值.【知识点】有理数的加法,绝对值. 【解题过程】解:因为2,3==y x ,所以2,3±=±=y x ,又y x <,所以2,3±=-=y x ,故1-=+y x 或5-=+y x【思路点拨】先根据绝对值等于一个正数的数有两个,求出y x ,的值,再根据条件确定y x ,的值,最后代入即可求解.【答案】1-=+y x 或5-=+y x练习:已知|a |=2,|b |=2,|c |=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值.【知识点】有理数的加法.【数学思想】数形结合.【解题过程】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ;又∵|a |=2,|b |=2,|c |=3,∴a =2,b =﹣2,c =3;故a +b +c =2﹣2+3=3.【思路点拨】根据数轴上a 、b 、c 和原点的位置,判断出三个数的取值,然后再代值求解.【答案】a +b +c =2﹣2+3=3【设计意图】通过练习,让学生能运用有理数的加法的相关知识解决较复杂的问题,培养学生的综合解题能力.3.课堂总结知识梳理有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.重难点归纳(1)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(2)进行有理数的加法时,一定是先确定结果的符号,再确定结果的绝对值.(三)课后作业基础型 自主突破1.计算(-3)+(-9)的结果等于( )A .12B .-12C .6D .-6【知识点】有理数的加法【解题过程】解:12)93()9()3(-=+-=-+-【思路点拨】根据有理数的加法法则即可求解.【答案】B2.下列计算中,不正确的是( )A .-(-6)+(-4)=2B .(-9)+[-(-4)]=-5C .-|-9|+4=13D .-(+9)+[+(-4)]=-13【知识点】有理数的加法【解题过程】解:由题意可知:A 、B 、D 的计算结果均是正确的,只有C 是错误的,因为 54949-=+-=+--【思路点拨】根据有理数的加法法则计算后即可判断.【答案】C3.两个数相加,其和小于每一个加数,那么( )A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不确定【知识点】有理数的加法【解题过程】解:两个数相加,若其和小于每一个加数,那么这两个数必定均为负数.故应选B【思路点拨】根据有理数的加法法则即可判断.【答案】B4.填空:①若a >0,b >0,则a +b 0;②若a <0,b <0,则a +b 0;③若a >0,b <0,且│a │>│b │,则a +b 0;④若a >0,b <0,且│a │<│b │,则a +b 0.【知识点】有理数的加法【解题过程】解:①若a >0,b >0,则a +b > 0;②若a <0,b <0,则a +b < 0;③若a >0,b <0,且│a │>│b │,则a +b > 0;④若a >0,b <0,且│a │<│b │,则a +b < 0.【思路点拨】根据有理数的加法法则即可判断.【答案】>,<,>,<,5.计算:(1)(-34)+(+76) ;(2))43()31(-+-(3))32(21-++ ;(4))312()433(++-. 【知识点】有理数的加法.【解题过程】解:(1)42)3476()76()34(=-+=++-; (2)1213)4331()43()31(-=+-=-+-; (3)61)2132()32()21(-=--=-++; (4)1251)312433(312433-=--=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-【思路点拨】根据有理数加法法则即可求解.【答案】(1)42;(2)1213-;(3)61-;(4)1251-.6.已知|a |=8,|b |=2;(1)当a 、b 同号时,求a +b 的值;(2)当a 、b 异号时,求a +b 的值.【知识点】有理数加法【解题过程】解:(1)∵|a |=8,|b |=2,且a ,b 同号,∴a =8,b =2;a =﹣8,b =﹣2,则a +b =10或﹣10;(2)∵|a |=8,|b |=2,且a ,b 异号,∴a =8,b =﹣2;a =﹣8,b =2,则a +b =6或﹣6.【思路点拨】各项根据题意,利用绝对值的代数意义求出a 与b 的值,即可求出a +b 的值.【答案】(1)a +b =10或﹣10;(2)a +b =6或﹣6.能力型 师生共研1.若a 、b 互为相反数,则=-+|5|b a .【知识点】有理数的加法【解题过程】解:因为a 、b 互为相反数,所以0=+b a ,5505=-=-+b a【思路点拨】根据互为相反数的两个数的和为零即可求解.【答案】52.(1)已知:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a = ;b = ;c = .(2)若|x |=3,|y |=4,|b |=1且b<0,a =1且ay <0,求a +b +x +y 的值.【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数, ∴a =1,b =﹣1,c =0;故答案为1,﹣1,0.(2)因为a =1,由于ay <0,所以y <0.因为|x |=3,|y |=4,所以x =±3,y =﹣4.当a =1,b =﹣1,x =3,y =﹣4时a +b +x +y =1+(﹣1)+3+(﹣4)=﹣1;当a =1,b =﹣1,x =﹣3,y =﹣4时a +b +x +y =1+(﹣1)+(﹣3)+(﹣4)=﹣7.【思路点拨】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a 、b 、c 的值;(2)由绝对值的意义,求出x 、y ,再由ay <0,确定y 的值.代入代数式求出a +b +x +y 的值.【答案】(1)1,﹣1,0.(2)-1或-7探究型 多维突破1.计算:++++++++++= .【知识点】有理数的加法【解题过程】解:原式=×(+++…+)=×(1﹣﹣…+﹣)=×(1﹣)=×=. 【思路点拨】先提取,然后利用拆项裂项法求解即可. 【答案】.2.若规定b a b a f +=),(.如43)4,3(+=f =7.试求)]4,3(,4[--f f 的值.【知识点】有理数的加法【解题过程】解:314)1,4())4,3(,4(,143)4,3(-=+-=-=--=+-=-f f f f【思路点拨】根据题目要求,抓关键信息即b a b a f +=),( 即可.【答案】-3.自助餐1.计算3+(-3)的结果是( )A .6B .-6C .1D .0【知识点】有理数的加法【解题过程】解:3+(-3)=0【思路点拨】根据有理数的加法法则即可计算.【答案】D2.下列运算错误的有( )① (-21)+(+21)=0; ②(-6)+(+4)= -10;③ 0+(-13)=+13; ④32)61()65(=-++A .1个B .2个C .3个D .4个【知识点】有理数的加法【解题过程】解: ① (-21)+(+21)=0,正确;②(-6)+(+4)= -10,错误,(-6)+(+4)=-2;③ 0+(-13)=+13,错误,0+(-13)=-13; ④正确;故错误的个数为2个.【思路点拨】根据有理数的加法法则即可求解.【答案】B3.若|a |=7,b 的相反数是2,则a +b 的值是 .【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵|a |=7,∴a =±7,∵b 的相反数是2,∴b =﹣2,①当a =7,b =﹣2时,a +b =7+(﹣2)=5;②当a =﹣7,b =﹣2时,a +b =﹣7+(﹣2)=﹣9;故答案为:5或﹣9.【思路点拨】分别求出a b 的值,分为两种情况:①当a =7,b =﹣2时,②当a =﹣7,b =﹣2时,分别代入求出即可.【答案】5或﹣9.4.在数﹣5、1、﹣3、5、﹣2中任取三个数相加,其中最大的和是 ,最小的和是 .【知识点】有理数的加法【解题过程】解:5+1+(﹣2)=4,(﹣5)+(﹣3)+(﹣2)=﹣10.答:其中最大的和是4,最小的和是﹣10.【思路点拨】由题意可知,要任取三个不同的数相加,使其中最大,则取其中三个较大的数相加即可;使其中的和最小,则取其中三个较小的数相加即可.【答案】4,﹣10.5.计算:(1))75()41(-++ (2))851()3(++- (3))57.1()61.7(++- (4)659)5.11(+- 【知识点】有理数的加法【解题过程】解:(1)()()34417575)41(-=--=-++;(2)()83185138513-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++-;(3)()()()04.657.161.757.161.7-=--=++-(4)()356595.116595.11-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)-34;(2)831-;(3)04.6-; (4)35- 6.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股买最高价多少元?最低价多少元?【知识点】有理数的加法【解题过程】解:(1)67+(+4)+(+4.5)+(﹣1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(﹣1)=74.5元,周四:74.5+(﹣2.5)=72元,周五:72+(﹣6)=66元,∴本周内最高价为75.5元,最低价66元.【思路点拨】(1)用买进的价格加上周一周二周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.【答案】(1)星期三收盘时,每股74.5元;(2)本周内最高价为75.5元,最低价66元。
有理数的加法(第1课时)-教学设计
北师大版数学七年级上册《第二章有理数及其运算》“4.有理数的加法(第1课时)”教学设计一、教学内容及其解析1.教学内容:经历探索有理数的加法法则,初步掌握有理数加法法则,并会进行有理数的加法运算.2.教学内容的地位与作用:本节课内容有理数的加法是小学算术加法运算的拓展,是初中数学运算最基础的内容之一. 熟练掌握有理数的加法是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础. 有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践. 就本章而言,有理数的加法是本章的重点之一. 学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习.二、学情分析学生在小学时已经熟悉正数加正数,正数加零的情况. 经过第二章前面三节的学习,对于数的分类、数轴、绝对值的相关知识已经掌握. 且初一学生较为活跃,善于形象思维,能够积极参与讨论.三、教学目标(1)经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.(2)通过观察、归纳、总结得到有理数加法法则,训练学生独立分析问题的能力及口头表达能力,体验数学充满探索性和创造性.(3)渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.四、教学重点、难点1.教学重点:有理数的加法法则的理解与运用.2.教学难点:异号两数相加的法则.五、教学过程设计(一)过程设计1、新课导入教师提问:我们小学学过“正数+ 正数”和“正数+ 0”两种形式的算式. 引入负数之后,有理数的加法还会出现哪些新的情况呢?播放一段篮球比赛视频.【师生活动】教师引导,学生思考,师生互动. 引导学生写出两个有理数相加的不同情形并进行归类.【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤. 同时也增强了孩子们学习的信心,因为在几种不同的情况中,学生们仅剩两种需要攻克. 引导学生对有理数相加的不同情境进行分类,从而引出本节学习任务.2、讲授新课探究1 :一只小猴子做左右方向的运动,我们规定向右为正,向左为负. 它先向右运动5 m,记作5 m;再向右运动3 m,记作3 m;那么两次运动的结果是向______运动_________ ?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.+5+ (+3)=学生容易得出结果为+8.(2)明确算式中“+”符号表示的意义.教师引导学生明白+5,+3前面的+号表示运动方向向右,中间的+号为运算符号.探究2 :如果小猴子先向左运动2 m,记作-2 m;再向左运动3 m,记作-3 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.(-2) + (-3)=学生容易得出结果为-5.(2)明确算式中“+”和“-”符号表示的意义.教师提出问题:(-2) + (-3) = -5,-5这个结果合理吗?“-”是什么意思?5又代表什么?引导学生回答:“-”表示运动方向向左.(3)综合探究1和2,引导学生归纳出同号两数相加的法则.你能根据刚才所举的两个例子总结出同号两个有理数相加的法则吗?引导学生得到:同号两数相加,取相同的符号,并把绝对值相加.探究1和2【设计意图】通过将生活情境抽象出来,借助实际例子和数轴,引导学生自主探探索归纳得到同号两数相加的法则. 该学习过程强调学生借助生活情境的自主探索,而不是采用直接告诉的方式. 同时,教师可以通过引导学生思考分析:我们不能碰到任何一个有理数加法算式都从生活中的实例来推答案,所以找到有理数的加法规律看来很必要,让学生理解法则的重要性和意义. 本环节也为学习异号两数相加的法则作铺垫.探究3:如果小猴子先向左运动8 m,再向右运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式的结果并解释其意义.(-8) + (+5) =教师提问学生该算式的结果,学生容易得出结果为-3,需要学生解释得到-3的过程. 教师引导学生从符号和绝对值两方面进行思考.探究4:如果小猴子先向右运动2 m,再向左运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果并解释其意义.+2 + (-5) =学生能够马上得出结果为-3.(2)综合探究3和4,引导学生归纳出异号两数相加的法则.教师提问:类比前面的做法,你能从符号和绝对值两个方面概括异号两数相加的情况吗?学生思考后,能够归纳得到异号两数相加的法则为:异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.探究3和4【设计意图】在同号两数相加的基础上,通过实际生活例子展示异号两数相加的情形. 学生通过类比归纳出异号两数相加的法则,其实是主动的获取知识和技能. 同时,鼓励学生用自己的语言概括法则,可以提高学生的概括能力和语言表达能力.探究5:如果小猴子先向右运动8 m,再向左运动8 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式结果,教师引导学生得到互为相反数的两个数相加得0.(+8) + (-8) =学生容易得出结果为0. 学生在这一过程中可以非常清楚地认识到互为相反数的两个数相加得0.探究5【设计意图】借助数轴,学生能够理解直观理解互为相反数的两个数相加得0.探究6:如果小猴子第一秒先向右运动5 m,第二秒原地不动,你能用算式表示吗?如果小猴子第一秒先向左运动6 m,第二秒原地不动,又怎么表示呢?【师生活动】借助数轴写出算式结果并归纳法则.学生能马上得出结果为5 + 0 = 5,(-6) + 0 = -6.探究6【设计意图】学生能够归纳得出一个数同0相加,仍得这个数.3、归纳总结【师生活动】教师提问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数通0相加,和是多少?引导学生总结:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力.4、习题检测:【师生活动】学生完成巩固练习题目,教师指出学生错误之处,并进一步强调算理.1. 计算:(1)(-4) + (-8);(2)(-5) + 13;(3)0 + (-7);(4)(-4.7) + 4.7.2. 若x的相反数是3,|y|=5,则x+y=.3. 股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价为多少元?最低价为多少元?【设计意图】练习应用有理数加法法则进行计算,提高学生掌握法则的熟练程度. 既要培养学生的计算能力,又要让学生在练习中不断总结计算技巧.(二)板书设计六、作业设计1.必做题:完成教材第36页随堂练习;习题2.4第1题、第2题和第3题.【设计意图】巩固所学知识,学生能够熟练进行有理数加法的运算,教师发现学生在学习中存在的问题.2.选做题:习题2.4第4题和第5题.【设计意图】发散学生思维,培养学生将数学知识与实际生活联系的能力;培养学生分类讨论的思想,进一步提升学生的思维能力. 学习由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间.附:教学反思本节课的主要内容是有理数加法的法则和利用数轴表示直观地阐释有理数加法的法则,以学生易于接受的实际生活例子引入有理数加法. 为此,本节课安排较多的时间用于探索加法法则,以学生作为探索的主体,结合学生的实际,因材施教,为每一个学生创造发挥自己的空间. 这很大程度上调动了学生的学习积极性,特别是学生的创造性得到了充分的展示,增强了学生的求知欲. 这正是新课程理念所倡导的,即课程不再只是知识的载体,而是教师和学生共同探究新知识的过程,只有真正被学生经历、理解和接受了的东西才称得上是课程.经过探究、讨论、相互交流,对有理数的加法运算,同学们基本都能理解并掌握,但仍然有的同学不善于利用加法法则来进行运算以及常出现符号之类的错误,特别是异号两数相加的和的符号的确定,模糊不清. 接下来教师要进一步强调计算要以法则为依据,加强用法则的熟练程度.双师互动课堂安排。
有理数的加法教案
有理数的加法教案1.有理数的加法教案(精选篇1)师:在小学里,同学们已经学过数的加、减、乘、除四则运算。
这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。
自从引进负数后,数的范围就扩大到整个有理数。
那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。
(教师板书课题:有理数的加法)请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。
(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)师:还有其他情况吗?生2:正数与零,负数与零,或者两个都是零师:同学们回答得很好。
现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?①先向东走了5米,再向东走3米,结果怎样?生3:向东走了8米师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。
(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何?生5:向西走了8米。
可以表示为:(-5)+(-3)=-8[教师板书](教师用投影仪显示图2)③向东走了5米,再向西走了3米,结果呢?生6:向东走了2米。
可以表示为:(+5)+(-3)=+2[教师板(教师用投影仪显示图3)④先向西走了5米,再向东走了3米,结果呢?生7:向西走了2米。
可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)⑤先向东走5米,再向西走5米,结果呢?生8:回到原地位置。
可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)⑥先向西走5米,再向东走5米,结果呢?生9:仍回到原地位置。
可以表示为:(-5)+(+5)=0[教师板书](教师用投影仪显示图6)师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。
有理数的加法教案优秀6篇
有理数的加法教案优秀6篇有理数的加法教案篇一一、教学目标1.知识与技能(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2.过程与方法通过观察,比较,归纳等得出有理数加法法则。
能运用有理数加法法则解决实际问题。
3.情感态度与价值观认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
关键:通过实例引入,循序渐进,加强法则的应用。
三、教学方法发现法、归纳法、与师生轰动紧密结合。
四、教材分析“有理数的加法”是人教版七年级数学上册一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程(一)问题与情境我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。
章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。
这节课我们来研究两个有理数的加法。
两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。
若我们规定赢球为“正”,输球为“负”,打平为“0”。
比如,赢3球记为+3,输1球记为-1。
学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。
也就是(+3)+(+1)=+4。
人教版七年级数学上册:1.3.1《有理数的加法》教学设计1
人教版七年级数学上册:1.3.1《有理数的加法》教学设计1一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的内容是在学生已经掌握了有理数的概念和运算法则的基础上进行授课的。
有理数的加法是数学中基本的运算之一,它不仅在生活中有广泛的应用,而且是学习更高级数学知识的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法在实际问题中的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对于有理数的概念和运算法则已经有了一定的了解。
但是,学生在进行有理数的加法运算时,可能会对加法的运算律和有理数的加法法则理解不深,导致在实际运算中出现错误。
因此,在教学过程中,需要引导学生通过观察、思考、交流等方式,深入理解加法的运算律和有理数的加法法则,提高他们的运算能力。
三. 教学目标1.知识与技能:使学生掌握有理数的加法法则,理解加法的运算律,能够熟练地进行有理数的加法运算。
2.过程与方法:通过观察、思考、交流等方式,培养学生解决问题的能力和团队合作的精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 教学重难点1.重点:有理数的加法法则和加法的运算律。
2.难点:理解有理数的加法法则,能够灵活运用加法的运算律进行运算。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生理解和掌握有理数的加法法则。
2.问题驱动法:通过设置问题,激发学生的思考,培养他们解决问题的能力。
3.合作学习法:通过小组讨论和合作,培养学生的团队合作精神和交流能力。
六. 教学准备1.教学课件:制作课件,内容包括有理数的加法法则、加法的运算律以及实际问题的应用。
2.教学素材:准备一些实际问题,用于引导学生进行加法运算。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的加法运算,例如:“小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?”引导学生进行思考和讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加法(1)
教学目标:
1.让学生了解有理数加法的意义.
2.让学生理解有理数加法的法则,能熟练地进行有理数加法运算.
3.培养学生分析问题、解决问题的能力,注意培养学生的观察、比较、归纳及灵活运算能力.
教学内容:
1.理解有理数加法法则.
2.利用加法法则正确地进行有理数的加法运算.
教学重点:
会根据有理数的加法法则进行有理数的加法运算
教学过程:
一、复习引入:
问题1 有理数有几种分类方法?都是如何分类的呢?
(有理数可以根据定义和符号性质分成两类.)
问题2在小学,我们学过正数及0的加法运算.学过的加法类型是正数与正数相加、正数与0相加.引入负数后,加法的类型还有哪几种呢?
(所以加法共分为三种类型:1同号两数相加2、异号两数相加3、一个数与0相加)
二、讲授新课:
1.探究有理数加法法则——同号两数相加
例题:一个物体向左右方向运动,我们规定向右为正,向左为负.比如:向右运动5 m记作5 m,向左运动5 m 记作-5 m.
问题(1):如果物体先向右运动5 m,再向右运动了3 m,那么两次运动后总的结果是什么?能否用算式表示?这一运算在数轴上表示如图:
问题(2):如果物体先向左运动5 m,再向左运动3 m,那么两次运动后总的结果是什么?能否用算式表示?这一运算在数轴上表示如图:
总结问题(1)(2)归纳:(+5)+(+3)=8 ;(-5)+(-3)=-8
根据以上两个算式能否尝试总结同号两数相加的法则?
结论:同号两数相加,取相同符号,并把绝对值相加.
2.探究有理数加法法则——异号两数相加
求以下物体两次运动的结果,并用算式表示:
问题(3):先向左运动3 m,再向右运动5 m,
物体从起点向右运动了 2 m,(-3)+5= 2 ;
问题(4):先向右运动了3 m,再向左运动了5 m,
物体从起点向左运动了 2 m ,3+(-5)=-2 ;
问题(5):先向左运动了5 m,再向右运动了5 m,
物体从起点运动了0 m ,(-5)+5=0 .
总结问题(3)(4)(5)归纳:
(-3)+5= 2 ;3+(-5)=-2 ;(-5)+5=0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0
3.探究有理数加法法则——一个数与0相加
问题(6):如果物体第1 s向右(或左)运动52m,第2秒原地不动,很显然,两秒后物体从起点向右(或左)运动了52m.如何用算式表示呢?
52+0=52.或(-52)+0=-52.
结论:一个数同0相加,仍得这个数.
三.总结概括:
综合以上情形,我们得到有理数的加法法则:
(1)同号两数相加,取相同符号,并把绝对值相加.
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.
注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分
别确定和的符号和绝对值.
四 例题讲解
例1:计算:
① (―13)+(―19); ②(―4.7)+5.9; (3)1123⎛⎫+- ⎪⎝⎭ ()11
423⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ 解:① 原式=―1(3+19)=―32;
② 原式=―(5.9-4.7)= ―1.2;
(3)1111123236
⎛⎫⎛⎫⎛⎫+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()11111423236⎛⎫⎛⎫⎛⎫-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
五.随堂练习:
(1)100+(-100) (2)(-9.5)+0 (3)(-8)+(-7) (4)-0.5+12
(5)(-13)+24 (6)3143⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ (7)2135⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭ (8)175164⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭
六、课堂小结:
这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.我们在今后的学习中经常要
用类似的思想方法
七:课后反思。