线性代数(含全部课后题详细答案)2第二章行列式习题解答
第二章-线性代数(第四版)习题答案
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4
即
y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --1002310021214---34)1(142101+-⨯--=143102211014-- 321132c c c c ++141717001099-(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4)4444442222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边)()()222222222222a d d a c c a a d a c ad a c ------ =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=n n n nd c d c b a b a a 0000111111--展开按第一行0000)11111111112c d c d c b a b a b nn n n n nn ----+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121n n n n a a a a a a a a +------10001001000100100010000114332展开(由下往上)按最后一列1(+n a nn n a a a a a a a ------00000000000000000000000224332 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=000100210151---= 112035122412111512-----=D 11503120270151------=313911230231115-2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列0000105165610050066100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 11051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |1-A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数(同济大学第六版)-第二章答案
线性代数(同济大学第六版)课后答案第二章 矩阵及其运算1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故 (A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .6(1). 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 6(2). 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎪⎭⎫⎝⎛=⋅=4342343404064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅, ⎝⎛=kA kk kk k kk k k k λλλλλλ021121----)(⎪⎪⎪⎭⎫ . 用数学归纳法证明略. 7(1). 设⎪⎪⎭⎫⎝⎛-=3113A ,求50A 和51A . 解:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=100010311331132A⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=311310311323A A⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=100110100010103113234A A 归纳得:为奇数)(n A n n ⎪⎪⎭⎫ ⎝⎛-=-31131021,为偶数)(n E A nn 210= 因此, ,E A 255010= .⎪⎪⎭⎫⎝⎛-=3113102551A 用数学归纳法证明略. 7(2).设.,,,100421312A ab A b a T 求=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=解:T T T T T T b a b a ab ab ab ab A 99100100)(...)(===.)(⎪⎪⎪⎭⎫⎝⎛---=-=1263421842889999T ab8(1). 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 8(2). 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵. 必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA . 9. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 10. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知: ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .11. 设J 是元素全为1的n 阶方阵. 证明E-J 是可逆矩阵,且J n E J E 111--=--)(,这里E 是与J 同阶的单位矩阵.解:因为0≠-)(J E , 所以)(J E -可逆. 由于22111111J n J J n E J n E J E -+---=---))(( 又nJ J =2因此 上式=.E nJ n J J n E =-+---1111 12. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.13. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)()(A E E A -=+-34121.14. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.15. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.18. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .19. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1). 20. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由AA *=|A |E 可得:|A |.|A *|=|A |4.即:|A *|=|A |3=8, 得|A |=2.由ABA -1=BA -1+3E 得 AB =B +3A , B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.21. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 22. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.23. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 24. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 25. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 26. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 27. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 28. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
大连理工大学线性代数第二章书后习题答案2
习题2-11. 32A =6.2. 用行列式的定义计算下面的行列式.(1)35;(2)256;(3)8;(4)29.--思考题 2-21.若对方阵A 进行一次对调变换得到B ,则=-A B ;若对方阵A 进行一次倍乘变换(假设第i 行或第i 列乘以数k )得到B ,则k =B A ;若对方阵A 进行一次倍加变换得到B ,则.=A B2.0.=A3.(1)不正确。
例如,设1112111221222122,,a a b b a a b b ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B 则 1111121211121211121221212222212222212222a b a b a a b b a b a b a b a a b b a b +++++==+++++A B 111211121112111211121112212221222122212221222122a a ab b a b b a b b a a a a b b a b b a b b a =+++=+++A B(2)不正确。
设A 的阶数为n ,则(1)n-=-A A(3)不正确。
例如,设1200⎡⎤=⎢⎥⎣⎦A ,则0,=A 但.≠A O 4. ,,1,(),()1i j i i j k k k =-==E E E5. 性质2-2讲的是方阵A 的第i 行(列)的数与第i 行(列)对应的代数余子式的乘积之和等于A 的行列式;性质2-7讲的是方阵A 的第i 行(列)的数与另一行(列)对应的代数余子式的乘积之和等于0.习题2-21. 2111231123123det()3,,39,,9,,18.c c a a a a a a a a a a a -=+-=-+=-=-A2. 131223123233122312312323,2,3,,3,,3,,6c c c c c c -+--++=-===a a a a a a a a a a a a a a a a3.321123211321212311223,,,,,,,,,,,,,,,n m +=+=-+=-a a a b b a a a b a a a b a a a b a a b a4.证:(1)将第2列和第3列都加到第1列,得00.0a b b c c ab c c a b c c a a b c a a b c aa bb ca b b c --------=--=----- (2)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++1111111111111111122222222222222222333333333333333332a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c ++=+++=+=++ (3)设A 的阶数为n ,则n 为奇数.由A 是反称矩阵,得T =-A A .两边取行列式,得 ,(1),,T n =-=-=-A A A A A A 故0.=A5. 先按行提公因式,在按列提公因式,得2111121211221212222221122n n n nn n n n nn n a b a b b a b b a b b a b a b b a b b a b b a b11112212112222121122n n n nnn n nn na b a b a b a b a b a b b b b a b a b a b =1112121222222222121212n n nn n n nna a a a a ab b bb b bc a a a ==6.(1)解:先按行提公因式,在按列提公因式,得1111114111ab ac aebd cd de abcdef abcdef bfcfef---=-=--(2)103100204310043141992003951200510012520301300600130013=--=--=提高题2-21.,,,,,,+=++++=+-++A B ξηαββγαγξηαγβγαγ ,,,,,,22,,,=+-++=+-+=+ξηαγβγαγξηαγβγγξηαβγ 2(,,,,,,)2()6=+=+=ξαβγηαβγA B2.1231231231232323,24,36,3,25=++++++=++++B a a a a a a a a a a a a a a a a 1232331223123,3,,,,,2=+++-=-+=-=-a a a a a a a a a a a a a 3.根据性质2-7,得 414243444142434411110A A A A A A A A +++=⋅+⋅+⋅+⋅=4.(1)132343(1)(1)52(1)301(1)415D +++=-⋅-+⋅-++⋅-=-. (2) 1424449(1)(1)52(1)01(1)40,2a a +++-⋅-+⋅-++⋅-==-.5.(1)对第2行和第4行分别应用性质2-2和性质2-7,得212223242521222324254()3()4,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩ 解得2122232A A A ++=-.(2)对第2行和第4行分别应用性质2-7,得 313233343531323334354()3()0,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩ 解得313233A A A ++=0.思考题 2-31.212r r -表示第二行先乘以2,再用第二行减去第一行,212232311212r r -=.2.对行列式进行对调变换和倍乘变换时,需要在得出的行列式的前面添加负号和系数,对行列式进行初等变换时,关心的是最后的数值;对矩阵进行初等变换时不需要添加负号和系数,对矩阵进行初等变换时,关心的是用何种变换进行化简,最后化成何种形式。
线性代数简明教程 (第二版)科学出版社第二章、行列式习题答案
a
(a 0)Dn 0 0n 0n2 an an2 综上所述, Dn an an2
8.(1)当 A 0 时 ,利用反证法.
假设 A 0
( A )( A )1 E
A A(A)(A)1 A E(A)1 O
A 0
A 0
第二章
行 列 式习题答案
1.
利用三阶行列式求解方程组x21x1
2
x2 x2
x3 3x3
2 1
1 2 1
x1 x2 x3 0
D 2 1 3 50
1 1 1
1 2 2
D3 2 1 1 5
2 2 1
1 1 0
D1 1 1 3 5 0 1 1
1 2 1 D2 2 1 3 10
1 0 1
xi
Di D
x1 x2
1 2
x3 1
2. 当x取何值时,
3 4
1 x
x 0 0
10x
2x(x 2) 0
x0 且 x2
3. 求下列排列的逆序数
(1) (315624) 6
(2) (13 (2n 1)24 (2n)) n(n 1)
A E A E 0 E AB
a1 0 an
1 1 1 1
a1 a2
an
a1a2 an 1 1 0
1 0 1
n
c1
i2
ci
1 1 1 1 1 1
a1 a2
an a2
an
a1a2 an
0
1 0
线性代数 第二章答案
习 题 二1. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=+776491056532B AB (2)⎪⎪⎪⎭⎫ ⎝⎛------=-4332412332E AB T2.解:(1)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--000046696432 (2)⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛834231413121342(3)()⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎭⎫ ⎝⎛-339226113113321 (4)()2321113-=⎪⎪⎪⎭⎫⎝⎛--(5)⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------777468505642531432321234643755467 (6)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113332222112331221111x x x x a x a x a x a x a x a x a x a x a)()()(233332233113233222222112133112212111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=3.解:⎪⎪⎪⎭⎫ ⎝⎛---=210143321TA , ⎪⎪⎭⎫ ⎝⎛=234112T B(1)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=112143213142210143321B A T(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛=124113213142031234112A B T(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛==1165511210143321234112)(TT T A B AB4.解:从321321,,,,x x x y y y 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y A x x x ,其中⎪⎪⎪⎭⎫ ⎝⎛---=352143231A ;从321321,,,,y y y z z z 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z B y y y ,其中⎪⎪⎪⎭⎫ ⎝⎛=231341652B ,所以从321321,,,,x x x z z z 到的线性变换可表示为:=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z AB x x x ⎪⎪⎪⎭⎫ ⎝⎛---352143231⎪⎪⎪⎭⎫ ⎝⎛231341652=⎪⎪⎪⎭⎫ ⎝⎛321z z z ⎪⎪⎪⎭⎫ ⎝⎛--312823111⎪⎪⎪⎭⎫ ⎝⎛321z z z 所以,从321321,,,,x x x z z z 到的线性变换为:⎪⎩⎪⎨⎧+-=++=+-=32823 321332123211z z z x z z z x z z z x5.解:(1)E A A A f 43)(2+-=⎪⎪⎭⎫ ⎝⎛--=2321⎪⎪⎭⎫ ⎝⎛--2321-3⎪⎪⎭⎫ ⎝⎛--2321E 4+=⎪⎪⎭⎫ ⎝⎛8008 (2) 2201310111)(2--=--=x x xx x x f=--=E A A A f 22)(2⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛-02112E 2-⎪⎪⎭⎫⎝⎛---=01216.(1)∵222))(()(B BA AB A B A B A B A +++=++=+ ∴要使2222)(B AB A B A ++=+,则必须AB BA = (2) ∵22))((B BA AB A B A B A -+-=-+∴要使22))((B A B A B A -=-+,则必须0=+-BA AB ,即AB BA = (3) 当AB BA =时,用数学归纳法证明kkkB A AB =)(①1=k 时,显然kkkB A AB =)(2=k 时,222)()()()(B A B AB A B AB A ABAB AB AB k=====,所以kkkB A AB =)(②设n k =时,有kkkB A AB =)(,则1+=n k 时 B BA B A B A B A AB B A AB AB AB AB n n n n n n n n K)()()()()()(1!-+=====B AB BA n n)(1-=21)(B A B A n n -=11)(++===n n n n B A B AB A Λ可见,1+=n k 时,也有kk k B A AB =)(所以,当AB BA =时,对一切正整数k 都有 kkkB A AB =)(7.解:(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛----111122221111n n n n n(2) ∵⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--100123122∴⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--为奇数为偶数n n n 2312 10012312 (3) ∵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100112,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100113⎪⎪⎪⎭⎫ ⎝⎛100110011⎪⎪⎪⎭⎫ ⎝⎛=100310331 =⎪⎪⎪⎭⎫ ⎝⎛41001100113100110011⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100110011⎪⎪⎪⎭⎫ ⎝⎛=100310331⎪⎪⎪⎭⎫⎝⎛100110011⎪⎪⎪⎭⎫⎝⎛=100410641 ∴⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛100102)1(1100110011n n n n n8.证明:∵A 、B 为对称矩阵,∴=T A A ,=TB B(1) ∵ AC C C A C AC C TT T T T T T ==)()(∴ AC C T是对称矩阵(2) ∵ ABABA A B A B A ABABA TTTTTT==)( ∴ ABABA 是对称矩阵(3) ∵E E AA T T ==-)(1,=TA A∴==--TTTA A AA )()(11A A E A A T11)(--== ∴ 11)(--=A A T∴ 1-A 是对称矩阵9.解:(1) ∵027342≠= ∴⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-23477342173421⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-23472173421(2) ∵01cos sin sin cos cos sin 22≠=+=-θθθθθθ∴ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--θθθθθθθθsin cos cos sin 11sin cos cos sin 1⎪⎪⎭⎫⎝⎛-=θθθθsin cos cos sin (3) ∵232132643321532r r r r --01320321110≠-=---- ∴⎪⎪⎪⎭⎫⎝⎛643321532可逆 又∵0643211==A , 3633112=-=A , 2432113-==A 2645321=-=A , 3635222-==A , 1433223=-=A1325331-==A , 1315232-=-=A , 1213233==A∴⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-1121331206433215323323133222123121111A A A A A A A A A(4) ⎪⎪⎪⎭⎫⎝⎛-------=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-----11133131121212113123233323133222123121111A A A A A A A A A(5) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----1212335123240634332311(6) 把⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000210032104321D 分块为⎪⎪⎭⎫ ⎝⎛B C A 0, 其中⎪⎪⎭⎫ ⎝⎛=1021A ,⎪⎪⎭⎫ ⎝⎛=1021B ,⎪⎪⎭⎫⎝⎛=3243C , 则01≠==B A D ,∴矩阵D 可逆。
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
华东理工大学线性代数习题答案-第二章
第二章 行列式一、习题解答2.1(1)解:逆序数(4132)4τ= (2)解:(36195)4τ= (3)解:(3)(2)(21(1)...3)12n n n n τ---=+2.2解:根据行列式的定义,每个乘积均由来自不同行不同列的元素组成,当来自不同行不同列的元素的行标为自然排列时,其列标的逆序数决定了该乘积项的符号,根据观察,出现4x 的只有主对角线上的四个元素的相乘项11223344a a a a ,该项为(1234)(1)236x x x x x τ-⋅⋅⋅⋅=,故4x 的系数为6,而可以出现3x 的乘积项有两项,它们是1221334414223341,,a a a a a a a a 即分别为3)4231(3)1234(33)1(,331)1(x x x x x x x x -=⋅⋅⋅⋅--=⋅⋅⋅⋅-ττ两项相加,即知3x 的系数为6-。
2.3(1)解:将行列式的2,3,4列全加到第一列后,再提公因子,得原式=121314(1)(1)(1)3111111111113011101101003331(1)(1)(1)3310111010010311011100001r r r ----===⋅⋅-⋅-⋅-=--- (2)解:原式=5514000100200275(1)51(1)036036941011410115++⋅-=⋅⋅--=130352(1)10(01043)120410+-⋅⋅-=-⋅⋅-⋅=(3)解:原式=1213142112312311(1)359(1)(1)3293(1)32581752418252212215+++⋅-+-⋅-+⋅-=--=-----(4)解:原式=342312222222222222(1)22222222(1)(1)222222221234213243543243546543546576r r r -------=--------=14916149163579357905791122227911132222==(5)解:原式=12312312456133310025789333=⋅=⋅= 2.4(1)解:原式=2()12()2()12()1x y yx y yx y x y x yxx y x yx x y xyxy+++++=+++=12()02()10yx yx yx y xy x y x y xx yx+-+-=+⋅⋅----=22332()()2()x y x xy y x y ⎡⎤+--+=-+⎣⎦(2)解:原式=1411(1)0a b cb ac b a cb ac b a cc a a b b c c a a b b c b c ab c a+------=⋅------- =1()11ab c a b cbcc aa b b c c a b a b c a b bc a b c a c a -------==++ =21()0()()()()0bca b c a b b c a b c a b a c b c c b a c⎡⎤++--=++--+-⎣⎦--=3333a b c abc ++-(3)解:原式2143(1)(1)0011001111111100001111111111r r x x x xxyy y y y----==--= 22111111111100110000110011y x y x xy yx xy=--=--2.5(1)证:将左端行列式的底2,3列加到第一列,则第一列元素全为零,由行列式性质, 得证。
线性代数重要知识点及典型例题答案
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
线性代数 北京理工大学出版社 习题解答
第一章 行列式学习要求1. 理解二阶与三阶行列式的概念,熟悉掌握二阶与三阶行列式的计算方法,会求二元、三元一次线性方程组的解;2. 理解n 级全排列、逆序数的概念和排列的奇偶性;3. 理解n 阶行列式的概念和n 阶行列式的等价定义,会用行列式的定义计算对角、三角行列式和一些简单的特殊的n 阶行列式;4. 掌握行列式的根本性质,会利用“化三角形〞方法计算行列式;5. 理解余子式、代数余子式的概念,掌握行列式按行〔列〕展开定理,会用降阶法计算行列式;6. 掌握克莱姆法那么,了解未知量个数与方程个数一样的方程组解的判定定理,会运用克莱姆法那么讨论齐次线性方程组的解.§1.1 二阶与三阶行列式1. 计算二阶行列式: (5)22322211(1)(1)1;1x x x x x x x x x x -=-++-=--++ 2.计算三阶行列式:(2) 10135050(12)0007;041-=++----=-3.求解方程34100.01x D x x =-=解 2341043(1)(3)0,01x x x x x x x -=-+=--=由故原方程的解为.31==x x 或4.用行列式解以下方程组:(1)1212323,43 1.x x x x -=⎧⎨-+=-⎩ (2)12312312320,21,2 3.x x x x x x x x x ++=⎧⎪-+=⎨-+=⎪⎩解(1) =D 329810,43-=-=≠-1D =32927,13-=-=-=2D333129,41=-+=-- 故所求的方程组有唯一解:127,9.x x ==(2) =D 12121122211880,112-=-+-++-=-≠-=1D 4213111120=--,=2D 4231112101=,=3D 12021112,113-=--故所求的方程组有唯一解:.23,21,21321=-=-=x x x6. 当x 取何值时,23130.123x x ≠解 223133963(1)(2)0,123x x x x x x =-+=--≠由 解得.21≠≠x x 且§1.3 n 阶行列式的定义1. 写出四阶行列式中含有因子3422a a 的项.解 利用n 阶行列式的定义来求解.行列式的阶数是四,每一项都要有4个元素相乘,题目已给出了两个因子,那么还有两个元素还未写出,由于因子3422a a 的行标已经取了2,3,列标取2,4,所以剩下因子的行标只能取1,4,列标只能取1,3,因此未写出的因子为4311a a 和4113a a .又因为(1243)1τ=,(3241)4τ=,所以四阶行列式中含有因子3422a a 的项为(1243)11223443(1)a a a a τ-和(3241)13223441(1)a a a a τ-,即11223443a a a a -和13223441a a a a .3. xx x x xx f 21123232101)(=,用行列式的定义求3x 的系数.解 )(x f 的展开式中含3x 的项只有一项:(2134)3(1)1x x x x τ-⋅⋅⋅=-,故3x 的系数为1-.4. 利用行列式的定义计算以下行列式:(2)244321)1(0400000300201000)4213(=⨯⨯⨯-=τ; 解析 由n 1行只有一个非零元素1,先取114=a ,那么第1行和第4列的元素不能再取了,再考虑第2行的元素,第2行只能取222=a ,那么第2行和第2列的元素也不能再取了,对第3行的元素而言,此时只能取331=a ,那么第3行和第1列的元素不能再取了,最后第4行的元素只能取443=a ,那么行列式的结果为244321)1(43312214)4213(=⨯⨯⨯=-a a a a τ;补充练习1. 由行列式的定义写出xxxx x x D 221321213215=的展开式中包含3x 和4x 的项.解 D 的展开式中含4x 的项只有一项4)1234(1025)1(x x x x x =⋅⋅⋅-τ,而含3x 的项有两项(2134)(1)12x x x τ-⋅⋅⋅和(4231)(1)3x x x τ-⋅⋅⋅,从而展开式中含3x 的项为:333)4231()2134(5323)1(21)1(x x x x x x x x x -=--=⋅⋅⋅-+⋅⋅⋅-ττ.行列式的性质1. 利用行列式的性质计算以下行列式:(2) 111111111ab ac ae bdcd de abcdef bf cf ef ------=--------2131111002022r r abcdef r r --+-+--231110224;002r r abcdef abcdef --↔---=--(3) 由于每一行(或列)的和都是等于6,故将第2,3,4行都乘以1加到第一行,再提取公因子6,利用性质5化成三角形行列式即可求值.311166661111111113111311131102006648;11311131113100201113111311130002==== (4)21312341(3)121212121212(1)(1)3011064702391204041204122241100130013r r r r r r r r +----+-+---------+-----4332121212121()(2)02390239510.005200052000130001r r r r --+-+-----=-----2. 证明以下等式:〔2〕0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;〔3〕0111111111332313322212312111=+++++++++y x y x y x y x y x y x y x y x y x ; .证明(2) 把行列式中的括号展开,第1列乘以-1加到其它列,化简行列式.22222222222222222222(1)(2)(3)214469(1)(2)(3)2144690(1)(2)(3)214469(1)(2)(3)214469a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++; (3) 由性质4,将D 的第1列拆开,得+++++++=332332223121111111111y x y x y x y x y x y x D 332313322212312111111111y x y x y x y x y x y x y x y x y x ++++++, 将第1个行列式的第1列乘以-1加到第2、3列,第2个行列式第1列提取1y ,得+=332332223121111y x y x y x y x y x y x D 3323332222312111111111y x y x x y x y x x y x y x x y ++++++,将第1个行列式第2、3列提取32,y y ,将第2个行列式的第2列、第3列分别拆开,最后可得如下行列式,+=33221132111x x x x x x y y D 1113112112131222322222223333333233233111111111111x x x y x x y x x y x y y x x x y x x y x x y x y x x x y x x y x x y x y ⎛⎫⎪+++ ⎪ ⎪⎝⎭000=+=;3. 计算以下n 阶行列式.(1)xx x111111; (2)n222232222222221;解 (1)把第n ,,3,2 列分别乘以1加到第1列,得到第1列的公因子)1(-+n x ,提取公因子之后,再给第1行乘以)1(-加到第n ,,3,2 行,化成上三角形行列式,得到行列式的值.11(1)1111111(1)111[(1)]11(1)111x x n x x n x x x n xx n xx+-+-==+-+-1111010[(1)][(1)](1)01n x x n x n x x --=+-=+---;(2) 把第2行乘以(-1)分别加至其余各行,再把第1行乘以2加至第2行,得122222222232222n=2-000010022220001-n)!2(22-000010022200001--⋅-==n n ; 4. 求方程01111111111111111=++++λλλλ的根.解 第1行乘以)1(-加到第4,3,2行,得如下行列式:111100,0000λλλλλλλ+---再将上述行列式的第2,3,4列乘以1加到第1列,化成上三角形行列式.34111000(4),000000λλλλλλ+=+即可求出根:40-==λλ或.补充练习2. 行列式2333231232221131211=a a a a a a a a a ,求行列式332313231332221222123121112111323232a a a a a a a a a a a a a a a ------的值.解 332313231332221222123121112111323232a a a a a a a a a a a a a a a ------3323132313322212221231211121113332a a a a a a a a a a a a a a a ------= +---=3323231332222212312121112a a a a a a a a a a a a 3323131332221212312111113332a a a a a a a a a a a a ------ +=2323132222122121112a a a a a a a a a 3323133222123121112a a a a a a a a a ---=11121321222331323324a a a a a a a a a -=-.§1.5 行列式按行〔列〕展开1. 求行列式204502311--中元素5与2的代数余子式. 解 元素5的代数余子式为212104(1)4,11A +=-=--元素2的代数余子式为232320(1) 2.31A +-=-=--2. 四阶行列式第3行元素依次为4、3、0、-2,它们的余子式依次为2、1、-1、4,求行列式的值.解 由行列式按行〔列〕展开定理,得3131323233333434313233344(1)23(1)10(1)(1)(2)(1)4830813.D a A a A a A a A ++++=++++=⨯-⨯+⨯-⨯+⨯-⨯-+-⨯-⨯=-++= 3. 求以下行列式的值〔2〕1234101231101205---3141(1)(2)c cc c +-+-1222100031461217-----212221(1)146217+=⨯------2131(1)(1)c c c c +-+-2135239------11352(1)24;39+--=-⨯-=---〔3〕所求行列式为四阶范德蒙行列式,由范德蒙行列式的展开公式,得231111122(21)(21)(22)(1)(2)[(2)]14418812(1)(2)(2).xx x x x xx x x -=----------=--+4. 讨论当k 为何值时,行列式11001200003003k k k≠. 解1100120003003k k k21(1)c c +-10001120003003k k k-111201(1)0303k k k+-=⨯- 113(1)(1)(1)(3)(3),3k k k k k k+=-⨯-=--+所以,当1k ≠,且3k ≠,且3k ≠-时,11001200003003k k k≠. 5. 计算n 阶行列式 (3)按第1列展开,得112111000012100012002(1)(1),000210012n n D D ++-=-+-上式右端的行列式再按第一行展开,得122,n n n D D D --=-移项,得 112n n n n D D D D ----=-, 递推,得 11223212121,12n n n n n n D D D D D D D D ------=-=-==-=-=从而得112211,1,,1,n n n n D D D D D D ---=+=+=+把上面1n -个等式相加,得1121 1.n D D n n n =+-=+-=+7.设四阶行列式4,a b c d c b da D dbca ab dc =试求14243444A A A A +++的值,其中4i A 〔1,2,3,4i =〕为行列式4D 的第4列第i 行的元素的代数余子式.解 根据行列式按行〔列〕展开定理的推论,有12142224323442440,a A a A a A a A +++=即 1424344414243444()0,bA bA bA bA b A A A A +++=+++=142434440.A A A A +++=§1.6 行列式的应用1. 用克莱姆法那么解线性方程组〔3〕1234123423412321,22,233,5.x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨++=⎪⎪++=⎩解:2111121101231110D --=2414(1)(2)r r r r +-+-4101311310121(1)121180,0123123111+-----=--=-≠ 所以方程组有唯一解. 又11111221118,3123511D --==-22111121136,0323151D --==-32111122136,01331150D ==-42111121218,01231115D --==所以方程组的解为1118118D x D -===-, 2236218D x D -===-, 3336218D x D -===-,4418118D x D ===--.2.λ满足什么条件时,线性方程组1231231231,32,31,x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪-+=⎩ 有唯一解?解 由克莱姆法那么知,当系数行列式0D ≠,线性方程组有唯一解,1113113D λλ-=--1232(3)r r r r ++-2312012131(1)2(51),38380λλλλλ++-+--=-=-+--当0D ≠时, 2(51)0λ-+≠,即当15λ≠-时,题设的线性方程组有唯一解.3.当k 为何值时,齐次线性方程组12312312320,0,4550,x kx x kx x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 有非零解?解 齐次线性方程组有非零解,那么其系数行列式0D =,2111455kD k -=--12325r r r r ++232102111(1)(1)(54),5405400k k k k k k k k k ++-+--=-=-+++由0D =得:1k =,45k =-. 4.α和β为何值时,齐次线性方程组1231231230,0,20,x x x x x x x x x αββ++=⎧⎪++=⎨⎪++=⎩ 有非零解?解 齐次线性方程组有非零解,那么其系数行列式0D =,1111121D αββ=2131(1)(1)r r r r +-+-131111110(1)(1),1211210ααβαββααβαβ+----=-=-----由0D =得:0β=或1α=.即当0β=或1α=时,方程组有非零解.5.求二次多项式2()f x ax bx c =++,使得(1)2f =-,(1)10f -=,(2)5f =-. 解 由(1)2f =-,(1)10f -=,(2)5f =-,得2,10,42 5.a b c a b c a b c ++=-⎧⎪-+=⎨⎪++=-⎩要求二次多项式需要求出系数,,a b c ,即要求出上述非齐次线性方程组的解. 由其系数行列式11111160,421D =-=≠121110116,521D -=-=-2121110136,451D -==--3112111018,425D -=-=-从而11D a D ==,26Db D==-,33D c D ==.即所求的二次多项式为2()63f x x x =-+.补充练习2.系数1234,,,(1,2,3,4)i i i i a a a a i =满足什么条件时,四个平面12i i a x a y ++340i i a z a +=(1,2,3,4)i =相交于一点〔000,,x y z 〕?解 把平面方程写成如下形式12340i i i i a x a y a z a t +++=,〔1t =,1,2,3,4i =〕,于是由四个平面相交于一点,推知齐次线性方程组111213142122232431323334414243440,0,0,0,a x a y a z a t a x a y a z a t a x a y a z a t a x a y a z a t +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ 有一非零解〔000,,,1x y z 〕.根据齐次线性方程组有非零解的充分必要条件是系数行列式0D =,即四个平面相交于一点的条件为111213142122232431323334414243440.a a a a a a a a a a a a a a a a =3.设平面曲线32y ax bx cx d =+++通过点〔1,0〕,〔2,-2〕,〔3,2〕,〔4,18〕,求系数,,,a b c d .解 由平面曲线通过点〔1,0〕,〔2,-2〕,〔3,2〕,〔4,18〕,得0,8422,27932,6416418.a b c d a b c d a b c d a b c d +++=⎧⎪+++=-⎪⎨+++=⎪⎪+++=⎩ 我们可以通过求解上述线性方程组的解来求系数,,,a b c d .111184211227931641641D ==, 又101112421122931181641D -==,2101182213627231641841D -==-,3110184210279216416181D -==, 4111842224,279326416418D -==从而11D a D ==,23D b D==-,30D c D ==,42Dd D ==.第二章 矩阵学习要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质;2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律.了解方阵的行列式、方阵的幂与方阵的多项式的性质;3. 理解可逆矩阵的概念和性质,以及理解矩阵可逆的充要条件。
线代一二章习题及答案
第一讲 行列式例1、下三角行列式nnnn n nnnn n n n n n n a a a a a a a a a a a a a a a a22112211)12(121111211222111)1(000000000=-=-----τ对角行列式,上(下)三角行列式的值就等于对角线上的元素的乘积例2、 求xx b x a x 1221102085413+----的4x 和3x 的系数.解析:4x 的系数是1;3x 的系数是-10例3、 求3阶行列式 754102643--=(-3)A 11+4A 12+6A 13=(-3)M 11-4M 12+6m 3=(-3)⨯(-5)-4⨯(-18)+6⨯(-10)=27.例4、1010001001tt tt解析: 原式=1 A 11+t A 1n =1+11)1(-+-⋅n ntt=1+ nnt +-1)1(例5、 求行列式 2235007022220403--的第四行各元素的余子式的和. 解析: 所求为4443424144434241A A A A M M M M +-+-=+++原式=444342412235A A A A +-+将原行列式换为1111007022220403---即他的值就是原题的余子式之和答案为-28(对第三行展开 323277M A =-)例6、27718497518100549754102643=--==--08题aaa aa aa a a A 2012001200012000122222=. 证明|A |=(n+1)a n .分析: 证明:初等变换nan nan a a a n an a a a aaa aa a a a aa aa a a a )1()1(34232)1(010000340000023000012201200034000002300001220012001200002300001222222+=+⋅⋅=+→→→例7、 ?=cA 答A c n; 例 8、设4阶矩阵BA B A B A +====求,3,2),,,,(),,,,(321321γγγβγγγα解:40,,,8,,,8,,,82,2,2,),2,2,2,(321321321321321=+=+=+=++=+γγγβγγγαγγγβαγγγβαγγγβαB A B A例9、 已知行列式3123111++++-+--z x y y x z z y xd c b a 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.解析:思路:利用性质8⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+++--→z y x z y x 0)1(339(二)、典型例题 例1①22222aaaaa a a a a a a a a a a aa a a a ②xx x x ++++1111111111111111③aa a a ++++4444333322221111④ 对角线上的元素都为0,其它元素都为1的n 阶行列式. ②分析:解:4)x 00000001114111411141114111411111111111111113+=+→+++++++→++++(所以值x xx x x xxx x x x x xx x x①分析:与②同理 ④分析:类型一致③分析:把下面三行分别加到第一行例24321532154215431543254321解:100510501500115111111411411411115111411411411411115111401141014110411105432154321153215152154151543155432154321532154215431543254321-------→-------→----→----→→所以值=15×125=1875例343211111111111111111x x x x ++++解:+=+++++==+++++++=++++4321431432432143214324321401010********01001001000100000000011101110111011111111111111111111111111111111111x x x x x x x x x x x x x x x x x x x x x x x x x例4 证明时)当b a ba bab aba ab b a b b a a b b a n n ni iin ≠--==++++++=-∑(00000000011分析:证明:归纳法:展开递推21n )(---+=→n n abD D b a D 递推公式 再用归纳法证明之 也可以:nn n n abD ab a b ab a bD ba ab b a b ab a bD ba ab b a b b a b b b a a b b a b b a a b a +=+==+++=+++++++---111000000000000000000000000000000000000000000时)当另b a ba baD baD b a b a D D D D n n n n n n nn nn ≠--=→-=-→⨯〉〈-⨯〉〈〉〈+=〉〈+=++++--()(212b a 1a b 111111-n 11-n na n aaa a a a a a ab a )1(2020000020002+=其值为时另当第二讲 矩阵例、⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=301521B .求 B AX =的解⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-----=313315210010101301521101111010)(B A⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→211213100010001413415200010101⎪⎪⎪⎭⎫⎝⎛---=211213X2007年的一个题中,求3阶矩阵 B , 满足⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-222111B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛011011B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛110110B .解:建立矩阵方程⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-102112012101111011B⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---21311001112011001111011222110011111⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→011101110100010001033110011300110011⎪⎪⎪⎭⎫ ⎝⎛--=011101110TB⎪⎪⎪⎭⎫⎝⎛--=011101110B2008年考题: 03=A ,时 证明: A E -可逆.证 E A E A A E A E =-=++-32))((.所以A E -可逆例1、设C B A ,,都是n 阶矩阵,满足CA A C AB E B +=+=,,则C B -为(A)E .(B) E -. (C)A . (D)A -. )(A (2005年数学四)AB E B +=化为E B A E =-)( 即 B 与 )(A E - 互为逆矩阵CA A C += 化为 A A E C =-)(, 用 B 右乘得 AB C = 例2、 设A 是3阶矩阵,将A 的第2行加到第1行上得B ,将B 的第1列的-1倍加到第2列上得 *C .记⎪⎪⎪⎭⎫⎝⎛=100011001PAP P C A 1)(-= 1)(-=PAP C B AP P C C T =)( TPAPD =)(A B ⎪⎪⎪⎭⎫ ⎝⎛=100010011⎪⎪⎪⎭⎫⎝⎛-=100010011B C110010011100010011-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=PAP A C例3、 设A 是3阶可逆矩阵,交换A 的1,2行得B ,则(A) 交换*A 的1,2行得到*B . (B) 交换*A 的1,2列得到*B . (C) 交换*A 的1,2行得到*-B . (D) 交换*A 的1,2列得到*-B . 2009题设A 和B 都是2阶矩阵,2=A , 3=B .则 ()=⎪⎪⎭⎫⎝⎛*O BA O⎪⎪⎭⎫⎝⎛**O A B O A 23)(⎪⎪⎭⎫⎝⎛**O A B OB 32)( ⎪⎪⎭⎫⎝⎛**O B A O C 23)(⎪⎪⎭⎫⎝⎛**O B A O D 32)(( 2009年的考题)解:1-*=CC C先求1-C()⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=00100011000010010010*********A O O B O B A OE C⎪⎪⎭⎫ ⎝⎛→--O ABO E O O E11⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=----*O ABOO A BO O BA O C 1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=**----O A B B A O OA AB B B A O O ABOB A 1111例4、 设A 是n 阶非零实矩阵,满足 TA A =*. 证明:)1(>A)2(如果2>n 则1=A解:条件TA A =*,即,)()(Tij T ij a A =即ji ij ij a A ,,∀=(1)inin i i i i A a A a A a A ++=2211022221≥+++=ini i a a a又因为 0≠A , 即A 有非零元素, 则2221>+++=in ke k a a a A(2)EA AAAAT==*nAA=2得12=-n A因为>A2-n 是正整数,得1=A例5、 3阶矩阵B A ,满足E BA ABA +=**2,其中⎪⎪⎪⎭⎫⎝⎛=100021012A ,求B .(04一) 解:E BA ABA+=**2E BA E A =-*)2(AB E A A =-)2(AB E A A =-23913112122=⨯=-=AE A B例6 设3阶矩阵,⎪⎪⎪⎭⎫⎝⎛---=201011153A A XA XA A 21+=-,求X .解: 11112)(----+=AAXAAAXA AE X X A 21+=-A AX X 2+=A X A E 2)(=-⎪⎪⎪⎭⎫⎝⎛------=-4020222106101021152)2(A A E ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛------→010424202210001002142262022120110021⎪⎪⎪⎭⎫⎝⎛---→01042424106100010001得⎪⎪⎪⎭⎫ ⎝⎛---=01042424106X例7 设3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛---=111111111A X A X A 21+=-*,求X .解: X A X A 21+=-*AXE X A 2+=E X A E =-)24(1)24(--=A E X411110112111111111=--=---=A例8 4阶矩阵B A ,满足E BAABA311+=--,已知⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8000010030100101A 求B . (00一) 解: E BAABA311+=--A B AB 3+=EA B A B A 3+=*83==*AA得2=AE B A E 6)2(=-*1)2(6-*-=A E B例9 设B A ,是3阶矩阵,A 可逆,它们满足E B B A 421-=-.(1) 证明E A 2-可逆.(2) 设⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求A .(2002)A 可逆解:EB B A 421-=-即A AB B 42-= B A AB 24+= A B E A 4)2(=-由A 可逆得E A 2-可逆例10 设n 阶矩阵B A ,满足bB aA AB +=.其中0≠ab ,证明 (1)bE A -和aE B -都可逆. (2) A 可逆B ⇔可逆. (3)BA AB =解:(1)令aE B D bE A C -=-=,aE D B bE C A +=+=,abE bD abE aC aE D bE C +++=++))(( abE bD aC abE bD aC CD 2++=+++D C abE CD ,⇒=都可逆或者直接把bE A -和aE B -相乘abE bB aA AB +--(2)aA B bE A =-)( (3)abE aE B bE A =--))((E aE B ab bE A =--)()( EabbE A aE B =--)()( abE bE A aE B =--))((O bB aA BA =--AB bB aA BA =+=例11 设B A ,都是n 阶对称矩阵,AB E +可逆,证明A AB E 1)(-+也是对称矩阵. 证:验证A AB E A AB E T11)(])[(--+=+ TTTAB E A A AB E ])[(])[(11--+=+ 111)()(])[(---+=+=+=BA E A A B E A AB E A T T T即要证明)()()()(111BA E A AB E A A AB E BA E A ++=⇔+=+---)()(BA E A A AB E +=+⇔。
线性代数习题册(答案)
线性代数习题册答案第一章行列式练习一班级学号1.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)τ(3421)= 5 ;(2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i=8 、j= 3 .3.在四阶行列式中,项12233441a a a a的符号为负.4.003042215=-24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ)= -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3) 1306 0212 1476----(4) 1214 0121 1013 0131-5.计算下列n阶行列式:(1)n x a a a x aDa a x=(每行都加到第一行,并提公因式。
)(2)131111n +(3)123123123nn n a b a a a a a b a a a a a a b+++练习 三班级 学号1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。
(完整版)第二章行列式习题解答
第二章行列式习题解答1. 决定以下9级排列的逆序数,从而决定它们的奇偶性:1) 134782695;解•吒13478269为=0 + 4 +0 + 0+ 4 +2 + 0 + 0 = 10 偶排列.2) 217986354;解:吃179 眈54)二1+0 + 4+5+4+3+0+1 = 18 ,偶排列;3) 987654321;解:璋876別艾1) =8 + 7+&+5 + 4+F+2 + 1 = 26 ,偶排歹【」.2. 选择'与上使1)1274巧陆9成偶排列;解:•与上一个为3,另一个为8,而咲1刀43两9) = 2+1+1+1 = 5 是奇排列,由对换的性质因此有H;2 )庇荻4斬成奇排列.解:与七一个为3,另一个为6,而^32564897) = 1 + 2 + 2 = 5是奇排列,因此有心工宀6.3. 写出把排列1羽孑5变成排列25341的那些对换.解:124站卩* )214笳(也)25431 仲)比鈔414. 决定排列巾-—心的逆序数,并讨论它的奇偶性.解:1与其他数构成卫个逆序,2与其他数构成汽_2个逆序,…山-2与其他数构成2个逆序,芒一1与兀构成1个逆序,故巩対住_1)…21)二3_1)十@_2) +…+2+1二^当"毗或"滋+ 1(上为正整数)时,排列为偶排列;当"处+2或n-Ak^3为正整数)时,排列为奇排列.5. 如果排列 w’j 二的逆序数为:,排列厂二的逆序数是多解: 中任意两个数码=:与丁必在而且仅在两个排列°:二'"■或**-1…中之一构成逆序,月个数码中任取两个的不同取法有”2个,因此两个排列的逆序总数为戈,所以排列…F 的陨"1)_总逆序数为Z6.在6级行列式中,心円三j 汽这两项应带有什么符号?严小吟心皿)-(_[严",因此项计吻恥%带正号.7.写出四级行列式中所有带有负号并且包含因子一心的项.解:因为:匚上-',因此所求的项为解:1)该行列式含有的非零项只有m/JAi …叫七%1,带的符号为CU 2 ,值为57』,因此原行列式等于(T 」3创.1)0 0 *-0 1・-2III 11 1 1 1« 11 1 1 fe ■ 0 卫一 1 •… 0 0n 0 ■■* 0 0; 2)010... 0 0 0 2 ...0 ...丹-1n Q 0 ...73)0 …0 0 -200 ■ a «•■即i a « i » i i fe■M -1・■- 0 0 0 0・■- 0 0 «_^1+^23^31^42 -8.按定义计算行列式:少?,因此项 旳尹引龟护屏张务厶带正号;-£l 11LJ 23«32a 44?七护34 迎小2)该行列式含有的非零项只有①曲曲心小卅池,带的符号为值为「2,因此原行列式等于df.3)该行列式含有的非零项只有%”宀"叫%,带的符号为(7丄,值为,因此原行列式等于卜1)2创.9. 由行列式定义证明:证明:行列式的一般项为I = = 二,列指标•「S 1只能在1,2,3,4,5中取不同值,故*「】中至少有一个要取3,4,5中之一,而' 厂恥宀从而每一项中至少包含一个零因子,故每一项的值均为零,因此行列式的值为零.10. 由行列式定义计算2A1 21 x 1 -13 2工11 1 1 工中/与/的系数,并说明理由.解:行列式元素中出现兀的次数都是1次的,因此含屏项每一行都要取含齐的,因此含/项仅有%如宀,其系数为2,符号为正,h的系数为2.类似的含尸项仅有知灼金%,其系数为1,符号为负,代的系数为-1 .11. 由1 ・-• 11 1 ■■■ 1.. .=Q■♦V1 1 ・• 1证明:奇偶排列各半证明:行列式每一项的绝对值为 1行列式的值为零,说明带正号项的个数 等于带负号项的个数•由定义,当项的行指标按自然顺序排列时,项的符号由列1)由行列式定义,说明'「是一个卞―〔次多项式;2)由行列式性质,求'的根.解:1在行列式’〔中只有第一行含有T ,出现T 最高次数为次,由为互不相同的数可得其系数不为零,因此'•是一个・】次多项式2)用■,,,r^--分别代*,均出现了两行相同,因此行列式为 0.即宀为—的全部根13.计算下面的行列式: 246 427 327 10W543 443 八-342 721 621小、1) ; 2)3 11112 3 413 112 3 4 1113 13 4 123) 1113;4) 4 12 39指标排列的奇偶性所确定, 奇排列时带负号,偶排列带正号•因此奇偶排列各半1…x"11N-1 …闻円>)二1s-l…%■ ■ ■!1+ ■ ■« I »■ * II I ■■…a n-l其中•心m.i 为互不相同的数.12.设1+A 1 1 1 (a+2)2(a+3a11-工 1 1 4+1)2 0 +卯@+卯1 11+》 1 W+1尸(亡+卯(心9+1尸(八疔5) 1 11I ; 6)解:1该行列式中每行元素的和为1000的倍数,第2列与第三列相差100,23136)246 427 3271000 427 327 6 71000 100 327 1014 543 4432000 543 44孑 -—2000 100 443 -342721 €211000 721 6211000 100 621327116 二-294x12 2945)显然当二=■'或」时均有两行元素相同,因此行列式为 0.当' 时1H - x 1 11 If1 c 4 - x~\ 'i0 01] -x11七 、厂5〕■-X0 ]c 4 +z 1< i 0 --X0 0 3y11 g 1 P = 123( ) 0 y1 5 -严 :3 00 y11 1i-卅肿y 1-7y Ay -y【口十 3十2尸 ⑺十浙十 1 牝十4 6口十夕(*+D a 辿+2尸 叶卯*22) + 1 4b+4 6b + 9(T尸 (小尸L 32^+14亡+ 4 &+9d 2 3+1尸3 +計 &+卯茲十1 4d +4 阳+9= 10" y工十丁1 yx + y=2(孟+刃 1 Z -F JJ盂xy1 x y1 尹二 2(盂+尹)0 xo —y-y = 2(X +/)[-X :+X X -7)]= ~2(^3 1116 11111111111 13 116 3 11卜13 11 厂宀J 0 2 0 0 113 1J= 2,3,4 6 13 1113 1 i = 2,3,4' 0 0 2 011136 11311130 0 0 22 3 412 3 43 4 113 4 1=104 1 2 14 121 2 3112^ 12 3 41 23<411-30 11-3=10p 2 ・2 -20 0-44|o -1 -1 -10 0 0-41 1 3272 1 4431 1 6211 0 0 1-1 0 y丸+屏处十龙2(x+y)310 1+(710 0 0 = 160i+cc^aa +b2(a 十B 十u )c+a戊+BA.+勺= 2(d| +坷+5)码+歼证明: 為+勺如+S2(角+务+勺)勺+码+ i + cc+a=2口]+妬 + 匕1 百[+(3]巧十毎十勺勺+包15.算出下列行列式的全部代数余子式:12 140-1211 -1 20 0 2 13 21poos; 2)1 4b+亡 c + txa +ba b e右L +百1 号+% 如4玄 =2 旬玄巧-14.证明: 鸟+勺耳+勺巴十坊也®巾加+1 266 _6 -6-1 2 10 2 10 -1 14i = 0 2 1=-6;血=- 0 2 1 =0 ;J 4O = 0 0 1 =00 0 30 0 30 031 42 1=6;0 -1 24+ =- 00 2 =0 ;4J ! =-0 0解: 1)2 0 0 1 4 2 1 0 31 =-12;爲立=0 n-4B == °; ■41 = 1》4盘=-^3 = —5-^34 = Q 斗].=乙 &2 = Q' A B = L ;&4 = 741 =2)= 3^ = --1 21 4a +b的+Nb ca 6 c妬C L =2 a Y 如 5%巾宓5%加十1 2 2^+1 22^+1 2 a 十打+疋=2^} +妬+巧 k +如+巾111 11 卩 02 1 1 -*厂©* 0 1 2 2 5 1 0 43 2 1 | |斗 11112 2-5=1.42) 31213 4 1 3171丄1 5 4 6 4 1 2J2110 n 1 — 2 — — 2 — — —2 -3221 -1 | 4-1 0-111|31 17 11 -132 16 10 13 121° 1 2 -1 41 2 -1 41 2 一]4 2 a 1 2 :2 0 1 2 12-6 1 2 1 一 3 5]2 二一 1 3 51 2 二 -16 5 1 2 33 1 2: 1 3 00 00 0 0 0 2 1 n 3521 0 3 52-5 035-1 1 02 0 -5 1 2 0 -90 3-5237 -11 2-9 -3 =一 0 0 -3 =-483.3 555 -12 5= -36 -3 -5511 2n -1 11 12 -123 2 1 0 二 1-1 0 1 21兀21 3 02 0 -1 0 12 3-1 1 32131 10 14 16 18-7-10 3-16 = 114-1918 0 -7-W17.计算下列乜级行列式:J. 221 2 -2-12 2 13 71 10-1 1 2 16-16 = -12 -19 8 180 -1-10 0 12176 133)&心1 22 22 2223» ■ i• II222112 3 -■垃一1溶ClCI-12o …-24)■ ■ ■I■■ 42 2a■»a■ IIw « ■+ I *Ji75)+ 1■I I *4- i I C I +0 …bl*-11- ra解1)按第一列展开得x F 0t)0X... 00 y00 (00)0 龙y000X... 00 X y0 (00)■ I -K■ * I ■ 4 I»■I- 4 I »■I I 4-冥■ 41» II-■11+I ■ 4■ -K I十(-1严》■ * II- fiE ■ I-■ I «I »■ 4■ 40 0 0* ■ ■■X y00… x y仃00 …y0y0 0¥«l>0X10… o工L-i y00y 也可以按定义计算,非零项只有两项及'—…「八值分别为"和厂,符号分别为+和「,因此原行列式1?,T2)解:当阅i时,行列式等于问■対;当"2时当吃二三时,从第二列起,每一列减去第一列得:1)X y I〕 (00)Q y… o00 0c… K yy ri c 0■ ■■原行列式a】—J】-打口1 —血g —^2cjj tij 0勺一外旳-每a2~\幻一还=S1 - 也)01—爲)1也■■■ 耳]乃… G1心一烧 ■■■ X”'j-m …(S 為一=(壬再-i-L■ 4 B * ■■ 4 I« ■ I-■ * II I- 4# I II 3- I]八• 耳-附0 …-W3=(备-觀)(-计工 1_的冷 …G抵 … 召 1 ■ V亏_朋 …兀■ » 1 1 « ■« ■ »—S x iH■ _枕 1 七—枕 …丹H ■ n ■ ■ ■■ ■ ■… 召一翩鬥一懣勺 …码一规d-1从第二列起,每一列都加到第一列然后提取因子得3)解: 1 2 2 …2122 (2)10 0 ... 0 2 2 2 (2)1 00 0122 (2)223 -2 二 10 1 0二—1 0■ ■ ■• ■ V ■■ ■■ 4 ■ » ■ V ■ ■■ » ■ ■ ■'■ ■■ '■■ * ■« ■ » » ■ ■ 2 22 … •吃]…丹一210 0 (2)两行后化为三角形得: 然后交换解: 4)1,2 从第二行起每一行减去第一行, 123•… 用- 1V-423 …73-11 -1 0 ■- 0.5—1 -10 …0 0 0 2 -2・・・0 =2-2…0 …用—11—料« ■ |>0 ■> 1 10 ■ 1 V■> 1 10 … 1 « ■ N-1■ i V1一冷2列起每一列都加到第 然后按第一列展开得到:列, 1 也可以除第 12 -122行外,3 0 -2「行都减去第2行,然后化为三角形计算.崔一 10 05)解:从第» 1二&連2…吐(附一龙―);j-1康------ (]二 2,3"■,聊 +1)证明:从第2列起,每一列的-倍加到第一列即可得:二 1 用_壬_% 11 (1)11 -1j>l 葩1的 0 ■ 0 01 ■1 巾0 B ■1・・・ 0 二 0 0 禺 ■ ■■ 0 1 0 0・・■|> 0■ 0• ■0 1■-叫 证明:当“°时结论显然成立,当疋八时,第一行的工加到第二行,然后第\_行的工加到第三行,依次类推可得:18. -1 2 0-2耳一 1证明:-1 0■0 X -1甲0…0・・・X ・■-0 0 0a2 ■r0 0 (X)2. 00 ■■--1=F 4-df H _J x a_1+-- +(j 1A + a 0;小+"学…笋+禺)"+%严i w+飾证法二:按最后一列展开即可得.证法三:按第一行展开再结合数学归纳法证明•证法四:从最后一行起,每一行乘以X 加到上一行,然后按第一行展开可得:X0… 0 %A0 0-1 X 0 …hX0 …盘]a -1 X …-1 X 0■ ■ ■ ■ ■二・■ ■* ■1- ■■* * ■« H■ ■ ■ ■■ 1 1 ■ ■■a 0 0 *■'0 0 0 '•*a0 0 …「1Q0 0 …-1兀+J1IJ0 0 … 0 孟"+|2”]乳"1+■■・+(3]工+口0 -1 00 … 0 茂 +务+…的 0 -1 0 … 0 9 —□»—3X ++ …眄H ■ ■ 11 « ■ - *B■ ■ ■■0 D 0 0■■ 9 V ]X0 0 …-10… ■ || -1 ■ b■ ■a 0 0 …0 0 0…叫■ ■ ■>3x 00…0丸 00 -1乳…4H■0 0 0 0 00…T x 十氐」A 0=(—l)w+l(X™ +込_]才】+…+ fif[北+引) -1) 二(-1严*0 + )(-1) "_1 = 十…+硯丸+% 就+ $ afi 0 … 0 0 1 ar+ ap … 0 00 1 口十0… 0 0 ar —Q"■ ■ 1 ■ ■ ■ ■ Hl H ■ ■ ■ in H ■ ■ a- Q ' 0 0 0 … C£-\- jS3) C1 0 0 … 1 少+ fl0 解:原行列式按第一行展开得:'.「+广―-一―’丁,一•因此有 即J是以 ■ 宀-为首项,以二为公比的等比数列.因此有 & _类似有必%二才.当“0时,解得H a-^ . 证法二:按第一行展开找到递推关系,再结合数学归纳法加以证明 1 2cos C& 1 cos a 10 4) 证明:对行列式的级数用第二数学归纳法证明 _ cos a 1 1 2cosa *2 =2 cos 4 一 1 = 2d ,因此结论成立. 假设当级数小于T 时结论成立,对咛级行列式匚按最后一行展开得: D K = 2cos^r - D S _2 = 2 cos a - cos(^-l)a-匕加山 一2)口=2 cosc<>s[(?;- l)dU-iT]=-l)a- sin asinfw- l)dr = cos na由数学归纳法,结论成立• 注意:因为主对角线上第一个元素为 曲口,其它主对角线上元素为 2l:<:;-,本行列式按第一行展开得到的低级数行列式与原行列式形式不同,无 法得到与 *兀 之间的递推关系,而按最后一行可得到递推关系 1 1 -I-心1a 1二甸孔…碍门+卫—)■ i-ia. 证明:从第二行起,再三角化 1 +盘]1 1 …11 + 位1 11 (1)1 1亠①1 …1_口] 叫 0 … 0 1H 1- 1 1 ]+也… 1 ■#1 ■ ■ = _筍 0 ■ ■ ■ … 0 II '■ i11• # I■ 15一口1 00 ■… 仇行减去第一行先化为爪形行列式, 11+&1+ E 竺 z a 2 0=0+^1 + S —)^3-^ "曲他…耳(1十艾丄)2-1 [7^19.用克拉默法则解下列线性方程组:z! J L j —x、十3兀m 2工4 二b” 3ij 一3叼+ 3x?+ 2工斗二5 , 3x{-x2—x5+ 2X4-3t 予冋_花+3也一筍=4;巧 + 2 貫2 + 3xj —2 珥—6,2& -J?3 - 2也一窃=&3%! + J L5-A S+二4,2町-3工2 +2兀§ +筍=_&扎+ 2心-2屁十4兀-x. = -1,2xj- +3X3一4旺 + 2^ = 8 彳弓站+阳-电+ 2^4一心=3,4x:十3x立+4延十2耳十2心=-2f 兀一两一阿+2A4-弓召=-3,解:1)系数行列式= -29 一1 0 =-70,3 1 -1出二弓24同二3纽£ =64&厶二■艾4£= ・6J&322-1 3 2 F3 2 3-33 2 3-1 20 2 ■40 ~ 03 -1 3 -1 3 -1P-1-32-11-311 2-3 21 -1故方程组的解为:5开i + 6勺=1Xj + 5% 4 陆=0© + 5衍-F6A4=也+ 5X4十&屯=0& +%5 - 1 2.优质文档颅=虫 =L 呵=佥 =2,旳=佥 =-1曲=—--2故方程组的解为:d d d &3)d=2A, 口二込 禺=■弓苑 £ =-迥 £ = 1私 ^ = 312?故方程组的解为:& = 4再= -14內=7耳=7f x_5 = 13.2 -二艰-2D 3)二 9(厶-二 27(2 - 2耳)=243r爲=-1145f ^3 =703^4= -395, & = 212?定的数,用克拉默法则证明:存在唯一数域 卩上的多项式/W =护Z 十应丘月+…+q_i使炖)二虬2 1,2严皿j6 0 06 0 0 01 5 6 05 6 0 0] 1 5 61 5 6 00 1 50 1 5 62二3畑,2><艾二血0 0C i = 1507,5 65证明:设畑二占+占+・十“,由/(%)=鸟得4)51ij 00 65 1 00 0 0 6 5口 - 2D* = 243?D - 3D 二 32,W57 . 1145 229 70379 6劭宀—^65 一 133P*1320.设丄宀…: 是数域』 '中互不相同的数,665中任一组给洛鶯…也是数域两二212& =10 100 =20 4001000 18000 =6x1出1系数行列式- 0 03100-0.05400-0.0890030 9Q01 12A =12xl0\391000 -3 1 1sooo= ltf-5 2 4= -5000,27000-8 3 9^ = 1800, £=70 +勺』丹+…+町龙-+叼皿:=b n.把它看成关于''m ■"' --r::的线性方程组,其系数行列式为一范德蒙德行列式, 由互不相同可得系数行列式不为0,由克拉默法则,方程组解唯一,即满足…]的多项式唯一.21.设水银密度;与温度厂的关系式为h二口©十厘]t +僅/2 +殍*由实验测定得以下数据:t0n C icru 20" C30" Ch13.6013.5713.5513.52求'_ ' 1 ' 1时水银密度(准确到小数2位).解:将实验数据代入关系式■■+」得:「%=13.60,術+10^ +100^2 +1000^3 = 13.57,砌 + 20d| + 400码+ 8000^ —13 55a a+ 30<a1+900a2 +27000 碍=13.52整理后得一'以z满足的方程组为:10^+100^+1000^ = -0 03, ;20^jj+400tZj + 8000lOj =—0.05,30^ + 900d2+ 27000^ = -0 08.故陽=1.5x10^,^ 二一3.3x10』2700013.6-4.2x10-^+ 1.5xW"l i;l-3.3xl0V.当心1兀,"1艮阪当“轲c时,"门乖健康文档放心下载放心阅读。
线性代数习题 第二章 (附详解)
线性代数习题 第二章 (附详解)第二章 矩阵及其运算【编号】ZSWD2023B0061 1 已知线性变换3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换解: 由已知221321323513122y y y x x x故3211221323513122x x x y y y321423736947y y y 321332123211423736947x x x y x x x y x x x y2 已知两个线性变换32133212311542322y y y x y y y x y y x 323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解: 由已知221321514232102y y y x x x321310102013514232102z z z321161109412316z z z所以有 3213321232111610941236z z z x z z z x z z z x3 设 111111111A150421321B 求3AB 2A 及A TB解:1111111112150421321111111111323A AB2294201722213211111111120926508503092650850150421321111111111B A T4 计算下列乘积(1)127075321134解:127075321134 102775132)2(7111237449635(2)123)321(解:123)321( (1 3 2 2 3 1) (10)(3))21(312解: )21(31223)1(321)1(122)1(2632142(4)20413121013143110412 解:20413121013143110412 6520876(5)321332313232212131211321)(x x x a a a a a a a a a x x x 解:321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3 a 13x 1 a 23x 2 a 33x 3)321x x x322331132112233322222111222x x a x x a x x a x a x a x a5 设3121A2101B 问(1)AB BA 吗? 解: AB BA 因为6443AB8321BA 所以AB BA(2)(A B)2A 22AB B 2吗? 解: (A B)2A 22AB B 2因为5222B A52225222)(2B A2914148但 43011288611483222B AB A27151610 所以(A B)2A 22AB B 2(3)(A B)(A B) A 2B 2吗?解: (A B)(A B) A 2B 2因为5222B A1020B A906010205222))((B A B A而718243011148322B A 故(A B)(A B) A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0解: 取0010A 则A 20 但A 0 (2)若A 2A 则A 0或A E 解: 取0011A 则A 2A 但A 0且A E (3)若AX AY 且A 0 则X Y 解: 取0001A 1111X1011Y则AX AY 且A 0 但X Y7 设101 A 求A 2A 3A k解:12011011012 A1301101120123 A A A101 k A k8 设001001A 求Ak解: 首先观察0010010010012A2220020123232323003033 A A A43423434004064 A A A545345450050105A A AkA k k kk k k k k k k 0002)1(121用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,0010010002)1(1211k k k k k k k k k k k k A A A11111100)1(02)1()1(k k k k k k k k k k 由数学归纳法原理知k k k k k k k k k k k A 0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵 证明: 因为A TA 所以(B TAB)TB T(B TA)TB T A TB B TAB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明: 充分性 因为A TA B TB 且AB BA 所以(AB)T(BA)TA TB TAB即AB 是对称矩阵必要性 因为A TA B TB 且(AB)TAB 所以AB (AB)TB T A TBA11 求下列矩阵的逆矩阵 (1)5221 解:5221A |A| 1 故A 1存在 因为1225*22122111A A A A A故 *||11A A A1225(2)cos sin sin cos 解cos sin sin cos A |A| 1 0 故A 1存在 因为cos sin sin cos *22122111A A A A A所以 *||11A A Acos sin sin cos(3)145243121解145243121A |A| 2 0 故A 1存在 因为214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A1716213213012(4)n a a a 0021(a 1a 2a n0)解 n a a a A 0021由对角矩阵的性质知n a a a A 1001121112 解下列矩阵方程 (1)12643152X解:126431521X1264215380232(2)234311*********X 解: 1111012112234311X0332321012343113132538122(3)101311022141X解: 11110210132141X2101101311421212101036612104111 (4)021102341010100001100001010X解: 11010100001021102341100001010X01010000102110234110000101020143101213 利用逆矩阵解下列线性方程组(1) 3532522132321321321x x x x x x x x x解: 方程组可表示为321153522321321x x x故0013211535223211321x x x从而有 001321x x x(2) 05231322321321321x x x x x x x x x解: 方程组可表示为012523312111321x x x故3050125233121111321x x x 故有 305321x x x14 设A kO (k 为正整数) 证明(E A) 1E A A 2A k 1证明: 因为A kO 所以E A kE 又因为E A k(E A)(E A A 2A k 1)所以 (E A)(E A A 2A k 1) E由定理2推论知(E A)可逆 且 (E A) 1E A A 2A k 1证明 一方面 有E (E A) 1(E A)另一方面 由A kO 有E (E A) (A A 2) A 2A k 1(A k 1A k)(E A A 2 Ak 1)(E A)故 (E A) 1(E A) (E A A 2A k 1)(E A)两端同时右乘(E A) 1就有 (E A) 1(E A) E A A 2A k 115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E) 1证明: 由A 2A 2E O 得A 2A 2E 即A(A E) 2E或 E E A A)(21 由定理2推论知A 可逆 且)(211E A A 由A 2A 2E O 得A 2A 6E 4E 即(A 2E)(A 3E) 4E或 E A E E A)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A| 2即 |A||A E| 2 故 |A| 0所以A 可逆 而A 2E A 2|A 2E| |A 2| |A|20 故A 2E 也可逆由 A 2A 2E O A(A E) 2EA 1A(A E) 2A 1E )(211E A A又由 A 2A 2E O (A 2E)A 3(A 2E) 4E (A 2E)(A 3E) 4 E所以 (A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1)3(41)2(1A E E A16 设A 为3阶矩阵 21||A 求|(2A) 15A*| 解: 因为*||11A A A所以 |||521||*5)2(|111 A A A A A |2521|11 A A | 2A 1| ( 2)3|A 1| 8|A| 18 2 1617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*) 1(A 1)*证明: 由*||11A A A得A* |A|A 1所以当A 可逆时 有|A*| |A|n|A 1| |A|n 10 从而A*也可逆因为A* |A|A 1所以(A*) 1|A| 1A又*)(||)*(||1111A A A A A 所以 (A*) 1|A| 1A |A| 1|A|(A 1)* (A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A| 0 则|A*| 0 (2)|A*| |A|n 1证明:(1)用反证法证明 假设|A*| 0 则有A*(A*) 1E 由此得A A A*(A*) 1|A|E(A*) 1O所以A* O 这与|A*| 0矛盾,故当|A| 0时 有|A*| 0(2)由于*||11A A A则AA* |A|E 取行列式得到 |A||A*| |A|n若|A| 0 则|A*| |A|n 1若|A| 0 由(1)知|A*| 0 此时命题也成立 因此|A*| |A|n 119 设321011330A AB A 2B 求B解: 由AB A 2E 可得(A 2E)B A 故321011330121011332)2(11A E A B01132133020 设101020101A 且AB E A 2B 求B解: 由AB E A 2B 得(A E)B A 2E即 (A E)B (A E)(A E)因为01001010100|| E A 所以(A E)可逆 从而201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B 解: 由A*BA 2BA 8E 得 (A* 2E)BA 8E B 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A)18(|A|E 2A) 18( 2E 2A) 14(E A)14[diag(2 1 2)] 1)21 ,1 21(diag 4 2diag(1 2 1)22 已知矩阵A 的伴随阵8030010100100001*A 且ABA 1BA 13E 求B解: 由|A*| |A|38 得|A| 2由ABA 1BA 13E 得AB B 3AB 3(A E) 1A 3[A(E A 1)] 1A11*)2(6*)21(3A E A E103006060060000660300101001000016123 设P 1AP 其中1141P2001 求A 11解: 由P 1AP 得A P P 1所以A 11A=P 11P 1. |P| 31141*P 1141311P而11111120 012001故31313431200111411111A6846832732273124 设AP P 其中111201111P511求 (A) A 8(5E 6A A 2) 解: ( ) 8(5E 6 2)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0) (A) P ( )P 1*)(||1P P P1213032220000000011112011112111111111425 设矩阵A、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明: 因为A 1(A B)B 1B 1A 1A 1B 1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A 1B 1可逆(A 1B 1) 1[A 1(A B)B 1] 1B(A B) 1A26 计算30003200121013013000120010100121 解: 设10211A30122A 12131B30322B则 2121B O B E A O E A222111B A O B B A A而4225303212131021211B B A90343032301222B A 所以 2121B O B E A O E A 222111B A O B B A A9000340042102521即30003200121013013000120010100121900034004210252127 取1001D C B A 验证|||||||| D C B A D C B A解:4100120021010*********0021010010110100101D C B A 而01111|||||||| D C B A 故|||||||| D C B A D C B A28 设22023443O O A 求|A 8|及A 4解: 令 34431A22022A则21A O O A A故 8218 A O O A A8281A O O A 1682818281810|||||||||| A A A A A464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1O B A O解: 设43211C C C C O B A O 则O B A O 4321C C C Cs n E O O E BC BC AC AC 2143 由此得 s n E BC O BC O AC E AC 2143 121413B C O C O C A C所以O A B O O B A O 111(2)1B C O A解: 设43211D D D D B C O A 则s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 s n E BD CD O BD CD O AD E AD 423121 14113211B D CA B D O D A D所以11111B CA B O A BC O A30 求下列矩阵的逆阵(1)2500380000120025 解: 设1225A2538B 则5221122511A8532253811B于是850032000052002125003800001200251111B A B A(2)4121031200210001 解: 设 2101A 4103B2112C 则1111114121031200210001B CA B O A BC O A411212458103161210021210001。
大连理工大学线性代数第二章习题答案
习题2-11. =6.32A 2. 用行列式的定义计算下面的行列式.(1)35;(2)256;(3)8;(4)29.−−思考题 2-21.若对方阵A 进行一次对调变换得到,则B =−A B ;若对方阵A 进行一次倍乘变换(假设第i 行或第i 列乘以数)得到,则k B k =B A ;若对方阵A 进行一次倍加变换得到,则B .=A B2.0.=A3.(1)不正确。
例如,设则 1112111221222122,,a a b b a a b b ⎡⎤⎡==⎢⎥⎢⎣⎦⎣A B ⎤⎥⎦1111121211121211121221212222212222212222a b a b a a b b a b a b a b a a b b a b +++++==+++++A B111211121112111211121112212221222122212221222122a a ab b a b b a b b aa a ab b a b b a b b a =+++=+++A B(2)不正确。
设A 的阶数为,则n (1)n−=−A A (3)不正确。
例如,设,则1200⎡⎤=⎢⎣⎦A ⎥0,=A 但.≠A O 4. ,,1,(),()1i j i i j k k k =−==E E E5. 性质2-2讲的是方阵A 的第行(列)的数与第i 行(列)对应的代数余子式的乘积之和等于i A 的行列式;性质2-7讲的是方阵A 的第i 行(列)的数与另一行(列)对应的代数余子式的乘积之和等于0.习题2-21. 2111231123123det()3,,39,,9,,18.c c a a a a a a a a a a a −=+−=−+=−=−A 2. 131223123233122312312323,2,3,,3,,3,,c c c c c c −+−−++=−===a a a a a a a a a a a a a a a a 63.321123211321212311223,,,,,,,,,,,,,,,n m +=+=−+=−a a a b b a a a b a a a b a a a b a a b a4.证:(1)将第2列和第3列都加到第1列,得0000a b b c c a b c c ab c c a a b c a a b c a a b b ca b b c−−−−−−−−=−−=−−−−−. (2)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++ 1111111111111111122222222222222222333333333333333332a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c ++=+++=+=++ (3)设A 的阶数为,则为奇数.由n n A 是反称矩阵,得T=−A A .两边取行列式,得 ,(1),Tn=−=−=−,A A A A A A 故0.=A 5. 先按行提公因式,在按列提公因式,得2111121211221212222221122n n n n n n n n nn na b a b b a b b a b b a b a b b a b b a b b a b11112212112222121122n n n nn n n nn a b a b a b a ba b a b b b b a b a b a b =n1112121222222222121212n nnn n n nna a a a a ab b bb b bc a a a ==6.(1)解:先按行提公因式,在按列提公因式,得1111114111ab ac ae bd cd de abcdef abcdef bfcfef −−−=−=−−(2)103100204310043141992003951200510012520301300600130013=−−=−−=提高题2-21.,,,,,,+=++++=+−++A B ξηαββγαγξηαγβγαγ,,,,,,22,,,=+−++=+−+=+ξηαγβγαγξηαγβγγξηαβγ2(,,,,,,)2()6=+=+ξαβγηαβγA B =2.1231231231232323,24,36,3,25=++++++=++++B a a a a a a a a a a a a a a a a 1232331223123,3,,,,,=+++−=−+=−=−a a a a a a a a a a a a a 103.根据性质2-7,得41424344414243441111A A A A A A A A +++=⋅+⋅+⋅+⋅=4.(1).132343(1)(1)52(1)301(1)415D +++=−⋅−+⋅−++⋅−=− (2) 1424449(1)(1)52(1)01(1)40,2a a +++−⋅−+⋅−++⋅−==−.5.(1)对第2行和第4行分别应用性质2-2和性质2-7,得212223242521222324254()3()4,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩ 解得.2122232A A A ++=−(2)对第2行和第4行分别应用性质2-7,得313233343531323334354()3()0,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩解得=0.313233A A A ++思考题 2-31.表示第二行先乘以2,再用第二行减去第一行,22r r −12122323112012r r −=.2.对行列式进行对调变换和倍乘变换时,需要在得出的行列式的前面添加负号和系数,对行列式进行初等变换时,关心的是最后的数值;对矩阵进行初等变换时不需要添加负号和系数,对矩阵进行初等变换时,关心的是用何种变换进行化简,最后化成何种形式。
线性代数习题解答第一二三章
β (图1)总习题一 一、问答题1. 试解释二、三阶行列式的几何意义.解 在平面解析几何中,已知两向量),(),,(2121b b a a ==βα如图,以βα,为邻边的平行四边形的面积为><=βαβα,sin ||||S 平行四边形,而||||,cos βαβαβα⋅>=< ,故|-1|2><=βαβα,sin ||||S 平行四边形 ||||21211221b b a a b a b a =-=这就是说,二阶行列式2121b b a a 表示平面上以),(),,(2121b b a a ==βα为邻边的平行四边形的有向面积,这里符号规定是当这个平行四边形由向量α沿逆时针方向转到向量β而得到时面积取正值;当这个平行四边形由向量α沿顺时针方向转到向量β而得到时面积取负值.空间三向量),,(),,,(),,,(321321321c c c b b b a a a ===γβα的混合积)(γβα⨯⋅的绝对值等于这三个向量张成的平行六面体的体积,即=平行六面体V |||)(321321321c c c b b b a a a |=⨯⋅γβα 三阶行列式321321321c c c b b b a a a 表示以γβα,,为相邻棱的平行六面体的有向体积,当γβα,,构成右手系时,体积取正值;当γβα,,构成左手系时,体积取负值.实际上改变任意两向量次序,取值符号改变.类比二、三阶行列式,n 阶行列式|,,,|D n n ααα 21=是由n 维向量n,,,ααα 21张成的n 维平行多面体的有向体积.尽管我们不能看见n 维平行多面体,但是有2,3维空间做蓝本,我们却能够通过现象抓住行列式概念的本质,进行想象.行列式的性质均可以通过几何直观解释,这就是了解几何背景的优势.- 2 - 习 题 解 答2. 行列式中元素的余子式、代数余子式与行列式有什么关系? 解 由定义知,在行列式ijn nD a ⨯=中,去掉元素ij a 所在的第i 行和第j 列后,保持相对位置不变得到的1n -阶行列式称为该元素的余子式,记为ij M .而把(1)i j ij M +-称为元素ij a 的代数余子式,记为ij A .由定义可知,元素的余子式及代数余子式与该元素的位置有关,而与该元素本身是什么数无关.因此,如果只改变行列式的某行(列)的各元素数值,并不会改变该行(列)原来的各元素对应的余子式和代数余子式.例如:在行列式1D =123451789-中,将第二行元素都换成1,得2D =123111789,那么2D 的第二行各元素的代数余子式与1D 的第二行各元素的代数余子式是分别对应相同的.利用此性质可以方便地计算行列式某些元素的代数余子式的某些线性组合.它们与行列式的关系主要表现在行列式按行(列)展开定理及其推论中,即⎩⎨⎧≠==∑=)(,0)(,1s i s i D A a sk nk ik , ⎩⎨⎧≠==∑=)(,0)(,1t j t j D A a kt nk kj . 3. 试从几何的角度解释三元线性方程组有唯一解的意义.解 线性方程组的解可以借助于子空间的概念来阐明,这样可以使线性方程组的解有了几何意义.设三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++)()()(333332222211111πππ d z c y b x a d z c y b x a d z c y b x a , 三个方程在空间分别表示三个平面123,,πππ,该方程组有唯一解,就是说它们有唯一一个交点(如右图).这样以直观方式去理解三元线性方程组的解,就会比较顺利地迁移到对n 元线性方程组的解地理解上去。
经济数学线性代数第二章习题答案
习题二参考答案(A)1.设⎪⎪⎪⎭⎫ ⎝⎛=543212132131A ,⎪⎪⎪⎭⎫ ⎝⎛------=424222242242B ,求(1) B A 32+;(2) 若X 满足X B X A +=-2,求X .解:(1)⎪⎪⎪⎭⎫ ⎝⎛------+⎪⎪⎪⎭⎫ ⎝⎛=+42422224224254321213213132B A⎪⎪⎪⎭⎫ ⎝⎛----=2221824281828184. (2) 由X B X A +=-2得,B A X -=22,所以B A X 21+=⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎭⎫ ⎝⎛=42422224224221543212132131⎪⎪⎪⎭⎫⎝⎛=351323013012.2.计算解:(1)⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--24317421432231321.(2)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--86164233241121123.(3)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛963642321)321(321.(4)10321)123(=⎪⎪⎪⎭⎫⎝⎛.(5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113323222121313212111x x x x a x a x a x a x a x a x a x a x a 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.3.已知两个线性变换⎪⎩⎪⎨⎧+-=-+=-=3213321231123232y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=-=213212211323zz y z z y z z y ,(1)试把这两个线性变换分别写成矩阵形式;(2)用矩阵乘法求连续施行上述变换的结果. 解:(1) 写成矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321321213121302y y y x x x ,⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛21321311231z z y y y .(2)连续施行上述变换有⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛21213214146155311231213121302z z z z x x x .4.某企业在一月份出口到三个国家的两种货物的数量以及两种货物的积各为多少?解:设矩阵⎪⎪⎭⎫ ⎝⎛=6001300100088012002000A ,⎪⎪⎭⎫ ⎝⎛=2.03.0P ,⎪⎪⎭⎫⎝⎛=05.0012.0W , ⎪⎪⎭⎫⎝⎛=6.012.0V ,则该企业出口到三个地区的货物总价值为()()384720080060013001000880120020002.03.0=⎪⎪⎭⎫⎝⎛=A P T ;总重量为()()6.1354.7974600130010008801200200005.0012.0=⎪⎪⎭⎫⎝⎛=A W T ; 总体积为()()6.46530084060013001000880120020006.012.0=⎪⎪⎭⎫⎝⎛=A V T .5.计算下列矩阵(其中n 为正整数).(1) n ⎪⎪⎭⎫ ⎝⎛0011; (2) n⎪⎪⎭⎫⎝⎛101λ; (3)nc b a ⎪⎪⎪⎭⎫⎝⎛000000; (4)n⎪⎪⎪⎪⎪⎭⎫⎝⎛------------1111111111111111.解: 2=n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011001100112, 假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k成立,则当1+=k n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k ,有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011n. (2) 2=n 时,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10211011011012λλλλ,假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλk k 成立,则 当1+=k n 时,⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+10)1(11011011011λλλλk kk , 有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλn n.(3) 2=n 时,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛222200000000000000000000000c b a c b a c b a c b a , 假设当k n =时,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛k k k kc b a c b a 000000000000成立,则 当1+=k n 时, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛++++1111000000000000000000000000k k k kk c b ac b a c b a c b a , 有归纳法有⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛n n n nc b a c b a 00000000000. (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=1111111111111111A , 2=n 时,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=4000040000400004111111111111111111111111111111112AE 22=,3=n 时,A A A A 2232==,于是,当k n 2=(k 为正整数)时,E E A A n k k n 2)2()(22===,当12+=k n (k 为正整数)时,A A E A A A A n k k k n 122122)2(-+====, 因此得⎩⎨⎧=-为奇数)(为偶数)n En EA n n n12(2.6.设0111)(a x a xa x a x f n n nn ++++=-- ,记E a A a A a A a A f n n nn 0111)(++++=-- ,称)(A f 为方阵A 的n 次多项式.现设1)(2+-=x x x f ,⎪⎪⎪⎭⎫ ⎝⎛-=211012113A ,求)(A f .解: E A A A f +-=2)(⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=1000100012110121132110121132⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=100010001211012113527218538⎪⎪⎪⎭⎫ ⎝⎛--=416216426. 7.设矩阵A 、B 是可交换的,试证: (1) 22))((B A B A B A -=-+; (2) 2222)(B AB A B A ++=+.证明:因为矩阵A 、B 是可交换的,所以BA AB =,因此有(1) 22))((B AB BA A B A B A --+=-+22B A -=,(2) 222_)(B AB BA A B A +++=+222B AB A ++=. 8.设A 、B 是同阶矩阵,且)(21E B A +=,证明:A A =2的充分必要条件是E B =2.证明:必要性 如果 A A =2,则)(21)](21[2E B E B +=+, 由于矩阵B 与E 是可交换的,由上式得)(21)2(412E B E B B +=++ 整理得 E B =2.充分性 如果E B =2,则A EB E B B E B A =+=++=+=)(21)2(41)](21[222.9.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a bcd b a d c c d a bd c b aA d c b a ,,,(均为实数), (1)计算TAA ;(2)利用(1)的结果,求A .解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛------⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a b cdb a dc cd a b d c b a a bcd b a d c c d a b d c b aAA T⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++=2222222222222222000000000000d c b a d c b a d c b a d c b a(2)由(1)有422222)(d c b a A A A AA T T +++===,所以22222)(d c b a A +++=.10. 证明题:(1)对于任意的n m ⨯矩阵A ,则T AA 和A A T 均为对称矩阵. (2) 对于任意的n 阶矩阵A ,则T A A +为对称矩阵;而-A T A 为反对称矩阵.证明:(1) 因为TTTTTTAA A A AA ==)()(,所以T AA 为对称矩阵;又因为A A A A A A TTTTTT==)()(,所以A A T为对称矩阵.(2) 因为TTTTTTA A A A A A +=+=+)()(,所以TA A +为对称矩阵;又因为)()()(TTTTTTTA A A A A A A A --=-=-=-,所以T A A +为反对称矩阵.11.如果A 、B 是同阶对称阵,则AB 是对称阵的充分必要条件是AB BA =.证明:必要性 如果AB 是对称阵,则AB AB T=)(,即AB A B TT =,由已知有 B B A A TT==,,所以BA AB =.充分性 如果BA AB =,则AB BA A B AB T T T ===)(,所以AB 是对称阵.12.设n 阶矩阵A 的伴随矩阵为*A ,证明(1) 若 0=A ,则 0=*A ; (2) 1-*=n AA .证明:(1)假设0≠*A ,则E A A =-**1)(,由此得 O A E A A AA A ===-*-**11)()(,所以 O A =*,这与0≠*A 相矛盾,故0=A 时,有0=*A .(2) 由E A AA =*得,nA A A =*,若0≠A 时,有1-*=n AA ,若0=A 时,由(1)知0=*A ,等式也成立,故有1-*=n AA ,13.设n 阶矩阵A ,B ,C 满足E ABC =,则下列各式中哪一个必定成立?简述理由.(1)E ACB =,(2)E CBA =,(3)E BAC =,(4)E BCA =.解:由E ABC =可改写为E BC A =)(,即BC 是A 的逆矩阵,所以有E A BC =)(,即(4) 必定成立.类似可得(1)、(2)、(3)未必成立. 14.设A ,B 均为n 阶可逆矩阵,下列各式一定成立的有哪些?简述理由.(1) 1111])[(])[(----=TTA A ;(2) T T T A A ])[(])[(111---=;(3) k k A A )()(11--= (k 为正整数);(4) 111)(---+=+B A B A ; (5) T T TB A AB )()(])[(111---=; (6) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---O B A O O B A O 111. 解: (1)由于TTA A =--])[(11,T TA A =--11])[(,所以1111])[(])[(----=T T A A ,即(1)式一定成立.(2) 由于11])[(--=A A T T,T T A A =--])[(11,即(2)式不一定成立.(3) k kk A A A A A AA A )()()(111111------===,(3)式一定成立.(4)设⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛--=1001B ,显然A 、B 都可逆,但是 O B A =+不可逆,故(4)式不成立.(5) 由于T T T T T T T B A B A A B AB )()()())()(])[(111111------===,即(5)式一定成立.(6) 由于⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----1111BA O O AB O BA OO B A O 但是11--BA AB 和不一定等于E ,故(6) 式不一定成立15.设A 是n 阶矩阵,满足O A k=k (是正整数),求证:A E -可逆, 并且121)(--++++=-k A A A E A E .证明:因为))((12-++++-k A A A E A Ek A E -= E =,所以A E -可逆,并且121)(--++++=-k A A A E A E .16.设A 是可逆矩阵,证明:其伴随矩阵*A 也可逆,且*--*=)()(11A A .证明:因为A 是可逆矩阵,所以0≠A ,由于E A AA =*,有E AA A=*1, 因此,伴随矩阵*A 也可逆. 由上述证明可知A AA 1)(1=-*, 又因为 E A A A 111))((-*--=,所以 A AA A A 1)(1)(111==--*-, 故 *--*=)()(11A A .17.设A 、B 和B A +均是可逆矩阵,试证:11--+B A 也可逆,并求其逆矩阵.解:11111-----+=+AB A A B A)(11--+=AB E A )(111---+=AB BB A11)(--+=B A B A ,由于A 、B 和B A +均是可逆矩阵,它们的乘积也可逆,所以有=+---111)(B A 111])([---+B A B A11111)()()(-----+=A A B B A A B B 1)(-+=.18.设A 为三阶矩阵,*A 是矩阵A 的伴随矩阵,已知21=A ,求 *--A A 2)3(1.解:因为21=A ,所以有A 可逆,且有211==--A A .而E A AA =*,于是1121--*==A A A A ,因此有*--A A 2)3(11131---=A A 132--=A 1278--=A 2716-=.19.用分块矩阵的乘法计算.(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1102012124221011110200100001;(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--020222202010111101.解:(1) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---B A O E 1011110200100001, ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---F E D C110201212422, 则⎪⎪⎭⎫⎝⎛B A O E ⎪⎪⎭⎫ ⎝⎛F E D C⎪⎪⎭⎫⎝⎛++=BF AD B AC DC而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=+4433101112221102B AC , BF AD +⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=+35121011241102BF AS ,于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3445332124221102012124221011110200100001. (2)设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--321010111101A A A ,()321020222202B B B =⎪⎪⎪⎭⎫⎝⎛--,则()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111321321B A B A B A B A B A B A B A B A B A B B B A A A , 而()202210111=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()222010121-=⎪⎪⎪⎭⎫⎝⎛--=B A ,()202210131-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()002211112=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()422011122=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()402211132-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()202201013=⎪⎪⎪⎭⎫ ⎝⎛=B A ,()222001023-=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()202201033=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--222440222020222202010111101. 20.求分块矩阵的逆矩阵.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--4300110000110032; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2000133412121211. 解:(1)记⎪⎪⎭⎫ ⎝⎛=1132A ,⎪⎪⎭⎫ ⎝⎛--=4311B ,则 11132-==A ,14311-=--=B ,所以A 、B 都可逆,且有⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=--2131113211A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--1314431111B ,于是⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛---130014000021003143001100001100321.(2)记⎪⎪⎪⎭⎫ ⎝⎛----=334212211A ,)2(=B ,⎪⎪⎪⎭⎫⎝⎛-=111C ,因为04334212211≠=----=A ,022≠==B ,所以A 、B 均是可逆矩阵,且有 ⎪⎪⎪⎭⎫ ⎝⎛------=-3722524931A,)21(1=-B ,根据例2.17的结论有⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B O CB A A B OC A , -=---11CB A ⎪⎪⎪⎭⎫ ⎝⎛------372252493⎪⎪⎪⎭⎫ ⎝⎛-111⎪⎪⎪⎪⎭⎫ ⎝⎛-=4255)21(,所以=⎪⎪⎭⎫⎝⎛-1B OC A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------210004372252525493. 21.设A 为三阶矩阵,2-=A ,把A 按列分块为),,(321A A A A =, 其中j A )3,2,1(=j 为A 的第j 列,求(1) 231,2,A A A -; (2) 1213,2,3A A A A -. 解: (1) 231231,,2,2,A A A A A A -=- 321,,2A A A =A 2=4-=.(2) 1213,2,3A A A A -123,2,A A A =3212,,A A A = 1232,,A A A =- 2A =-4=.22.设A 为n 阶矩阵,把A 按列分块为),,,(21n A βββ =,j β),,2,1(n j =为A 的第j 列,试用n βββ,,,21 表示A A T .解:),,,(2121n T N T T T A A ββββββ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n Tn T n T n n TT T n T T T ββββββββββββββββββ21222121211123.设A 为三阶可逆矩阵,若A 按行分块为⎪⎪⎪⎭⎫⎝⎛=321A A A A ,按列分块为),,(321B B B A =,试判断下列分块矩阵是否可逆.(1) ⎪⎪⎪⎭⎫ ⎝⎛+++133221A A A A A A ; (2) ),,(133221B B B B B B ---.解:(1)利用行列式的性质计算分块矩阵的行列式133232113323211332212)(2A A A A A A A A A A A A A A A A A A A A ++++=++++=+++133212A A A A A ++=33212A A A A +=3212A A A =02≠=A ,从而⎪⎪⎪⎭⎫⎝⎛+++133221A A A A A A 可逆.(2) 0,,,,1332133221=--=---B B B B O B B B B B B , 从而),,(133221B B B B B B ---不可逆.24.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则下列各式中哪一个必定成立?简述理由.(1)B P AP =21;(2)B P AP =12;(3)B A P P =21;(4)B A P P =12.解:因为A 的第一行加到第三行,再交换的第一行和第二行,从而得得到B ,故用2P 左乘A ,再左乘1P ,即B A P P =21,(3)式必定成立.25.求下列矩阵的等价标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛--021123211; (2)⎪⎪⎪⎭⎫⎝⎛---433221; (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-34624216311230211111.解:(1)⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--210550001210550211021123211⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→100010001300010001210110001. (2)⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---201001201021433221⎪⎪⎪⎭⎫ ⎝⎛→001001. (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛-1022010520105201111134624216311230211111⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0070000000105200000110220105201052000001⎪⎪⎪⎪⎪⎭⎫⎝⎛→00000001000001000001. 26.用初等行变换求下列矩阵的逆矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛--121322011; (2)⎪⎪⎪⎭⎫⎝⎛300420531; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1; (4)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000000000000000121nn a a a a ),,2,1(,0n i a i =≠.解:(1)⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--101110012340001011100121010322001011 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--→416100101110001011012340101110001011 ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛--→416100315010314001416100101110001011,所以1121322011-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-----=416315314.(2)⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛3100100010420001531100300010420001531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→310010032210010350103131001000210210001531 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→31001003221001031231001, 所以=⎪⎪⎪⎭⎫ ⎝⎛-1300420531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--31003221031231. (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫⎝⎛------1001022001012020001122000001111110001111010011110010111100011111⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→1111400000112200010120200001111111002200001122000101202000011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→414141411000414********0414********0414141410001414141411000212121210200212121210020414141430111,所以=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------11111111111111111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------41414141414141414141414141414141. (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0100000000010000000000100000000010000121nn a a a a⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→-01000000000100000000010000100000000121n n a a a a⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-----000100000000001000000000100000000011112111n n a a a a, 所以=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121000000000000000 nn a a a a ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000000000000001112111n n a a a a. 27.解下列矩阵方程.(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛3211024311X ; (2) ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛120311*********X ;(3) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--101311122131X ; (4) 设⎪⎪⎪⎭⎫ ⎝⎛---=101110011A ,且AX A X =+2,求X . 解:(1)因为14311=,所以矩阵⎪⎪⎭⎫⎝⎛4311可逆,在方程的两边左乘该矩阵的逆矩阵,得⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-32110243111X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=3211021314 ⎪⎪⎭⎫ ⎝⎛--=025127.(2) 因为1311211401=,所以矩阵⎪⎪⎪⎭⎫ ⎝⎛311211401可逆,在方程的两边右乘该矩阵的逆矩阵,得1311211*********-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫⎝⎛=111211********* ⎪⎪⎭⎫ ⎝⎛--=532100. (3) 设⎪⎪⎭⎫⎝⎛--=2131A ,⎪⎪⎭⎫⎝⎛--=1112B ,则1-=A ,1=B , 故矩阵B A ,都可逆,在方程的两边左乘1-A ,右乘1-B ,得11111210132131--⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=211110131132 ⎪⎪⎭⎫ ⎝⎛----=3345. (4)由AX A X =+2得,A X E A =-)2(,而⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-10111001110001000121011100112E A ,且02≠-E A ,所以E A 2-可逆,在A X E A =-)2(两边左乘1)2(--E A 得,A E A X 1)2(--=,又⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=--212121212121212121)2(1E A , 故⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=101110011212121212121212121X ⎪⎪⎪⎭⎫ ⎝⎛---=011101110. 28.求下列矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013;(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030116030242201211.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---443120131211443112112013 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→000056401211564056401211, 所以该矩阵的秩是2.(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---1003014030000000121110030116030242201211⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000040001003001211, 所以该矩阵的秩是3.29.已知n 阶矩阵A 满足O E A A =--422,证明:E A +为可逆矩阵;并求1)(-+E A .解:由O E A A =--422得,E E A A =--322,即E E A E A =+-))(3(,所以E A +为可逆矩阵,E A E A 3)(1-=+-.30.已知n 阶矩阵A ,B 满足AB B A =+,(1) 证明:E B -为可逆矩阵;(2) 已知⎪⎪⎪⎭⎫ ⎝⎛-=200012031A ,求矩阵B .证明:(1)由AB B A =+得, )(E B A B -=, 即E E B A E B --=-)(, 整理的E E B E A =--))((, 因此E B -可逆,且E A E B -=--1)(.解:(2)由(1)得,1)(--=-E A E B , 即1)(--+=E A E B1100002030100010001-⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=20001310211.(B)1.若A 、B 是n 阶方阵,且AB E +可逆,则BA E +也可逆,且 A AB E B E BA E 11)()(--+-=+.证明:])()[(1A AB E B E BA E -+-+A AB E BAB A AB E B BA E 11)()(--+-+-+=A AB E E AB E B A AB E B BA E 11))(()(--+-+-+-+=E =,所以BA E +也可逆,且A AB E B E BA E 11)()(--+-=+.2. 设B 为可逆矩阵,A 、B 是同阶方阵,且O B AB A =++22,证明:A 和B A +都为可逆矩阵.证明:由O B AB A =++22得,22B AB A -=+,即2)(B B A A -=+, 由于B 为可逆矩阵,所以0≠B ,因而有 02≠-=+B B A A ,于是00≠+≠B A A ,所以A 和B A +都为可逆矩阵.3.已知实矩阵33)(⨯=ij a A 满足 (1) ij ij A a =)3,2,1,(=j i ,其中ij A 是ij a 的代数余子式;(2)011≠a ,计算A .解:由ij ij A a =)3,2,1,(=j i 得, E A AA AA T==*,于是 32A AAA T==,从而0=A 或1=A , 但由于011≠a 得,0213212211131312121111>++=++=a a a A a A a A a A , 因此 1=A .4.设A 、B 为同阶可逆矩阵,证明:***=A B AB )(. 证明:因为A 、B 为同阶可逆矩阵,所以有0≠=B A AB ,即AB 也可逆,而E AB AB AB =*))((, 于是AB AB AB 1)()(-*=B A A B 11--=))((11A A B B--=**=A B . 5.设矩阵B 的伴随矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8031010100100001B , 且E AB BAB311+=--,求A .解:由题有E B B B =*,4B B B =*,所以 83==*BB ,即2=B .又E AB BAB 311+=--从而E ABE B 3)(1=--,B A E B 3)(=-,即 E A B E 3)(1=--于是 E A B B E 3)1(=-*,E A B E 3)21(=-*,E A B E 6)2(=-*, 故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=-*1031060100600006)2(61B E A6.已知⎪⎪⎪⎭⎫ ⎝⎛---=111111111A , 且矩阵X 满足X AX A 21+=-*,其中*A 是A 的伴随矩阵,求矩阵X .解:由E A A A =*,X A X A 21+=-* 有AX E X A 2+=,于是 E X A E A =-)2(,所以 1)2(--=A E A X . 而4111111111=---=A ,于是⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-22222222211111111124000400042A E A ,所以⎪⎪⎪⎭⎫⎝⎛=-=-10111001141)2(1A E A X . 7.已知A 、B 都是n 阶矩阵,且满足E B B A 421-=-.其中E 为n 阶单位矩阵.(1) 证明:E A 2-可逆,并求1)2(--E A ;(2) 若⎪⎪⎪⎭⎫ ⎝⎛-=200021021B ,求矩阵A . 证明:(1) 由于E B B A 421-=-,因此A AB B 42-=, 于是E E A B AB 8842=+--, 即E E B E A 8)4)(2(=--,从而E A 2-可逆,且有)4(81)2(1E B E A -=--. 由(1)得1)4(82--=-E B E A ,即1)4(82--+=E B E A , 而11400040004200021021)4(--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=-E B1200021023-⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=21000838104141, 所以 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=2100083810414181000100012A ⎪⎪⎪⎭⎫ ⎝⎛---=200011020. 8.设n 阶矩阵A 满足A A =2,E 是n 阶单位矩阵,证明:n E A r A r =-+)()(.证明:因为A A =2,因此A A =2,即O E A A =-)(, 从而n E A r A r ≤-+)()(,又)()(A E r E A r -=-, 所以)()()()(A E r A r E A r A r -+=-+ )(A E A r -+≥n =,故 n E A r A r =-+)()(.9.设*A 是)2(≥n n 阶方阵A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1)(01)(1)()(n A r n A r n A r n A r 若若若.证明:(1) 因为n A r =)(,所以A 可逆,于是0≠A .而E A A A =*,因此*A 也可逆,故n A r =*)(.(2) 因为1)(-=n A r ,所以0=A ,于是0==*E A A A ,从而n A r A r ≤+*)()(,又 1)(-=n A r ,所以 1)(≤*A r .又1)(-=n A r 知A 中至少有一个1-n 阶子式不为零,所以1)(≥*A r ,从而1)(=*A r .(3) 因为1)(-<n A r ,所以A 中的任一1-n 阶子式为零,故0=*A ,所以0)(=*A r .10. 设A 为n 阶非奇异矩阵,α为n 维列向量,b 是常数.记分块矩阵⎪⎪⎭⎫ ⎝⎛-=*A A O EP T α,⎪⎪⎭⎫⎝⎛=b A Q T αα, 其中*A 是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1)计算并化简PQ ;(2)证明:矩阵Q 可逆的充分必要条件是b A T ≠-αα1. 解:(1) 因为E A A A =*,所以⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=*b A A A O EPQ T T ααα⎪⎪⎭⎫⎝⎛+-+-=**A b A A A A A T T T ααααα⎪⎪⎭⎫⎝⎛+-=-A b A A O A T ααα1 ⎪⎪⎭⎫⎝⎛-=-)(1αααA b A O A T . 证明:(2) 由(1)得 )(1ααα--=A b A OAPQ T ,即 )(12αα--⋅=A b A Q P T,而0≠==-=*A A E AA O E P T α,所以)(1αα--⋅=A b A Q T,由此可知,矩阵0≠Q 的充分必要条件是01≠--ααA b T,即矩阵Q 可逆的充分必要条件是b A T≠-αα1.。
线性代数高等教育出版社第二版卢刚主编课后习题答案第二章
3 1 1 1 2 1 1 1
det B1 1
3
0
12
3
0
2 8 4 0 1
4 3 2
3 7 3 1 2 7 3 1
10 9 0
2 8 4 0 4 10 9 440 72 4 32 128
4 3 2
8 4
1 4 3 4
1 2 4 4
0 3 1 1
det B2 1 1
0
48 1
0 1 3 1
det B3 0 2c
a bc c
2ab c 5abc 5abc
2c bc
c0 0
x 5a2bc a, y b, z c. 5abc
(2)解:
aab
1a b
det A a b a 2a b 1 b a
baa
1a a
1a b
2a b 0 b a a b 2a bb aa b
又1,2 n 是 n 维向量,而 n 1个 n 维向量线性相关.
i 可由1,2 n 线性表示 i 1, 2n .
16
证: l11 l22 lr1 r1 0
即: l1 1 k1r l2 2 k2r lr1 r1 kr1r 0
即: l11 l22 lr1 r1 l1k1 l2k2 lr1kr1 r 0
k1 1 2 k2 2 3 k3 3 1 0 k1 k3 1 k1 k2 2 k2 k3 3
∵ 1,2 ,3 线性无关
k1k1 k3k2
0
0
k2 k3 0
1 0 1 1 0 1
系数矩阵
A
1 0
1 1
0 1
0 0
1 0
01
∴有非零解.