采样控制系统的分析

合集下载

零阶保持器

零阶保持器

T / 2
e
自动控制原理
第七章 采样数据控制系统分析
因为
T

s
,所以
j π
2 π sin ( π / s ) G h ( j ) e s π / s
|G h ( j ) |
s
零阶保持器的 频率特性:
T

O -
s
2s
3s
G h ( j )
≥ 2
s
m ax
时,则由采样得到的离散信号能无失真地恢 复到原来的连续信号,这就是采样定理,也 称为香农(Shannon)定理。
自动控制原理
第七章 采样数据控制系统分析
物理意义:如果选择这样一个采样角频率 ≥ 2 ,使得对连续信号中所含的最高 s m ax 频率信号来说,能做到在其一个周期内采 样两次以上,则在经采样所获得的离散信 号中将包含连续信号的全部信息。反之, 如果采样次数太少,就做不到无失真地再 现原连续信号。
自动控制原理
第七章 采样数据控制系统分析
第七章 采样数据控制系统分析
7.1 概 述 一、采样控制系统 采样控制系统,又称断续控制系统、离散 控制系统,它是建立在采样信号基础上的。 如果控制系统中有一处或几处信号是断续 的脉冲或数码,则这样的系统称为离散系统。 通常,把系统中的离散信号是脉冲序列形 式的离散系统,称为采样控制系统; 而把数字序列形式的离散系统,称为数字 控制系统或计算机控制系统。
自动控制原理
第七章 采样数据控制系统分析
7.2 信号的采样与保持 一、采样过程 把连续信号转换成离散信号的过程,叫作 采样过程。 实现采样的装置叫作采样开关或采样器。
e(t) e(t) T e * (t) e * (t)

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。

下面将对自动控制原理的一些关键知识点进行总结。

一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。

控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。

控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。

反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。

在控制系统中,常用的术语包括输入量、输出量、偏差量等。

输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。

二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。

状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。

三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。

常见的性能指标包括稳定性、准确性和快速性。

稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。

准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。

快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。

四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。

常用的稳定性判据有劳斯判据和赫尔维茨判据。

劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。

电气工程中的自动化控制系统数据采集与分析

电气工程中的自动化控制系统数据采集与分析

电气工程中的自动化控制系统数据采集与分析在电气工程中,自动化控制系统的数据采集与分析是至关重要的一环。

通过这一过程,工程师们可以获取到关键的数据指标,并根据其分析结果进行合理的控制与优化,以提高系统的效率和性能。

本文将就电气工程中的自动化控制系统数据采集与分析进行探讨。

一、数据采集自动化控制系统中的数据采集是指通过传感器、仪表等设备获取到系统运行时产生的各种数据信息。

这些数据信息反映了系统不同参数的实时状态,包括但不限于电压、电流、温度、湿度等。

数据采集可以通过模拟信号和数字信号两种方式实现。

1. 模拟信号采集模拟信号采集是指将连续变化的物理量转化为对应的模拟电信号,并通过模拟输入模块进行采集。

这种方式常用于测量温度、湿度等模拟量参数。

采集到的模拟信号需经过采样、滤波和放大等处理,保证信号的准确性和稳定性。

2. 数字信号采集数字信号采集是指将模拟信号经过模数转换器(ADC)转换成数字信号,并通过数字输入模块进行采集。

数字信号采集具有高精度、抗干扰能力强等优点,适用于需要高精度测量和远程传输的场合。

采集到的数字信号可以直接用于系统控制和数据分析。

二、数据分析数据采集完成后,接下来的关键环节是对所获得的数据进行分析。

通过数据分析,工程师们可以全面了解系统的运行状态,揭示其中的潜在问题,并基于分析结果制定优化措施。

1. 数据预处理在进行数据分析之前,通常需要对采集到的数据进行预处理,以去除异常值和噪声等干扰因素。

数据预处理包括数据清洗、去噪、插值和对齐等操作,以确保分析结果的准确性和可靠性。

2. 数据可视化数据可视化是将处理后的数据以图表、曲线等形式展现出来,使得工程师们可以直观地观察数据的变化趋势和规律。

常见的数据可视化手段包括直方图、折线图、散点图等。

通过数据可视化,工程师们可以更好地理解数据,并发现其中的规律和异常情况。

3. 数据分析方法在进行数据分析时,可以采用各种统计学和数学方法。

常用的数据分析方法包括回归分析、时序分析、频谱分析、相关性分析等。

(自动控制原理)采样控制系统

(自动控制原理)采样控制系统
X(s )= M(s ) N(s ) 的多项式, 其中, 其中,M(s )及 N(s )分别为复变量s 的多项式,并
且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (

自动控制原理第七章 采样控制系统

自动控制原理第七章 采样控制系统
s2 2
展开为部分分式,即
E ( s)
1 1 1 [ ] 2 j s j s j
求拉氏反变换得 e(t ) 1 [e jt e jt ] 2j 分别求各部分的Z变换,得 Z [e* (t )] 1 [ 化简后得
E( z) z sinT z 2 2 z cosT 1
e(t ) e(nT ) e(nT )(t nT ) e (nT ) (t nT ) 2 2! nT t (n 1)T
外推法: 用采样点数值外推求得采样点之间的数值.
只取第一项 ---- 零阶保持器. 只取前两项 ---- 一阶保持器.
e*(t)
一阶保持器比零阶保持器信号恢复更
自动控制原理
蒋大明
一.Z变换
1. Z变换定义:
Z e
TS
S
*
1 ln Z T
代入上式得:

E ( z) E ( s)
1 s ln z T
e( nT ) z
n 0

n
E ( z ) e(0) Z 0 e(T ) Z 1 e(2T ) Z 2
e(kT)表征采样脉冲的幅值,Z的幂次表征采样脉冲出现的时刻。
-at
(a >0)的Z变换。
e(nT) = e
-a nT
(n = 0, 1, …)
代入Z变换的定义式可得
E(z) = 1 + e
若|e
–aT
-aTz -1
+ e
-2aTz -2
+ e
-3aTz -3
+ …
z
-1|
< 1,该级数收敛,利用等比级数求和公式,其Z变换

如何进行PLC系统的数据采集与分析

如何进行PLC系统的数据采集与分析

如何进行PLC系统的数据采集与分析PLC系统的数据采集与分析PLC(可编程逻辑控制器)系统是目前工业自动化中最常用的控制器之一。

作为一种先进的控制设备,PLC系统不仅能够实现自动化生产,还可以提供重要的过程数据,以便进行数据采集和分析。

本文将着重介绍如何进行PLC系统的数据采集与分析。

一、数据采集的基本原理数据采集是从PLC系统中获取各种状态和数值的过程,对于数据采集,我们需要遵循以下基本原理:1. 选择适当的传感器:根据采集需求,选择合适的传感器进行数据采集。

传感器的类型和规格应根据具体应用场景来确定。

2. 连接传感器和PLC系统:将传感器与PLC系统进行连接,确保数据能够准确地传输到PLC系统中。

通常,我们会使用模拟输入通道或数字输入通道来接收传感器的信号。

3. 配置采样周期:根据需求,设置采样周期以确定数据的采集频率。

采样周期可以根据实际情况进行调整,以确保数据采集的准确性和效率。

4. 数据存储:将采集到的数据存储在PLC系统的存储介质中,如内存或SD卡。

存储介质的选择应根据采集数据的类型和容量需求来确定。

二、数据采集的实践步骤下面将简要介绍进行PLC系统数据采集的实践步骤:1. 配置输入通道:在PLC系统的配置界面上,选择适当的输入通道,并将其与传感器进行连接。

确保输入通道的设置与传感器的类型和规格相匹配。

2. 设置采样周期:在PLC系统的设置界面上,配置数据采集的采样周期。

根据数据采集的需要,设置合适的时间间隔,以确保数据能够根据需要进行采集。

3. 编写数据采集程序:使用PLC系统提供的编程软件,编写数据采集程序。

程序的设计应考虑到数据的类型和采集频率,并确保数据的准确性和稳定性。

4. 启动数据采集:将编写好的数据采集程序加载到PLC系统中,并启动数据采集功能。

确保传感器正常工作,并监控采集到的数据是否符合预期。

三、数据分析的基本原理数据采集完成后,接下来就是对采集到的数据进行分析。

数据分析的基本原理如下:1. 数据预处理:对采集到的原始数据进行预处理,包括去除噪声、异常值处理和数据插值等。

控制工程基础-计算机采样控制系统(2)

控制工程基础-计算机采样控制系统(2)

11
脉冲传递函数(10)
1.有采样开关分隔的两个环节串联时,其脉冲传递函数等于各 环节的脉冲传递函数之积。
X (z) G1(z) R(z)
C(z) G2 (z) X (z)
将X(z)代入C(z) C(z) G2 (z)G1zRz
Cz Rz
G1
z
G2
z
2.没有采样开关分隔的两环节串联时,其脉冲传递函数为各个
2021/2/20
第九章 计算机采样控制系统
15
脉冲传递函数(14)

G' p s Gp ss
并根据前面介绍的环节串、并联脉冲传递函数求取方法,参照上图
,则带保持器的广义控制对象脉冲传递函数
Gz
C1
z C2 U z
z
G1z
G2
z
G1z
C1 z U z
Z
Gp' s
Z
g p' t
G2z
1 G1H (z)
闭环传递函数 (z) 的推导步骤:
1) 在主通道上建立输出 C(z)与中间变量 E(z)的关系;
2) 在闭环回路中建立中间变量 E(z) 与输入 R(z) 的关系;
3) 消去中间变量 E(z),建立C(z) 和 R(z) 的关系。
2021/2/20
第九章 计算机采样控制系统
21
脉冲传递函数(20)
Gz ZGs
即符号 ZGs、ZL1Gs 和 Z g*(t) 、 ZgkT 是等价的。
Gz Zg*(t) ZgkT ZL1Gs ZGS
2021/2/20
第九章 计算机采样控制系统
7
脉冲传递函数(6)
如果系统的输入为任意函数 的采样脉冲序列 r(kT) ,其Z变换

6_离散控制系统(2)

6_离散控制系统(2)
19
Z变换
解: E * ( s ) = ∑ e( kT )e − kTs = 1 + e −Ts + e − 2Ts +
k =0 ∞
E * ( s ) = ∑ e( kT )e − kTs
k =0

例1:设e(t)=1(t),试求e*(t)的拉氏变换。
= 1 , − Ts 1− e e −Ts < 1
给定值 + 反 馈 信 号
扰动
-
A/D
数字 计算机 控制器
D/A
执行 元件
对象
测量元件
2
线性定常连续控制系统:微分方程、传递函数; r(t) e(t)
控制器
u(t)
执行元件 被控对象
c(t)
b(t)
检测元件
采样控制系统:差分方程、脉冲传递函数; 连续 信号
r(t) b(t) 测量元件
3
离散 信号
采样开关 e*(t)
k =0
∞ k =0
20

x*(t)的z变换记为Z[x*(t)], Z (x* ( t )) = X ( z ) = ∑ x( kT ) z − k
Z变换
1、定义法(级数求和法)
知道连续函数x(t)在各采样时刻的离散值x*(t),按定义求。 例2:求 x1 ( t ) = u( t ) 和 x 2 ( t ) = ∑ δ ( t − kT ) 的z变换表达式。 解: X ( z ) = x ( kT ) z − k = 1 + z −1 + z − 2 + ∑ 1
零阶保持器的频率特征
eh ( s ) 1 − e − Ts = = Gh ( s ) * e ( s) s

控制系统仿真实验报告

控制系统仿真实验报告

采样控制系统仿真实验报告姓名胡晓健班级13学号08001331课题内容1、应用采样工作原理和离散控制系统设计方法设计采样控制系统。

2、掌握采样控制系统的特点及采样控制系统仿真的特殊问题,运用采样控制系统数字仿真的一般方法(差分方程递推求解法和对离散、连续部分分别计算的双重循环法)及Simulink 对系统进行仿真。

3、给出仿真设计方案和仿真模型。

4、仿真分析。

具体内容:采样控制系统如下图所示:一. 设计要求① 设被控对象sss G o +=21)(,采用零阶保持器,数字控制器为5.015.2)(+-=z z z D ,采样周期T=0.1s 。

应用差分方程递推求解法求系统输出的单位阶跃响应,并求其超调量、上升时间、峰值时间。

设计方案和实现差分方程递推求解法在构成采样控制仿真模型时,若连续部分不要求计算内部状态变量或不含非线性环节,则可以同样的采样周期分别建立离散部分和连续部分的差分方程,然后采用差分方程递推求解。

由题意可知被控对象不含非线性环节且不要求计算其内部状态变量,为了简化仿真过程并提高仿真精度,将连续部分的离散化模型嵌入到整个仿真模型中,即求出系统闭环脉冲传递函数(离散化模型),得到系统的差分方程后递推求解由题意得数字控制器(离散部分)为5.015.2)(+-=z z z D求解传递函数的程序如下:Ts=0.1 %采样周期num1=[1]den1=[1,1,0]G1c=tf(num1,den1)G1d=c2d(G1c,Ts) %采用零阶保持法进行系统变换G2d=tf([2.5 -1],[1 0.5],0.1)Gd=G1d*G2dGHd=feedback(Gd,1) %建立闭环系统模型Ts =0.1000num1 =1den1 =1 1 0%G1c的传递函数Transfer function:1-------s^2 + s%G1c转换后的Z传递函数Transfer function:0.004837 z + 0.004679----------------------z^2 - 1.905 z + 0.9048Sampling time: 0.1%G2d的传递函数Transfer function:2.5 z - 1---------z + 0.5Sampling time: 0.1%开环系统的Z传递函数Transfer function:0.01209 z^2 + 0.00686 z - 0.004679------------------------------------z^3 - 1.405 z^2 - 0.04758 z + 0.4524Sampling time: 0.1%闭环系统的Z 传递函数 Transfer function:0.01209 z^2 + 0.00686 z - 0.004679 ------------------------------------z^3 - 1.393 z^2 - 0.04072 z + 0.4477Sampling time: 0.1由上式可知当采样周期为T =0.1s 时,连续部分的脉冲传递函数为系统闭环脉冲传递函数系统差分方程为求解差分方程的MATLAB 程序如下clear allm=2;n=3; % 明确脉冲传递函数分子m=2;分母n=3 A=[-1.393 -0.04072 0.4477]; % 脉冲传递函数分母多项式的系数行向量 B=[0.01209 0.00686 -0.004679]; % 脉冲传递函数分子多项式的系数行向量R=zeros(m+1,1); % 建立参与递推运算的输入信号序列存储列向量Y=zeros(n,1); % 建立参与递推运算的输出信号序列存储列向量 T=0.1; % 明确采样周期T =0.1sM=150; % 设定仿真总时间为M*T=15s(进行M=150次递推计算) yt=0;t=0;for k=1:MR(k)=1; % r (t )=1(t )的离散序列R(0)=R(1)=…R(k)=1 R=[R(k);R(1:m)];% 刷新参与递推运算的输入信号序列 yk=-A*Y+B*R; % 递推运算21219048.0905.1104679.0004837.0)(----+-+=zzz z z G 3213214477.004072.0393.11004679.000686.001209.0)()(1)()()()()(------+---+=+==zz z zzzz G z D z G z D z R z Y z G cl )3(004679.0)2(00686.0)1(01209.0)3(4477.0)2(04072.0)1(393.1)(---+-+---+-=k k r k r k y k y k y k yY=[yk;Y(1:n-1)];% 刷新参与递推运算的输出信号序列yt=[yt,yk]; % yt 为记载各采样(kT)时刻输出响应的行向量 t=[t,k*T]; % t 为记载各采样(kT)时刻的行向量(与yt 对应) endplot(t,yt,'*k'); % 绘制各采样(kT)时刻的输出响应图 grid;xlabel('time(s)'); ylabel('y(kT)');超调量 σ% 指响应的最大偏离量h(tp)与终值h (∞)的差与终值h (∞)比的百分数h(tp)-h %*100%h σ∞=∞()()峰值时间 tp 指响应超过其终值到达第一个峰值所需的时间上升时间 tr 指响应从终值10%上升到终值90%所需的时间求超调量的程序 maxy=max(yt); yss=yt(length(t));pos=100*(maxy-yss)/yss求峰值时间的程序 for i=1:50if yt(i)==maxy,n=i;end endtp=(n-1)*15/length(t)求上升时间的程序 for i=1:50if (yt(i)<yss*0.1),t1=i;end if (yt(i)<yss*0.9),t2=i;end endts=(t2-t1)*15/length(t)测试和结果.输出的单位阶跃响应为由程序算出的超调量,峰值时间和上升时间超调量pos = 14.0155峰值时间tp =3.5762上升时间ts =1.6887由上面两张截图算出的超调量σ%=(1.163-1.02)/1.02=14.02%峰值时间tp=3.6由上面两张截图可得上升时间tr=2-0.4=1.6性能分析该仿真算法不仅简单易行且仿真精度高。

新版自动控制理论实验课程教学大纲.答案

新版自动控制理论实验课程教学大纲.答案

《自动控制理论》实验教学大纲课程名称:自动控制理论课程性质:非独立设课使用教材:自编课程编号:面向专业:自动化课程学分:考核方法:成绩是考核学习效果的重要手段,实验成绩按学生的实验态度,独立动手能力和实验报告综合评定,以20%的比例计入本门课程的总成绩。

实验课总成绩由平时成绩(20%)、实验理论考试成绩(40%)、实验操作考试成绩(40%)三部分组成,满分为100分。

实验理论考试内容包含实验原理、实验操作方法、实验现象解析、实验结果评价、实验方案设计等。

考试题型以填空、判断、选择、问答为主,同时可结合课程特点设计其他题型。

实验操作考试根据课程特点设计若干个考试内容,由学生抽签定题。

平时成绩考核满分为20分,平时成绩= 平时各次实验得分总和÷实验次数(≤20分)。

每次实验得分计算办法为:实验报告满分10分(其中未交实验报告或不合格者0分,合格6分,良好8分,优秀10分);实验操作满分10分(其中旷课或不合格者0分,合格6分,良好8分,优秀10分)。

撰写人:任鸟飞审核人:胡皓课程简介:自动控制理论是电气工程及其自动化专业最主要的专业基础必修课。

通过本课程的各个教学环节的实践,要求学生能熟练利用模拟电路搭建需要的控制系统、熟练使用虚拟示波器测试系统的各项性能指标,并能根据性能指标的变化分析参数对系统的影响。

实验过程中要求学生熟悉自动控制理论中相关的知识点,可以在教师预设的实验前提下自己设计实验方案,完成实验任务。

教学大纲要求总学时80,其中理论教学68学时、实验12学时,实验个数6个。

9采样控制系统的分析√4选做10采样控制系统的动态校正√4选做合计实验一典型环节的电路模拟一、实验类型:综合性实验二、实验目的:1.熟悉THBCC-1型实验平台及“THBCC-1”软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

三、实验内容与要求:1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.画出各典型环节的实验电路图,并注明参数。

变采样网络控制系统的建模与分析

变采样网络控制系统的建模与分析
序 列的网络控制系统 J 。但在 实际 的互联 网 中, 网络 时延是 没 有界限的 , 也不符 合 某 一种 分布 的随 机序 列 J 。基 于事
因此在 F点 自动发送报文 ,3 c 点和 F点的 间隔为 一 ;) 4 本地 机和远程机 的相邻报文发送之 间都有 时间超 过 z 的情况 出 l 叫 现, 也就 是传感器 一 控制器时延 r 和控制器 一 执行器 时延 r 大于 都 , 3 和F点 、 和/ c点 F点 点之 间的间隔都为 , 因此所有报 文发送 的情 况都 可以是 以上几 种 的组 合。 由此 可 见事件 一 时间驱动方式 可 以保 证每个 采样 周期都 不会大 于 2 , 过对 2 通 的限制来保证 信号不失 真。 采样 周期指 的 是 相邻 报 文发送 之 间的间隔 时 间, 于事件 一 时 间驱 动方 对 式, 由图 1可 以看 出, 于控 制器和被控对象来说采样周 期是 对 变 化的 因此 也可以称 为变 采样 系统。
维普资讯
第2 7卷 第 2期
20 0 7年 2月
文章编号 :0 1 9 8 ( 07 0 0 7 0 10 — 0 12 0 ) 2— 2 2— 3
计 算机 应 用
Co utrAp lc to mp e p i ains
Vo _ 7 No 2 l2 .
( . colfI om t nE gne n , n e i c nead Tcn l yB rn ,B fn 0 8,C i ; 1Sho o n r ai n i r g U i rt o i c n ehoo ei f o ei v sy fS e g g eig10 3 hn a 2 ic rt o I om t nSi e,N t nl aua c neF u dt no C i ,B  ̄n 00 5 C i ) .Dr t ae n rai e s ai a trl i c o nai hn eo f f o c n c o N Se o f a e i 10 8 , n ig h a

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响

采样周期对控制系统稳定性的影响采样周期对控制系统稳定性的影响采样周期是指控制系统中每个采样周期内进行一次测量和控制操作的时间间隔。

控制系统的稳定性是指系统在受到外部干扰或系统参数变化时,能够保持输出稳定在期望值附近的能力。

采样周期对控制系统的稳定性有着重要的影响,下面将逐步分析其影响因素。

1. 采样周期与系统动态响应:采样周期的长度会直接影响控制系统的动态响应。

较长的采样周期会导致系统响应迟缓,反馈控制信号的延迟较大,可能会引起系统的超调和振荡。

相反,较短的采样周期能够更快地控制系统响应,减小超调和振荡的可能性。

2. 采样周期与采样误差:采样过程中可能会引入采样误差,即由于测量和模拟过程的离散性而引起的误差。

采样周期越短,采样误差就越小。

因此,较短的采样周期有利于提高控制系统的精确度和稳定性。

3. 采样周期与信号截断:在控制系统中,如果采样周期过长,可能会导致对控制信号的截断。

即使在采样周期内,控制信号的变化可能也无法完整地表示出来。

这种截断会引起控制系统的不稳定行为,可能导致系统振荡或失稳。

4. 采样周期与采样频率:采样周期和采样频率是对采样过程的不同描述。

采样周期是指采样点之间的时间间隔,而采样频率是指在单位时间内进行采样的次数。

较高的采样频率意味着较短的采样周期,可以提高控制系统的稳定性和性能。

5. 采样周期与系统带宽:控制系统的带宽是指系统能够有效响应输入信号的频率范围。

较短的采样周期可以增加系统的带宽,提高系统对高频输入信号的响应能力。

然而,过短的采样周期可能会引起采样噪声和混叠效应,从而降低系统的稳定性。

综上所述,采样周期对控制系统的稳定性有着重要的影响。

较短的采样周期可以提高系统的响应速度、精确度和稳定性,但也可能引入额外的采样误差和噪声。

控制系统设计时需要根据实际需求和系统特性选择合适的采样周期,以达到最佳的控制性能和稳定性。

离散 系统的基本概念

离散 系统的基本概念
实际采样装置是多种多样的,但无论其具体实现形式如何,根据其基本功 能均可以用一个开关表示,通常将这个开关称为采样开关。
1.2 数字控制系统
典型数字控制系统如图所示,其中被控对象是在连续信号作用下工
作的,其控制信号 u1(t) 、输出信号 f (t)、反馈信号 c(t) 及参考输入信号 r(t) 等均为连续信号,而计算机的输入、输出信号则是采样的数字信号。
如果采用采样控制方式,可在偏差信号和执行电机之间加装一个开关,使其每 隔较长时间闭合一次,且闭合时间相对很短。当开关闭合时,系统根据偏差闭环控 制电机转动,以此来调节炉温,而当开关断开时,电机停止转动。由于闭环时间很 短,开环传递系数可以取较大值,使系统在保持动态性能的同时提高稳态控制精度。
由此可知,对连续对象进行采样控制时,必须将连续信号变为离散时间上 的脉冲序列信号。这种将连续信号变为脉冲序列信号的过程称为采样过程,简 称采样。
由于炉温调节是一个大惯性过程,控制对象的相位滞后非常明显,如果采用连 续控制方式,为保证系统具有足够的相位裕度,开环传递系数就要取很小值,这就 对系统的稳态精度控制造成很大困难。当加大开环增益来提高系统的控制精度时, 由于系统的灵敏度相应提高,而炉温的变化相对缓慢很多,这就容易造成过度调节, 产生振荡。
由于计算机处理的是二进制数据,其输入信号不能是连续信号,所以误差 信号e(t) 要经过模数转换器(A/D)变成计算机能接受的数字信号 e(kT ) 。计 算机根据由差分方程表述的预定算法得到数字形式的控制信号 u(kT ),并由数 模转换器(D/A)将数字信号转换成脉冲序列信号 u1(t) ,以此来断续控制被控 对象,也可经保持器连续控制被控对象。
自动控制原理
离散系统的基本概念
离散输入信号包括脉冲序列信号和数字序列信号,所对应的控制系统分别 称作采样控制系统和数字控制系统(也称计算机控制系统),它们均为离散系 统,可采用统一的离散系统分析方法进行研究。

采样系统

采样系统

典型的采样控制系统方框 图如图8—1所示。其中,误 差e是时间的连续信号,经过 采样时间为T的采样开关之后, 变成一组脉冲序列e*,脉冲 控制器将离散的误差信号处 理后,得到离散的控制信号, 该信号经保持器变换为连续 信号去控制被控对象。采样 开关每隔时间T开闭一次,每 次闭合时间为ε,则称T为采 样周期,ε为采样时间, ε<T,f s=1/T,ωs=2π/T分别成为采样频率和采样 角频率。这样图8-2 a所示模拟量e被采样后变成了图8-2 b所 示的脉冲序列e*。本图中,采样周期T是固定的,我们称为等 周期采样,另外还有多阶采样、多速采样、及随机采样等, 本书只介绍常用的等周期采样。
xoBox
式中 T——采样周期 n——整数 脉冲调制器(采样器)的输出信 号e*(t)可表示为
在控制系统中,当t<0时。e(t)=0。因此式(8-2)可 以改写为
对式(8-3)取拉氏变换得
xoBox
为了建立 与E(s)的关系,可求周期函数δT(t)的富 氏级数,其复数形式为
式中 ——富氏系数 这样,式(8-2)可以写成下式
§8—5
脉冲传递函数
一、基本概念 在线性连续系统理论中,把初始条件为零的情况下系统输 出信号的拉普拉斯变换与输入信号的拉普拉斯变换之比,定 义为传递函数。 与此相类似,在线性采样系统理论 中,把初始条件为零的情况下系统的 离散输出信号的z变换与离散输入信 号的z变换之比,定义为脉冲传递函 数,或称z传递函数。它是线性采样 系统理论中的一个重要概念。 对于图8-8所示的采样系统,脉冲传递函数为
例8-3 用Z变换求积分环节 为使信息不丢失,需加保持器,即:
的差
xoBox
五、Z反变换 和拉氏反变换类似,Z反变换可以表示为
Z反变换的方法有,长除法、部分分式法及留数计算法等, 其中以部分分式法最常用。 例8-3 用部分分式法求 的Z反变换。

自动控制原理第七部分采样系统

自动控制原理第七部分采样系统

稳定性判据
用于判断采样系统的稳定性,如 Nyquist稳定判据和Bode图分析方法。
稳定性分析方法
通过分析采样系统的极点和零点分布、 频率响应特性等,评估系统的稳定性。
03
采样系统的性能分析
采样系统的频率响应
频率响应
描述了系统对不同频率输入信号的响应特性, 通常用频率特性函数表示。
带宽
指系统能够处理的最高频率,决定了系统处 理信号的能力。
只有稳定的系统才能在实际应用中得到有效 控制。来自采样系统的动态性能分析
阶跃响应和脉冲响应
描述了系统对阶跃信号和脉冲信号的响应特 性。
动态性能的定义
系统对输入信号的响应速度和超调量等动态 特性。
动态性能的优化
通过调整系统参数,改善系统的动态性能, 以满足实际应用需求。
04
采样系统的设计
采样系统的设计原则
在航空航天控制中的应用
导航与定位
采样系统能够实时采集航空航天器的位置、速度、姿态等数据,通 过导航与定位算法,实现航空航天器的精确导航和定位。
姿态控制
采样系统能够实时采集航空航天器的姿态数据,通过姿态控制算法, 实现航空航天器的稳定飞行和精确机动。
自主决策
采样系统能够实时采集航空航天器周围的环境信息,通过自主决策 算法,实现航空航天器的自主避障、路径规划等任务。
采样系统的基本原理
采样系统基于时间离散化原理,通过 在等间隔时间点上获取输入和输出信 号的样本值,再根据这些样本值进行 计算和控制,以实现对连续时间系统 的近似或重构。
采样系统的组成
采样器
采样器是采样系统的核心部件, 负责在等间隔时间点上采集输入 和输出信号的样本值。
保持器
保持器用于在两次采样间隔期间 保持输出信号不变,以实现连续 时间系统的近似或重构。

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案

采样控制系统的分析试题及答案【课后自测】8-1 求下列拉氏变换式的Z 变换。

(1)1()()()E s s a s b =++ (2)21()(1)E s s s =+(3)21()s E s s += (4)21()(1)se E s s s --=+ (5)3()(1)(2)s E s s s +=++解:(1)1111()()()E s s a s b b a s a s b ⎛⎫==- ⎪++-++⎝⎭,查表知11,()()aT bTz zZ Z s a z e s b z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得11()()aTbT z z Z s a s b b a z ez e --⎛⎫⎛⎫=- ⎪ ⎪++---⎝⎭⎝⎭ (2)221111()(1)(1)1E s s s s s s ==--+++,查表知 22111,,11(1)()T T T z z Tze Z Z Z s z s z e s z e ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-+-+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得221(1)1()T T Tz Tze zZ s s z z e z e---⎛⎫=-- ⎪+---⎝⎭ (3)22111()s E s s s s+==+,查表知 2211,1(1)z Tz Z Z s z s z ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得2211(1)s z Tz Z s z z +⎛⎫=+ ⎪--⎝⎭(4)()221111()1(1)1s s e E s e s s s s s ---⎛⎫==--+ ⎪++⎝⎭,查表知22111,,1(1)1Tz Tz z Z Z Z s z s z s z e -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪--+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得12211(1)(1)1s TT e Tz z z Z z s s z z z e ---⎛⎫⎛⎫⎛⎫-=--+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭ (5)311()(1)(2)12s E s s s s s +==+++++,查表知 211,12T Tz z Z Z s z e s z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得23(1)(2)T Ts z zZ s s z ez e --⎛⎫+=+ ⎪++--⎝⎭ 8-2 求下列函数的Z 反变换。

采样机的工作原理

采样机的工作原理

采样机的工作原理
采样机是一种用于取样物料的设备,广泛应用于煤炭、矿石、化工、建材等行业。

它的工作原理主要包括取样系统、传动系统和控制系统三个部分。

首先,取样系统是采样机的核心部件,它通过旋转切割或横向切割的方式,将
物料从输送带上取下一部分,然后送入样品分析仪进行分析。

取样系统的设计和工作原理直接影响到采样机的取样精度和可靠性。

其次,传动系统是采样机的动力来源,它通过电机驱动传动装置,使取样系统
能够按照设定的速度和轨迹进行工作。

传动系统的设计和工作原理直接关系到采样机的稳定性和运行效率。

最后,控制系统是采样机的大脑,它通过传感器实时监测取样过程中的各项参数,然后根据设定的程序和算法,对传动系统进行调节和控制,以保证取样的精度和稳定性。

控制系统的设计和工作原理直接影响到采样机的自动化程度和智能化水平。

综上所述,采样机的工作原理主要包括取样系统、传动系统和控制系统三个部分,它们共同作用,保证了采样机能够准确、稳定地进行取样工作。

在实际应用中,我们需要根据具体的物料特性和取样要求,选择合适的采样机,并且合理设计和调整取样系统、传动系统和控制系统,以保证采样机能够达到最佳的工作效果。

自动控制原理--脉冲传递函数及采样系统的分析

自动控制原理--脉冲传递函数及采样系统的分析

系统输出
Y
(z)
G1G2
(
z)E(z)
1
G1G2 (z) G1G2H (z)
R(z)
闭环系统的误差脉冲传递函数
E(z)
1
Ge (z) R(z) 1 G1G2H (z)
闭环系统脉冲传递函数为
GB (z)
Y (z) R(z)
G1G2 (z) 1 G1G2H (z)
当系统有扰动作用时 ,可得闭环系统的误差与扰动间 的脉冲传递函数为
2
r t
et T
e* t
1 eTs s
100.5s 1
yt
s2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
z
1 5T 2z(z 1)
z
(z 1)3
5Tz (z 1)2
解:系统的开环脉冲传递函数为
G(z)
(1
z 1 ) Z
10(0.5s s3
1)
x
x
x
xx
x
暂态响应与极点位置关系
• 1)当闭环脉冲传递函数的极点位于z平面上以 原点为圆心的单位圆内时,其对应的暂态分量是 衰减的。
• 2)要使控制系统具有比较满意的暂态响应,其闭 环极点应尽量避免分布在Z平面单位圆内的左 半部,最好分布在单位圆内的右半部。
• 3)极点尽量靠近坐标原点,相应的暂态分量衰减 速度较快。
二、串联环节的脉冲传函
1、两个环节有采样开关时
rt
r*t G1s y1t
y1*t G2s
y*t yt
根据脉冲传递函数的定义:
G(z)
Y (z) R(z)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学自动化学院
实验报告
课程名称:自动控制原理
实验名称:串联校正研究、采样控制系统的分析
院(系):电气工程学院专业:电气工程及其自动化姓名:学号:
同组人员:实验时间:2011.12.16
评定成绩:审阅教师:
实验八采样控制系统的分析
一、实验目的
(1) 熟悉用LF398组成的采样控制系统;
(2) 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理
及其实现方法;
(3) 研究开环增益K 和采样周期T 的变化对系统动态性能的影
响;
二、实验仪器
THBDC-1实验平台
THBDC-1虚拟示波器
三、实验原理
(1) 采样定理即香农采样定理,其证明要使被采样后的离散信号
X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S
式中S ω为采样的角频率,max ω为连续信号的最高角频率。

由于T
S πω2=,因而式可为 max
ωπ≤T T 为采样周期。

(2)采样控制系统稳定的充要条件是其特征方程的根均位于Z 平
面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。

根据上式可判别该采样控制系
统否稳定,并可用迭代法求出该系统的阶跃输出响应。

四、实验内容
(1)利用实验平台设计一个对象为二阶环节的模拟电路,并与采
样电路组成一个数-模混合系统。

(2)分别改变系统的开环增益K 和采样周期T S ,研究它们对系统
动态性能及稳态精度的影响。

五、实验结果及分析
(1)零阶保持器
模拟电路图如下:
其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/s
以下通过改变采样周期T ,来观察比较输出信号的变化。

① T S =0.003s ,即S ω=2π×
31000≈2094.4 rad/s ,远远大于输入信号的。

输入输出波形图如下:可见此时输入波形图得到完全复现。

相关文档
最新文档