高中物理模型:子弹打木块模型
“子弹打木块”模型和“滑块—木板”模型-高考物理复习课件
B.子弹对木块做的功W=50 J
C.木块和子弹系统机械能守恒
D.子弹打入木块过程中产生的热量Q=350 J
图3
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 根据动量守恒可得 mv0=(M+m)v,解得子弹打入木块后子弹和木块的 共同速度为 v=Mm+v0m=10 m/s,故 A 正确;根据动能定理可知,子弹对木块做 的功为 W=12Mv2-0=45 J,故 B 错误;根据能量守恒可知,子弹打入木块过 程中产生的热量为 Q=21mv20-21(M+m)v2=450 J,可知木块和子弹系统机械能 不守恒,故 C、D 错误。
(A)
图4
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 木板碰到挡板前,物块与木板一直做匀速运动,速度为 v0;木板碰到挡 板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做 匀减速运动,最终两者速度相同,设为 v1。设木板的质量为 M,物块的质量为 m,取向左为正方向,则由动量守恒定律得 Mv0-mv0=(M+m)v1,解得 v1= MM- +mmv0<v0,故 A 正确,B、C、D 错误。
01 02 03 04 05 06 07 08
目录
提升素养能力
4.如图4所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板 质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰 到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物 块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是
“子弹打木块”模型和“滑块—木板”模型
学习目标
1.会用动量观点和能量观点分析计算子弹打木块模型。 2.会用动量观点和能量观点分析计算滑块—木板模型。
子弹打木块模型
子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等.模型:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d对子弹用动能定理:22012121mv mv s f -=⋅ …………………………………① 对木块用动能定理:2221Mv s f =⋅…………………………………………② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ………………③ ③式意义:f ∙d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上(③)式不难求得平均阻力的大小:()dm M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
试试推理。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d mM m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M >>,所以s 2<<d 。
高考物理 打木块模型之一
高考物理打木块模型之一高考物理打木块模型之一滑块和子弹击中木块的模型之一子弹打木块模型:包括一物块在木板上滑动等。
μns相=δek系统=q,q为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动:包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
示例:质量为M、长度为L的木块仍然位于光滑的水平面上。
有一颗质量为m的子弹,以水平初始速度V0进入木块,子弹射出时的速度为v。
计算子弹与木块相互作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f,突出时木块速度为v,位移为s,则子弹位移为(s+l)。
水平方向不受外力,由动量守恒定律得:mv0=mv+mv①112由动能定理,对子弹-f(s+l)=mv2?mv0②221对木块FS=MV2?0③2lv0vs由①式得v=将m1m2(V0?V)替换为③, 其中FS=m?2(V0?V)2④ M2M1111M22② + ④ 得到FL=MV0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即q=fl,l为子弹现木块的相对位移。
结论:系统损失的机械能等于摩擦产生的内能、摩擦与两物体相对位移的乘积。
即q=δe系统=μns相分量公式为:q=F1s阶段1+F2s阶段2+…+FNS相位n=δE系统1.在光滑水平面上并排放两个相同的木板,长度均为l=1.00m,一质量与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板a,金属块与木板间动摩擦因数为μ=0.1,g取10m/s。
求两木板的最后速度。
2.如图所示,在光滑的水平面上放置一个质量为M、长度为L的矩形木块B,在其右端放置一个质量为M的小木块a。
现在,以地面为基准,给a和B一个大小相同、方向相反的初始速度(如图所示),这样a开始向左移动,B开始向右移动,但最终,a不会从板B上滑开。
高中物理模型-子弹打木块模型
模型组合讲解——子弹打木块模型赵胜华[模型概述]子弹打木块模型:包括一物块在木板上滑动等。
Q E s F k N =∆=系统相μ,Q 为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。
[模型讲解]例. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力f F 做负功,由动能定理得:2022121)(mv mv s d F t f -=+- 即f F 对物块做负功,使物块动能减少。
对木块,滑动摩擦力f F 对木块做正功,由动能定理得221Mv s F f =,即f F 对木块做正功,使木块动能增加,系统减少的机械能为:><=-+=--1)(2121212220d F s F s d F Mv mv mv f f f t本题中mg F f μ=,物块与木块相对静止时,v v t =,则上式可简化为:><+-=2)(2121220t v M m mv mgd μ又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:><+=3)(0tv M m mv联立式<2>、<3>得:)(220m M g Mv d +=μ故系统机械能转化为内能的量为:)(2)(22020m M Mmv m M g Mv mg d F Q f +=+⋅==μμ点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即E s F f ∆=。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
高中物理建模:“子弹打木块”模型
滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧
连接。现有一质量为m的木块以大小为v0的水平初速度从a点向左运动 ,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静
止。重力加速度为g。求
(1)木块在ab段受到的摩擦力f;
(2)木块最后距a点的距离s。
答案
(1)mv20-3mgh 3L
面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力。取g
=10 m/s2,求:
(1)子弹相对小车静止时
小车速度的大小;
(2)小车的长度L。
答案 (1)10 m/s (2)2 m
转到解析
3.备选训练
【备选训练】如图示,质量为M的木块静置于光滑的水平面上,一质量为m、 速度为v0的子弹水平射入木块且未穿出。设木块对子弹的阻力恒为F,求: (1)射入过程中产生的内能为多少?木块至少为多长时子弹才不会穿出? (2)子弹在木块中运动了多长时间?
(2)vv2020--63gghhL
转到解析
【变式训练2】(2017·山西模拟)如图4所示一质量m1=0.45 kg的平 顶小车静止在光滑的水平轨道上。质量m2=0.5 kg的小物块(可视为 质点)静止在车顶的右端。一质量为m0=0.05 kg的子弹、以水平速 度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车。已知子弹与车的作用时间极短,物块与车顶
审题导析 1.木块与子弹间产生的内能可由 哪个规律进行表达? 2.子弹射与木块过程中,子弹与 木块各自遵从什么运动规律?
转到解析Biblioteka (等3)于根系据统能其量他守形恒式,能系的统增损加失。的动能ΔEk=m+MMEk0,
(4)解决该类问题,既可以从动量、能量两方面解题,也 可以从力和运动的角度借助图象求解.
专题21子弹打木块模型和板块模型(精讲)
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
2024年人教版高中物理选择性必修第一册专题突破课二 子弹打木块模型和板块模型中的动量守恒
专题突破课二 子弹打木块模型和板块模型中的动量守恒任务一 子弹打木块模型【核心归纳】1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒。
(2)系统的机械能有损失。
3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:mv 0=(m +M )v能量守恒:Q =F f ·s =12m v 02-12(M +m )v 2(2)子弹穿透木块 动量守恒:mv 0=mv 1+Mv 2能量守恒:Q =F f ·d =12m v 02-(12M v 22+12m v 12)【典题例析】角度1 子弹嵌入木块中【典例1】(多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相等、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍。
已知A 、B 足够长,两种射入过程相比较( )A.射入滑块A 的子弹速度变化大B.整个射入过程中两滑块受到的冲量一样大C.射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D.两个过程中系统产生的热量相等【解析】选B 、D 。
子弹射入滑块过程中,子弹与滑块构成的系统动量守恒,有mv 0=(m +M )v ,两个子弹的末速度相等,所以子弹速度的变化量相等,A 错误;滑块A 、B 动量变化量相等,受到的冲量相等,B 正确;对子弹运用动能定理,有W f =12mv 2-12m v 02,由于末速度v 相等,所以阻力对子弹做功相等,C 错误;对系统,由能量守恒可知,产生的热量满足Q =12m v 02-12(m +M )v 2,所以系统产生的热量相等,D 正确。
角度2 子弹穿透木块【典例2】(多选)(2023·成都高二检测)水平飞行的子弹打穿固定在水平面上的木块,经历时间为t 1,子弹损失的动能为ΔE k1损,系统机械能的损失为E 1损 ,穿透后系统的总动量为p 1;同样的子弹以同样的速度打穿放在光滑水平面上的同样的木块,经历时间为t 2,子弹损失的动能为ΔE k2损,系统机械能的损失为E 2损,穿透后系统的总动量为p 2。
高中物理子弹打木块模型
符合的规律:子弹和木块组成的系统动量守恒,机械能不守恒。
重要结论:系统损失的机械能等于阻力乘以相对位移,即:。
共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定律和。
例1. 子弹质量为m,以速度水平打穿质量为M,厚为d的放在光滑水平面上的木块,子弹的速度变为v,求此过程系统损失的机械能。
解析:①对子弹用动能定理:②②式中s为木块的对地位移对木块用动能定理:③由②③两式得:④由①④两式解得:例2. 如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图1分析:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即。
解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或动量守恒求出转化为内能的量Q。
对物块,滑动摩擦力做负功,由动能定理得:即对物块做负功,使物块动能减少。
对木块,滑动摩擦力对木块做正功,由动能定理得:即对木块做正功,使木块动能增加,系统减少的机械能为:①本题中,物块与木块相对静止时,,则上式可简化为:②又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:③联立式②、③得:故系统机械能转化为内能的量为:例3. 如图2所示,两个小球A和B质量分别为,。
球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动。
假设两球相距时存在着恒定的斥力F,时无相互作用力。
当两球相距最近时,它们间的距离为,此时球B的速度是4m/s。
求:(1)球B的初速度;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间。
图2解析:(1)设两球之间的斥力大小是F,两球从开始相互作用到两球相距最近时所经历的时间是t,当两球相距最近时球B的速度是,此时球A的速度与球B的速度大小相等,。
子弹打木块模型
C
F
F对C做的功 W=F(S+L)=30J
Q=μmgL=5J
S A
B
例4.如图所示,在光滑水平面上有A、B两辆小车,水平面 的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车 的总质量是A车质量的10倍。两车开始都处于静止状态,小 孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原 速率返回,小孩接到A车后,又把它以相对于地面的速度v 推出。每次推出,A车相对于地面的速度都是v,方向向左。 则小孩把A车推出几次后,A车返回时小孩不能再接到A车? 解:取水平向右为正方向,小孩第一次推出A车时; mBv1-mAv=0 即:
根据动量守恒定律有 根据能量守恒定律有
(mA mB )v2 (mA mB mC )v3 ①
1 1 2 2 (m A mB ) gL (m A mB )v2 (m A mB mC )v3 2 2
联立①②式代入数据解得
②
L 0.375
h
B
C
例3:长L=1m,质量M=1kg的木板AB静止于光滑水 平面上。在AB的左端有一质量m=1kg的小木块C,现 以水平恒力F=20N作用于C,使其由静止开始向右运 动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对C 做的功及系统产生的热量 解:由于C受到外力作用所以系统动量不守恒,设木板 向前运动的位移是S,则木块的位移为S+L, 时间为t 对C: F(S+L)-μmg(S+L)=1/2×mvm2 m=1kg (F-μmg)t = mvm F=20N C 2 对AB:μmgS = 1/2×MvM A B μmg t = M vM M=1kg 解以上四式得: vm=3vM 摩擦生的热 S=0.5 m
动量守恒定律中的典型模型
动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。
设木块对子弹的阻力F恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。
则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。
第37课时动量守恒中的四类模型2025届高考物理一轮复习课件
kg和mB=2.0 kg,用轻弹簧拴接,放在光滑的水平地面上,物块B右侧
与竖直墙相接触。另有一物块C在t=0时刻以一定速度向右运动,在t
=4 s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图像
如图乙所示,下列说法正确的是(
)
目录
高中总复习·物理
A. 物块B离开墙壁前,弹簧的最大弹性势能为48 J
2
2
滑块上升的最大高度,不一定等于圆弧轨道的高度。
(2)滑块返回最低点时,滑块与曲面体分离
①系统水平方向动量守恒:mv0=mv1+Mv2;
1
1
1
2
2
②系统机械能守恒: mv0 = mv1 + Mv2 2 。
2
2
2
目录
高中总复习·物理
【典例3】 如图所示,质量为m=1 kg的工件甲静置在光滑水平面
上,其上表面由光滑水平轨道AB和四分之一光滑圆弧轨道BC组成,
②系统机械能守恒: m1v0 = (m1+m2)v共 2 +Epm。
2
2
(2)弹簧处于原长时弹性势能为零
①系统动量守恒:m1v0=m1v1+m2v2;
1
1
1
2
2
②系统机械能守恒: m1v0 = m1v1 + m2v2 2 。
2
2
2
目录
高中总复习·物理
【典例4】
(多选)如图甲所示,物块A、B的质量分别是mA=4.0
板,物块与滑板之间的动摩擦因数均为μ=0.1。重力加速度大小取g=
10 m/s2。
目录
高中总复习·物理
(1)若0<k<0.5,求碰撞后瞬间新物块和新滑板各自速度的大小和
方向;
答案:5(1-k)m/s
专题十一 动量守恒中的四类典型模型-2025届高中物理
第七章动量守恒定律专题十一动量守恒中的四类典型模型核心考点五年考情命题分析预测子弹打木块模型本专题是本章的难点,滑块+弹簧模型和滑块+滑板模型是高考的热点.预计2025年高考会出现考查滑块+滑板模型的选择题或滑块+弹簧模型的计算题.滑块+弹簧模型2023:辽宁T15,浙江6月T18;2022:全国乙T25;2021:天津T10;2019:全国ⅢT25滑块+斜(曲)面模型2023:湖南T15,山东T18滑块+滑板模型2023:辽宁T15;2022:山东T18,河北T13题型1子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情境(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv 0=(m +M )v .能量守恒:Q =F f s =12m 02-12(M +m )v 2.(2)子弹穿透木块动量守恒:mv 0=mv 1+Mv 2.能量守恒:Q=F f d=12m02-(12M22+12m12).1.[子弹未穿透木块/2024江苏淮安模拟]如图所示,质量为M=0.45kg的木块静止于光滑水平面上,一质量为m=0.05kg的子弹以水平速度v0=100m/s打入木块并停在木块中,下列说法正确的是(A)A.子弹打入木块后子弹和木块的共同速度为v=10m/sB.子弹对木块做的功W=25JC.木块对子弹做正功D.子弹打入木块过程中产生的热量Q=175J解析根据动量守恒定律可得mv0=(M+m)v,解得子弹打入木块后子弹和木块的共同速度为v=B0+=10m/s,故A正确;根据动能定理可知,子弹对木块做的功为W=12Mv2-0=22.5J,故B错误;由于子弹的动能减小,根据动能定理可知,木块对子弹做负功,故C错误;根据能量守恒定律可知,子弹打入木块过程中产生的热量为Q=12m02−12(M+m)v2=225J,故D错误.2.[子弹穿透木块]如图所示,在光滑的水平桌面上静止放置一个质量为980g的匀质木块,现有一颗质量为20g的子弹以大小为300m/s的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.(2)若子弹是以大小为400m/s的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?答案(1)6m/s882J(2)能解析(1)设子弹射入木块后与木块的共同速度为v,对子弹和木块组成的系统,由动量守恒定律得mv0=(M+m)v解得v=6m/s此过程系统所增加的内能ΔE=12m02-12(M+m)v2=882J.(2)假设子弹以v'0=400m/s的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得mv'0=(M+m)v'解得v'=8m/s此过程系统所损耗的机械能为ΔE'=12mv'20-12(M +m )v'2=1568J 由功能关系有ΔE =F 阻x 相=F 阻d ΔE'=F 阻x'相=F 阻d'则ΔΔ'=阻阻'='解得d'=1568147cm因为d'>10cm ,所以假设不成立,能射穿木块.题型2滑块+弹簧模型模型图示水平地面光滑模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒;(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒;(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型);(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)3.[滑块与弹簧连接/多选]如图甲所示,一个轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接并静止在光滑的水平地面上.现使A 以3m/s 的速度向B 运动压缩弹簧,速度—时间图像如图乙,则有(CD)A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复原长C.两物块的质量之比为m1:m2=1:2D.在t2时刻A与B的动能之比E k1:E k2=1:8解析由题图乙可知t1、t3时刻两物块达到共同速度1m/s,且此时系统动能最小,根据系统机械能守恒可知,此时弹性势能最大,t1时刻弹簧处于压缩状态,而t3时刻处于伸长状态,故A错误;结合图像弄清两物块的运动过程,开始时A逐渐减速,B逐渐加速,弹簧被压缩,t1时刻二者速度相同,系统动能最小,势能最大,弹簧被压缩到最短,然后弹簧逐渐恢复原长,B仍然加速,A先减速为零,然后反向加速,t2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两物块均减速,在t3时刻,两物块速度相等,系统动能最小,弹簧最长,因此从t3到t4过程中弹簧由伸长状态恢复原长,故B错误;根据动量守恒定律,可知t=0时刻和t=t1时刻系统总动量相等,有m1v1=(m1+m2)v2,其中v1=3m/s,v2=1m/s,解得m1:m2=1:2,故C正确;在t2时刻A的速度为v A=-1m/s,B的速度为v B=2m/s,根据m1:m2=1:2,求出E k1:E k2=1:8,故D正确.命题拓展命题条件不变,一题多设问下列说法不正确的是(C)A.t1~t2时间内B的加速度在减小B.t1和t3时刻弹簧的弹性势能相等C.t2时刻弹簧处于压缩状态D.t3时刻弹簧的弹性势能最大解析由v-t图像可知t1~t2时间内B的加速度在减小,A正确,不符合题意;t1和t3时刻,A和B的速度均相等,则A和B系统的总动能相等,弹簧的弹性势能相等,B正确,不符合题意;t2时刻,A和B的加速度均为零,说明弹簧弹力为零,则弹簧在t2时刻处于原长状态,C错误,符合题意;t3时刻,A和B的速度相等,弹簧的弹性势能最大,D正确,不符合题意.4.[滑块与弹簧不连接]如图所示,一木板放在光滑水平面上,木板的右端与一根沿水平方向放置的轻质弹簧相连,弹簧的自由端在Q点.木板的上表面左端点P与Q点之间是粗糙的,P、Q之间的距离为L,Q点右侧表面是光滑的.一质量为m=0.2kg的滑块(可视为质点)以水平速度v0=3m/s从木板的左端沿板面向右滑行,压缩弹簧后又被弹回.已知木板质量M=0.3kg,滑块与木板表面P、Q之间的动摩擦因数为μ=0.2,g=10m/s2.(1)若L=0.8m,求滑块滑上木板后的运动过程中弹簧的最大弹性势能;(2)要使滑块既能挤压弹簧,最终又没有滑离木板,则木板上P 、Q 之间的距离L 应在什么范围内?答案(1)0.22J(2)0.675m≤L <1.35m解析(1)滑块滑上木板后将弹簧压缩到最短时,弹簧具有最大弹性势能,此时滑块、木板共速,取向右为正方向,由动量守恒定律得mv 0=(m +M )v 共由能量守恒定律得E p =12m 02-12(m +M )共2-μmgL解得E p =0.22J(2)滑块最终没有离开木板,滑块和木板具有共同的末速度,设为u ,滑块与木板组成的系统动量守恒,有mv 0=(m +M )u设共速时滑块恰好滑到Q 点,由能量守恒定律得μmgL 1=12m 02-12(m +M )u2解得L 1=1.35m设共速时滑块恰好回到木板的左端P 点处,由能量守恒定律得2μmgL 2=12m 02-12(m +M )u 2解得L 2=0.675m所以P 、Q 之间的距离L 应满足0.675m≤L <1.35m.题型3滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m 02=12m 12+12M 22(弹性碰撞拓展模型)5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m的四分之一光滑圆弧滑块,圆弧半径为R,一质量也为m的小球,以水平速度v0自滑块的左端A处滑上滑块,当二者共速时,小球刚好到达圆弧上端B.若将小球的初速度增大为2v0,不计空气阻力,则小球能达到距B点的最大高度为(C)A.RB.1.5RC.3RD.4R解析若小球以水平速度v0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度相同,设为v1,以小球的初速度v0的方向为正方向,在水平方向上,由动量守恒定律得mv0=2mv1,由机械能守恒定律得12m02=12×2m12+mgR,代入数据解得v0=2g,若小球以水平速度2v0冲上滑块,小球上升到圆弧的上端时,小球与滑块水平方向上速度相同,设为v2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv0=2mv2,由能量守恒定律得12m×(2v0)2=12×2m22+mgR+12m2,解得v y=6g,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h=22=3R,故距B点的最大高度为3R,故选C.命题拓展情境不变,一题多设问以水平速度v0自滑块的左端A处滑上滑块,小球与滑块分离时的速度是多少?答案0解析从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m02=12m球2+12m块2,小球和滑块系统水平方向动量守恒,有mv0=mv球+mv块,解得v球=0.6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m0=5g的小球用长l=1m的轻绳悬挂在固定点O,质量m1=10g的物块静止在质量m2=30g的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O在物块m1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v0;(2)小球与物块碰撞后瞬间物块的速度v1;(3)圆弧轨道的半径R.答案(1)v0=2m/s(2)v1=43m/s(3)R=115m解析(1)小球下摆至最低点,满足机械能守恒定律,有m0gl(1-cos37°)=12m002解得v0=2g(1-Hs37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m0v0=m0v01+m1v1 12m002=12m0012+12m112解得v1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m1v1=(m1+m2)v212m112=12(m1+m2)22+m1gR解得R=115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v①12m202=12(m2+m3)v2+m2gh②式中v0=3m/s为冰块推出时的速度,联立①②式并代入题给数据得v=1m/s,m3=20kg ③.(2)设小孩推出冰块后的速度为v1,对小孩与冰块,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m2v0=m2v2+m3v3⑥12m 202=12m 222+12m 332⑦联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.题型4滑块+滑板模型示意图木板初速度为零且足够长木板有初速度且足够长,板块反向地面光滑地面光滑v -t 图像8.[滑块、滑板同向运动]如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为(C)A.LB.34C.2 D.4解析设物块受到的滑动摩擦力为F f ,物块的初速度为v 0.如果长木板是固定的,物块恰好停在长木板的右端,对物块的滑动过程运用动能定理得-F f L =0-12M 02,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv 0=(M +M )v 1,对系统运用能量守恒定律有F f L'=12M 02−12(2M )12,联立解得L'=2,C 正确,A 、B 、D 错误.9.[滑块、滑板反向运动]质量为M=1.0kg的长木板A在光滑水平面上以v1=0.5m/s的速度向左运动,某时刻质量为m=0.5kg的小木块B以v2=4m/s的速度从左端向右滑上长木板,经过时间t=0.6s小木块B相对A静止,已知重力加速度g取10m/s2,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1m/s,方向水平向右(2)1.5kg·m/s(3)0.5解析设水平向右为正方向(1)从开始到相对静止,系统在水平方向动量守恒-Mv1+mv2=(M+m)v解得v=1m/s,方向水平向右.(2)长木板的动量变化量大小Δp=Mv-(-Mv1)=1.5kg·m/s.(3)对小木块B,根据动量定理得-μmgt=mv-mv2解得μ=0.5.10.[多个滑块综合考查/2024辽宁沈阳模拟]如图,粗糙水平地面上放着两个相同的木板B和C,可视为质点的物块A以初速度v0冲上木板B.已知A质量为2m,与B、C间动摩擦因数均为μ;B、C质量均为m,与地面间动摩擦因数均为12μ.当A运动至B最右端时,A、B速度相同且B、C恰好相撞(碰撞时间极短),撞后B、C粘在一起.重力加速度为g.求:(1)开始时B、C间的距离;(2)A最终离C右端的距离;(3)从A冲上木板B到最终C静止的整个过程系统因摩擦产生的热量.答案(1)029B(2)230272B(3)3536m02解析(1)A在B上滑动时,对A有2μmg=2ma A故a A=μg对B有2μmg-32μmg=ma B故a B=12μg设经过t1时间A、B速度相同,则有v0-a A t1=a B t1解得t1=203B由于x B=12a B12,解得x B=029B,此即B、C的初始距离(2)木板B的长度等于A、B共速时的相对位移,有L=(v0t1-12a A12)-12a B12解得L=023B由动量守恒定律可得,A滑到B最右端时,A、B共速的速度v1=13v0此时B与C发生完全非弹性碰撞,有mv1=2mv2故碰撞后瞬间B、C的速度为v2=16v0A以13v0的速度滑上C,继续以a A=μg的加速度减速,而此时B、C整体所受合力为零,做匀速直线运动,设经过时间t2后A与B、C共速,则有v1-a A t2=v2解得t2=06B此过程中A相对C的位移大小为x AC=(v1t2-12a A22)-v2t2解得x AC=0272B此后A、C相对静止,故A最终离C右端的距离为L-x AC=230272B(3)B、C碰撞过程损失的机械能为12m12-12×2m22=136m02整个过程系统的总机械能损失为12×2m02-0=m02因此整个过程系统因摩擦产生的热量Q=3536m02.1.[滑块+曲面/2023山东]如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上.作用在A上的水平外力,使A 与B以相同速度v0向右做匀速直线运动.当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s.已知v0=1m/s,v=4m/s,m A=m C=1kg,m B=2kg,A与地面间无摩擦,B与地面间动摩擦因数μ1=0.1,C与B间动摩擦因数μ2=0.5,B足够长,使得C 不会从B上滑下.B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g=10m/s2.(1)求C下滑的高度H;(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;(3)若s=0.48m,求B与P碰撞前,摩擦力对C做的功W;(4)若s=0.48m,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量Δp的大小.答案(1)0.8m(2)0.625m≤s≤2+2m(3)-6J(4)(6+322)N·s解析(1)C下滑过程,由动能定理有m C gH=12m C v2,解得H=0.8m(2)设C滑上B以后,C的加速度大小为a C,B的加速度大小为a1,B、C共速时间为t1,s的最小值为s1,B、C共同的加速度大小为a2,经过t2时间A追上B,s的最大值为s2,则由牛顿第二定律有μ2m C g=m C a C解得a C=5m/s2μ2m C g-μ1(m B+m C)g=m B a1解得a1=1m/s2又v0+a1t1=v-a C t1解得t1=0.5s由运动学规律有s1=v0t1+12a112联立解得s1=58m=0.625mB、C共速后,由牛顿第二定律得μ1(m B+m C)g=(m B+m C)a2解得a2=1m/s2由运动学公式得s2=s1+(v0+a1t1)t2-12a222s2=v0(t1+t2)联立解得s2=2+2m故s的范围为0.625m≤s≤2+2m(3)由题意知s<s1,所以B与P碰撞时,B与C未共速.设C在B板上滑动的时间为t3,B与P相碰时C的速度大小为v1,则由运动学公式得s=v0t3+12a132解得t3=0.4s(另一解舍去)v1=v-a C t3解得v1=2m/s对物体C从刚滑上B到B与P碰撞前的过程,由动能定理有W=12m C(12-v2)解得W=-6J(4)设B与P碰撞前瞬间的速度大小为v2,B与P碰撞后瞬间的速度为v3,B向左运动的加速度大小为a3,B向左运动时间t4与A相遇.设A、B碰撞前瞬间B的速度大小为v4;A、B碰撞后瞬间,A的速度为v5,B的速度为v6,C的速度大小为v7,则由运动学公式得v2=v0+a1t3解得v2=1.4m/s由于P固定在地面上,B与P的碰撞为弹性碰撞,所以有v3=v2=1.4m/sB与P碰撞后向左运动的过程中,对B由牛顿第二定律得μ2m C g+μ1(m B+m C)g=m B a3解得a3=4m/s2自B、P碰撞后至A、B发生碰撞的过程,由运动学公式得s-v0t3=v0t4+v3t4-12a342解得t4(另一解舍去)v4=v3-a3t4解得v41)m/sv7=v1-a C t4解得v7=(22-1)m/s以向右为正方向,A、B发生弹性碰撞,由动量守恒定律得m A v0-m B v4=m A v5+m B v6由机械能守恒定律得12m A02+12m B42=12m A+12m B62联立解得v5=(1m/s、v6=(1m/s(另一组解舍去)即A、B碰撞后,A以速度v5向左运动,B以初速度v6向右运动经分析可得,B、C最终静止,A最终以速度v5向左运动,故自C滑上B开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp=m A v5-[(m A+m B)v0+m C v]解得Δ=(6N·s2.[滑块+弹簧/2022全国乙]如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图(b)所示.已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0.A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sinθ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A与斜面间的动摩擦因数.图(a)图(b)答案(1)0.6m02(2)0.768v0t0(3)0.45解析(1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B与弹簧接触到弹簧第一次压缩到最短过程中有m B v1=(m B+m A)v0其中v1=1.2v0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p,得E p+12(m A+m B)02=12m B12由上式得E p=0.6m02(2)由图像知0~t0内物块B与物块A的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A、B图像所夹面积,物块A在0~t0时间内的位移S A=0.36v0t0,即为0~t0内,v-t图像中A线与t轴所夹面积.解法1在压缩弹簧的过程中,物块A、B所受弹簧弹力大小相等,方向相反,则物块A的加速度始终是物块B加速度的5倍,有a A=5a B若两者均做初速度为零的变速运动,则两者的位移满足S A=5S'B在图1中深灰色阴影面积为S A,浅灰色阴影面积为S'B.最大压缩量为X=1.2v0t0-S A-S'B=0.768v0t0图1图2解法20~t0过程,由动量守恒定律有mv A+5mv B=(m+5m)v0结合运动学知识有mS A+5mS B=6mv0t0解得S B=1.128v0t0(B在0~t0内的位移)最大压缩量为X=S B-S A=1.128v0t0-0.36v0t0=0.768v0t0(3)设物块A第一次从斜面滑到平面上时的速度为v x,物块A(含弹簧)回到水平面,第二次与B相互作用过程系统机械能守恒、动量守恒.则有m B v2-m A v x=m B v3+m A·2v012m B22+12m A2=12m B32+12m A(2v0)2其中v2=0.8v0可得v x=v0(另一解舍去)物块A第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cosθ-mgs sinθ=0-12m(20)2物块A第一次从最高点滑到水平面的过程,由动能定理有-mgμs cosθ+mgs sinθ=12m02-0由上式得μ=0.45.1.[多选]如图所示,在光滑的水平面上放有两个小球A和B,mA>m B,B球上固定一轻质弹簧.A球以速率v去碰撞静止的B球,则(BD)A.A球的最小速率为零B.B球的最大速率为2+vC.当弹簧压缩到最短时,B球的速率最大D.两球的动能最小值为222(+)解析A球与弹簧接触后,弹簧被压缩,弹簧对A球产生向左的弹力,对B球产生向右的弹力,故A球做减速运动,B球做加速运动,当B球的速度等于A球的速度时弹簧的压缩量最大,此后A球继续减速,B球继续加速,弹簧压缩量减小,当弹簧恢复原长时,B球速度最大,A球速度最小,此过程满足动量守恒定律和能量守恒定律,有m A v=m A v1+m B v2,12m A v2=12m A12+12m B22,解得v1=−+v,v2=2+v,因为m A>m B,可知A球的最小速率不为零,B球的最大速率为2+v,故A、C错误,B正确;两球共速时,弹簧压缩到最短,弹性势能最大,此时两球动能最小,根据动量守恒定律有m A v=(m A+m B)v共,E k=12(m A+m B)共2,联立可得E k=222(+),故D正确.2.[2024北京八一中学校考/多选]如图所示,静止在光滑水平桌面上的物块A和B用一轻质弹簧拴接在一起,弹簧处于原长.一颗子弹沿弹簧轴线方向射入物块A并留在其中,射入时间极短.下列说法中正确的是(BD)A.子弹射入物块A的过程中,子弹和物块A的机械能守恒B.子弹射入物块A的过程中,子弹对物块A的冲量大小等于物块A对子弹的冲量大小C.子弹射入物块A后,两物块与子弹的动能之和等于射入物块A前子弹的动能D.两物块运动过程中,弹簧最短时的弹性势能等于弹簧最长时的弹性势能解析子弹射入物块A的过程为完全非弹性碰撞,有动能损失,则子弹和物块A的机械能不守恒,故A错误;子弹射入物块A的过程中,子弹对物块A的作用力与物块A对子弹的作用力是一对相互作用力,等大反向,而且两个力作用时间相等,由I=Ft知,子弹对物块A的冲量大小等于物块A对子弹的冲量大小,故B正确;子弹射入物块A后,两物块与子弹的动能之和小于射入物块A前子弹的动能,因为子弹射入物块A过程中有动能转化为内能,故C错误;两物块运动过程中,弹簧最短时与弹簧最长时都是两物块具有共同速度时,有(m A+m子)v1=(m A+m子+m B)v2,ΔE p=12(m A+m子)12−12(m A+m子+m B)22,则弹簧最短时的弹性势能等于弹簧最长时的弹性势能,故D正确.3.[2024河南三门峡模拟/多选]光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,图甲小车放置在无阻碍的光滑水平面上,图乙小车靠墙停放,已知重力加速度为g,则(BC)A.图甲中小球返回右端将向右做平抛运动B.图乙中小球返回右端将向右做平抛运动C.图甲中小球在弧形槽内上升的最大高度为024D.图甲中全过程小球对小车压力的冲量为mv0解析题图甲中,小球离开小车时,设小球的速度为v1,小车的速度为v2,整个过程中系统在水平方向上动量守恒,以向左为正方向,由动量守恒定律得mv0=mv1+mv2,对系统由机械能守恒定律得12m02=12m12+12m22,联立解得v1=0,v2=v0,所以题图甲中小球返回右端将做自由落体运动,A错误;题图乙中小车静止不动,因此小球返回右端将向右做平抛运动,B正确;设题图甲中小球在弧形槽内上升的最大高度为h,由系统水平方向动量守恒得mv0=2mv,由能量守恒定律得12m02=12×2mv2+mgh,解得h=024,C正确;由以上分析可知,题图甲中小球返回右端将做自由落体运动,小车将向左做匀速直线运动,速度为v0,对小车水平方向,由动量定理可得I x=Δp=mv0,由于小球对小车一直有竖直向下的压力分量,故全过程小球对小车压力的冲量不等于mv0,D错误.4.[多选]如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)的14光滑圆弧曲面C,质量为M的小球B置于其底端,质量为2的小球A以v0=6m/s的速度向B运动,并与B发生弹性碰撞,两小球均可视为质点,则(AD)A.B的最大速率为4m/sB.B运动到最高点时的速率为34m/sC.B能与A再次发生碰撞D.B不能与A再次发生碰撞解析A与B发生弹性碰撞,取水平向右为正方向,根据动量守恒定律和机械能守恒定律得2v0=2v A+Mv B,12·202=12·22+12M2,解得v A=-2m/s,v B=4m/s,故B的最大速率为4m/s,A正确;B冲上C并运动到最高点时二者共速,设为v,则Mv B=(M+2M)v,得v=43m/s,B错误;B冲上C然后又滑下的过程,设B、C分离时速度分别为v'B、v'C,由水平方向动量守恒有Mv B=Mv'B+2Mv'C,由机械能守恒有12M2=12Mv'2B+12·2Mv'2C,联立解得v'B=-43m/s,由于|v'B|<|v A|,所以二者不会再次发生碰撞,C错误,D正确.5.[设问创新/2024江苏盐城模拟]如图所示,一质量为M=3.0kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0kg的小木块A.同时给A和B大小均为v=5.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A做加速运动的时间内,B的速度大小可能是(C)A.1.8m/sB.2.4m/sC.2.8m/sD.3.5m/s解析以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A、B开始运动到A的速度为零,根据动量守恒定律可得(M-m)v=Mv B1,解得v B1=103m/s,从A、B开始运动到A、B共速,根据动量守恒定律可得(M-m)v=(M+m)v B2,解得v B2=2.5m/s,木块A加速运动的过程为其速度减为零到与B共速的过程,此过程中B始终减速,则在木块A做加速运动的时间内,B的速度范围为2.5m/s≤v B≤103m/s,故C正确,ABD错误.6.[2024湖南长沙南雅中学校考]质量为M,长度为d的木块放在光滑的水平面上,在木块的右边有一个销钉把木块挡住,使木块不能向右滑动,质量为m的子弹以水平速度v0射入静止的木块,刚好能将木块射穿.现拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度v0射入静止的木块,设子弹在木块中受到的阻力大小恒定,则(C)A.拔去销钉,木块和子弹组成的系统动量守恒,机械能也守恒B.子弹在木块中受到的阻力大小为B02C.拔去销钉,子弹在木块中运动的时间为2B(+)0D.拔去销钉,子弹射入木块的深度为B+解析拔去销钉,木块和子弹之间的摩擦力是系统内力,故木块和子弹组成的系统动量守恒;但因摩擦力要做功,故系统机械能不守恒,故A错误.当木块固定时,由动能定理可知-fd=0-12m02,解得f=B022,故B错误.拔去销钉,子弹与木块系统动量守恒,则根据动量守恒定律可得mv0=(m+M)v,解得v=B0+,对木块根据动量定理可得ft=Mv,子弹在木块中运动的时间为2B(+p0,故C正确.拔去销钉,由C选项分析可知最终速度,故整个过程根据动能定理有-fx=12(m+M)v2-12m02,解得x=B+,D错误.7.[2024江西南昌模拟]质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用挡板挡住A球而只释放B球时,B球被弹出落到距桌边水平距离为x的地面上,如图所示,若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边水平距离为(D)A.2 B.2x C.x解析当用挡板挡住A球而只释放B球时,B球做平抛运动,设高度为h,则有h=12gt2,x=v0t,所以弹簧的弹性势能为E p=12m02.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,取向右为正方向,由动量守恒定律可得0=mv1-。
模型6子弹打木块模型-动量守恒的九种模型解读
联立解得△E=220J
(2)设滑块A刚滑上滑块B时速度为vA',小滑块A冲上滑块B,并恰好能达到滑块B的最高点时系统速度相等,设为v,由动量守恒定律,mAv1’+(m0+mB)v2=(mA+m0+mB)v
由机械能守恒定律, mAv1’2+ (m0+mB)v22= (mA+m0+mB)v2+mAgR
A. B. C. D.
【答案】BC
【解析】设子弹在木块中运动的时间为 ,以子弹为对象,根据动量定理可得 ,解得 ,设子弹射出木块时,木块的速度为 ,根据系统动量守恒可得 ,解得
根据位移关系可得 ,解得 ,故选BC。 公众号高中物理学习研究
3. (2024安徽芜湖重点高中二模)如图所示,质量均为m的物块A、B放在光滑的水平面上,中间用轻弹簧相连,弹簧处于原长,一颗质量为 的子弹以水平速度 射入木块A并留在物块中(时间极短),则下列说法正确的是( )
解得:vB=4 m/s
子弹、A、B和弹簧所组成的系统动量守恒,弹簧弹性势能最大时A、B、子弹具有相同的速度v,由动量守恒定律:
mAvA+(m+mB)vB=(m+mA+mB)v
解得:v=5 m/s
由能量关系:Ep= mAvA2+ (m+mB)vB2- (m+mA+mB)v2
解得:Ep=6 J。
(3)从子弹射入B中到弹簧再次恢复原长,系统总动量守恒,总动能不变,则:
(1)子弹击中木块后的速度;
(2)木块在斜面上向上运动的时间和返回斜面底端时速度大小。
【解析】(1)从子弹射击木块到子弹和木块一起运动过程中,子弹和ห้องสมุดไป่ตู้块组成系统动量守恒,设共同运动速度为v1,v0方向为正方向,则mv0=(m+M)v1解得v1=2m/s
【高考物理】模型构建:模型13、子弹打木块模型(解析版)Word(18页)
模型13、子弹打木块模型动量守恒定律、机械能守恒定律、动能定理等解决动力学问题的三大观点:力学观点:牛顿运动定律、运动学公式能量观点:动能定理、机械能守恒定律、能量守恒定律、功能关系动量观点:动量守恒定律(4nmgLn8nmgLn,对子弹射入木块后的上升过程,由机械能守恒定律得C.498m/s 【详解】第一粒弹丸射入木块中,根据动量守恒可得1()mv M m v=+.子弹射入沙箱的过程系统满足动量守恒、机械能守恒.子弹和沙箱合为一体的瞬间轻绳的拉力为()F m M g =++.子弹和沙箱合为一体后一起上升的最大高度与轻绳的长度有关.子弹和沙箱合为一体后一起上升的最大高度为2m v h =C.50J D C.5J Dv=.子弹打入木块后子弹和木块的共同速度为8m/s500J的过程中,两物块的动量守恒的过程中,子弹对物块A的冲量大小大于物块.子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能守恒.子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量守恒.子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量守恒【答案】A【详解】A.由于子弹和物块作用时间极短,则在打击过程中,内力远远大于外力,可知子弹开始打物块到与物块共速,子弹、物块组成的系统动量守恒,A正确;B.根据上述,子弹开始打物块到与物块共速过程类似完全非弹性碰撞,该过程有一部分动能转化为内能,则子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统机械能减小,不守恒,B错误;C.打击过程子弹与物块动量守恒,打击完成后,子弹与木块向右压缩弹簧,系统所受外力的合力不为0,该过程动量不守恒,可知子弹开始打物块到弹簧压缩至最短,子弹、物块、弹簧组成的系统动量不守恒,C错误;D.根据上述可知,子弹物块以相同速度压弹簧的过程中,物块、子弹、弹簧组成的系统动量不守恒,D错误。
子弹打木块模型
(1)带电环进入电容器后在电场力的作用下做初速 度为v0的匀减速直线运动,而电容器则在电场力的作 用下做匀加速直线运动,当它们的速度相等时,带电 环与电容器的左极板相距最近,由系统动量守恒定律 可得: 动量观点: 力与运动观点: 设电场力为F
(2)能量观点(在第(1)问基础上): 对m: 对M: 所以运动学观点: 对M: ,对m: ,
[跟踪练习]
1.在光滑水平面上并排放两个相同的木板,长度均 为L=1.00m,一质量与木板相同的金属块,v0=2.00m/s 的初速度向右滑上木板A,金属块与木板间动摩擦因数 为μ=0.1,g取10m/s2。求两木板的最后速度。 v0 A B 金属块在板上滑动过程中,系统动量守恒。要金属块最 终停在什么位置要进行判断。假设金属块最终停在A上。 三者有相同速度v,相对位移为x,则有
5、如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑 水平面上,平行板电容器板间的距离为d,右极板上有一小孔, 通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆, 电容器极板以及底座、绝缘杆总质量为M,给电容器充电后, 有一质量为m的带正电小环恰套在杆上以某一初速度v0对准小 孔向左运动,并从小孔进入电容器,设带电环不影响电容器板 间电场分布。带电环进入电容器后距左板的最小距离为0.5d, 试求: (1)带电环与左极板相距最近时的速度v; (2)此过程中电容器移动的距离s。 (3)此过程中能量如何变化?
解得:
带电环与电容器的速度图像如图所示。由三角形面积 可得:
(3)在此过程,系统中,带电小环动能减少,电势能增 加,同时电容器等的动能增加,系统中减少的动能全部转 化为电势能。
解得:
如图所示,带弧形轨道的小车放在光滑的水平地面上, 车左端被固定在地面上的竖直档板挡住,已知小车的弧 形轨道和水平部分在B点相切,AB段光滑,BC段粗 糙, BC段长度为L=0.75m。现有一小木块(可视为质点) 从距BC面高为h=0.2m的A点无初速释放,恰好未从车 上滑落。已知木块质量m1=1kg,小车质量m2=3kg, g取10m/s2。求: (1)木块滑到B点时的速度; (2)木块与BC面之间的动摩擦因数; (3)在整个过程中,小车给档板的冲量。
高一物理子弹打木块模型.ppt
子弹打木块动量和功、能关系
S2
S1
d
v0
M
m
问题5:子弹的动量减小多少?木块的动量增加多少? 动量总量怎么样?
由动量定理分析 如下:
木块: Δ P木 = M vx- 0 = f t
Δ P子 = Δ P木
因此系统总动量守恒
- 子弹: Δ P子 = m v0 m vx = f t
子弹打木块动量和功、能关系
S2
S1
d
v0
M
m
问题3:子弹损失动能与木块增加的动能一样大吗? 子弹损失的动能转化成什么能了?
由动能定理分析 如下:
- 0 木块增加动能:ΔE木
=
1 2
Mvx2
= f S1
由于 f S2 > f S1
- 子弹损失动能:ΔE子 - - 转化成了热量: Q
= =
1 2
m
v02
f S2 —f S1
1
2
=
m
fd
vx2= f = 1m
2
S2
v02
1 2
mvx2
1 2
M
vx2
子弹打木块动量和功、能关系
S2
S1
d
v0
M
m
问题4:设子弹与木块间平均作用力大小为f,在不知时间 情况下那么子弹受到的冲量是多大?木块受到的冲量为多大?
由动量定理分析 如下:
木块: f t = M vx- 0
- 子弹: f t = m vx-mv0
v0
m
2m
解析:〔1〕设子弹穿过木块后木块获得的速度是v
由系统动量守恒得:
mv0
mv0 2
2mv
v
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型/题型:子弹打木块模型
一.模型概述
子弹射击木块的两种典型情况
1.木块放置在光滑的水平面上
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:
(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);系统损失的动能等于系统增加的内能.
(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q =F f ·x 相,其中f 是滑动摩擦力的大小,x 是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
(3)系统产生的内能,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.
(4)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).
二、标准模型
标准模型:一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:
(1)子弹、木块相对静止时的速度是多少?
(2)子弹在木块内运动的时间为多长?
(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?
(4)系统损失的机械能、系统增加的内能分别是多少?
(5)要使子弹不射出木块,木块至少多长?
答案 (1)m M +m v 0 (2)Mm v 0F f (M +m ) (3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m ) (4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )
解析(1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 mv 0=(M +m )v 解得v =m
M +m
v 0 (2)设子弹在木块内运动的时间为t ,由动量定理得
对木块:F f t =Mv -0 解得t =Mmv 0F f (M +m )
(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得
对子弹:-F f x 1=12mv 2-12mv 02 解得:x 1=Mm (M +2m )v 022F f (M +m )
2 对木块:F f x 2=12Mv 2 解得:x 2=Mm 2v 022F f (M +m )2
子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022F f (M +m ) (4)系统损失的机械能为E 损=12mv 02-12(M +m )v 2=Mmv 022(M +m )
系统增加的内能为Q =F f ·x 相=Mmv 022(M +m )
,系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有
F f L =12mv 02-12(M +m )v 2 解得L =Mmv 022F f (M +m ) 因此木块的长度至少为Mmv 022F f (M +m )
.
三、典型例题
1.(子弹打木块的能量) (多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )
A .16 J
B .11.2 J
C .4.8 J
D .3.4 J
答案 AB.
解析
法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,
根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,
ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到
的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得
到的动能.
2.一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M 。
现以地面为参考系,给A 和B 以大小相等、方向相反的初速度,如图所示,使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离B 板。
(1)若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;
(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。
答案 (1)M -m M +m v0 水平向右 (2)M +m 4M
l 解析 (1)用动量守恒定律求解:系统水平方向动量守恒,取水平向右为正方向。
小木块A 不滑离B 板的条件是二者最终处于相对静止,设此时共同速度为v 。
由动量守恒定律得:Mv 0-mv 0=(M +m)v , 可得:v =
M -m M +m v 0 因为M>m ,故v 方向水平向右。
(2)功能关系:当木块A 相对于地向左运动距离最远时,末速度为零,在这过程中,克服摩擦力F f 做功。