配电系统设计和防护方案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年入春之际,一场突如其来的疫情肆虐来袭,在这场没有硝烟的战役中,火神山、雷神山医院无疑成为最大的英雄,“十天建成火神山医院”也成为史无前例的建设奇迹!在这背后鲜为人知的是,作为维持医院高速不间断运行的幕后功臣——电力供应:为了保障电力供应的安全畅通,三天三夜为雷神山医院通电,五天五夜为火神山医院通电,37小时为武汉最大方舱医院通电,高峰时段投入15万余名保电人员、1000余辆应急发电车……电力供应的重要性可见一斑。

试想一下,可谓在与时间赛跑的医疗场所中,一旦由于电力供应出现故障,导致医疗设备瘫痪,带来的后果往往就是直接威胁患者的生命安全。

当今社会,电力供应已经融入到我们工作生活的方方面面,重要到我们已经习以为常,一旦电力供应出现故障,往往就会带来巨大的经济损失。以互联网时代不可或缺的数据中心为例,根据波洛蒙研究所2017年发布的“数据中心成本中断”报告中显示,2010年以来,平均每起电力故障停机事件成本为740357美元,相当于每分钟损失成本近9000美元。

电力供应出现故障,导致断电等事故发生,进而影响电力可用性的原因众多,一般包括配电系统设计存在缺陷,短路、过载、接地等引起线路故障……我们对症下药,便能够找到提高电力可用性,保证电力供应安全通畅的措施。

基于EcoStruxure架构与平台,施耐德电气倡导覆盖上层主干路,下层分电路及终端配电的完整产品,融合更多数字化应用,形成完整的解决方案,从配电系统及架构设计出发,以高度信息化的资产管理方式,帮助用户时刻清晰掌握系统及设备状态,预知风险,实现预防式维护,通过设备强大的数字化功能,快速定位、分析故障,并恢复供电,满足设计院、盘厂、总包商及最终用户的不同需求,进一步提高电力可用性,保障系统运行、各类生产或服务的高效可持续,从而助力各行业企业免受电力中断带来的损失及风险。

那么,今天,我们就从配电系统及架构设计出发聊一聊电力可用性那些事儿。

一、完善的系统设计

电力可用性的基础

众所周知,完善的系统设计,为电力可用性提供基础。按照负荷重要程度确定供电方案,从源头确保供电连续;按照负荷数量及大小合理选择配电方式,分配设备及线缆确保供电可靠。同时,可靠的系统防护,为电力可用性增强保障。从单个回路来讲,提供可靠的过载、短路和绝缘故障保护,保障线路及设备安全;从整个系统来讲,选择性及级联技术可把故障影响消除在最小范围内,而不对其他回路造成影响。配电系统的设计,可以从电源供应及配电方式上确保供电的连续可靠。

【1】按照负荷重要程度确定供电方案,从源头确保供电连续

依据规范要求,负荷等级按照重要程度可分为一级负荷、二级负荷、三级负荷。对于一级负荷,应由两路市电进线供电,其中特别重要的负荷还必须增设应急电源;对于二级负荷,应由两回路供电,供电变压器应有两台。此外,在一、二级负荷中,为了确保连续性,往往会使用自动转换开关缩短恢复供电时间。

通过对用电设备重要性进行划分,提供多回路及备用电源供电,这对于提高供电连续性至关重要。例如,在对于医疗服务连续性要求很高的医院工程中,通过划分各类场所,分别提供相应的电源保障,避免因供电的不连续故障而对患者生命安全构成威胁,医院电力主要是采用多回路供电:市政电网,备用发电机系统,带电池的UPS,发电机或UPS的N+1原则提升了连续性,增强了电力可用性。

根据负荷重要性划分等级,使得重要场所的电力供应更加持续稳定,避免了事故损失。

【2】按照负荷数量及大小合理选择配电方式,分配设备及线缆确保供电可靠确定终端用电设备类型、数量及功率,选择合适的配电方式,进行负荷计算,并在此基础上选择控制设备及线缆。配电方式应实现供电可靠、操作方便灵活,层级不宜超过三级。

我们常用的低压配电系统多为树干式与放射式相结合,通过合理分配分支线路,采用适当的接地系统,使配电系统连续稳定工作。

二、可靠的系统防护

电力可用性的保障

在配电系统防护中,有一个元器件最为至关重要:配备在各级配电系统中的断路器。

【1】首先,从单个回路来讲,断路器可提供可靠的过载、短路和绝缘故障保护,保障线路及设备安全。

断路器保护功能的核心在于脱扣器,我们以热磁断路器为例,最重要的两个脱扣器:热脱扣器和电磁脱扣器,解决了电路的三大故障:过载、短路和绝缘故障。

如图所示,断路器主触点通过手动或电动合闸后,被锁扣锁在闭合位置,电

路正常工作。

当电路出现过载故障时,持续的过高电流使得热脱扣器的金属片受热向上弯曲,一定时间后便能推动自由脱扣机构实现脱扣,这就是:过载长延时保护。

当电路出现短路或接地故障时,瞬间的高电流会使得电磁脱扣器因电磁吸力将衔铁迅速吸合,同时顶开自由脱扣机构实现脱扣,这就是:瞬时动作保护。

上面我们看到,热磁式断路器实现了①过载长延时保护和②瞬时动作保护。反应在I-t图上如下所示,即为:两段式。也可称为非选择性两段式,一般用在配电系统末端。

还有一种形式的断路器,在①过载长延时保护和②瞬时动作保护的基础上,具有短时耐受功能,可实现③短路短延时保护。反应在I-t图上如下所示,即为:三段式。也可称为选择性三段式,一般用在配电系统首端。

以上我们看到,断路器通过内置的脱扣器在各种故障下的动作,实现了对单个回路的过载、短路和绝缘故障保护。

【2】其次,从整个系统来讲,断路器间的选择性及级联技术可把故障影响消除在最小范围内,而不对其他回路造成影响。

对于当前复杂的配电系统,很多上下级回路一起工作,如何保证故障保护只使最小范围的回路断开,而不影响其他回路,从而最大程度保证供电的连续性呢?

这便是配电系统中断路器的选择性,即:在故障发生时,只能由最靠近故障点的上级断路器脱扣,非故障回路保持闭合持续供电。

选择性是如何实现的呢?

第一,电流选择性。上下级断路器的过载电流保护整定值不同,上级高于下级,存在极差,容易实现过载保护的选择性。

第二,时间选择性。当电路出现短路或绝缘故障,瞬时大电流容易使得上下级断路器同时瞬动,在这种情况下,在满足上下级电流极差的基础下,上级断路器就要采用三段式保护断路器,设定短路短延时时间,大电流之下可以延时断开,使得下级断路器优先断开。

相关文档
最新文档