介质阻挡放电的基本原理和应用(英文版)
纳秒脉冲介质阻挡放电等离子体激励器流动控制原理及应用研究
纳秒脉冲介质阻挡放电等离子体激励器流动控制原理及应用研究纳秒脉冲介质阻挡放电NS-DBD(Nanosecond Pulse Dielectric Barrier Discharge)等离子体激励器由于其结构简单、功耗低、工作频带宽、响应快、可控来流速度高等优势,广泛地应用于旋涡、分离流的控制中。
由于纳秒脉冲等离子体流动控制技术涉及到多学科,且具有极端的时间尺度,激励器放电后产生力、热、声等多种物理扰动,导致其流动控制机理还不明确。
为了进一步探究纳秒脉冲等离子体激励器的流动控制机理,本文采用试验与数值模拟相结合的方法,围绕纳秒脉冲介质阻挡放电等离子体激励器诱导旋涡机理、激励器流动控制主导扰动因素两个关键科学问题开展研究。
在此基础上,进行了流动控制在飞翼布局飞行器上的应用研究。
论文首先通过PIV(Particle Image Velocimetry)、红外成像试验,研究了纳秒脉冲等离子体激励器产生的时间平均速度扰动和加热效应。
并用高速纹影和数值模拟获得了激励器产生的瞬态压缩波结构和局部温度变化,实现了对激励器本体特性的全面认识。
其次,将纳秒脉冲等离子体激励器应用于平板边界层的控制。
采用PIV技术和壁面探针测量了激励器对平板边界层的时间平均扰动结果,采用数值模拟获得了激励器放电后对边界层的瞬态扰动变化。
结果表明,开启激励后平板边界层存在强烈的涡量变化。
运用涡量输运方程,分析了纳秒脉冲等离子体激励器产生涡量的物理机理,并从Richtmyer-Meshkov 不稳定性的角度分析了等离子体诱导旋涡的产生机理。
然后,将纳秒脉冲等离子体激励器应用于二维翼型。
通过巧妙的纹影试验设计,将纳秒脉冲等离子体激励器产生的物理效应分开,通过对比试验研究,得到了纳秒脉冲等离子体激励器在流动控制中的主要因素。
烟线、PIV试验和数值模拟结果表明:等离子体放电后产生密度和压力梯度扰动,引起流体的斜压性,进而产生涡量,诱导旋涡,旋涡又在剪切流动K-H不稳定性的作用下放大,促进了剪切层内外流动掺混。
介质阻挡放电
介质阻挡放电介质阻挡放电(Dielectric Barrier Discharge,DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电[1]或无声放电。
介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为10~10000。
电源频率可从50Hz至1MHz。
电极结构的设计形式多种多样。
在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。
在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中。
介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternating current, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至放电(breakdown)最后发生击穿。
当供给的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。
随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。
若继续提高供给电压,当两电极间的电场大到足够使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生许多微放电丝(microdischarge)导通在两极之间,同时系统中可明显观察到发光(luminous)的现象此时,电流会随着施加的电压提高而迅速增加。
介质阻挡放电英语
介质阻挡放电英语Introduction to Medium Barrier DischargeMedium barrier discharge, also known as medium-frequency barrier discharge, is a type of non-thermal plasma discharge that occurs in a medium between two electrodes at medium frequency. This type of discharge is characterized by its high energy efficiency and uniformity, making it suitable for various applications such as surface modification, pollution control, and biomedical applications. In this article, we will delve into the concept of medium barrier discharge and its applications in different fields.1. What is Medium Barrier Discharge?Medium barrier discharge is a type of plasma discharge that occurs in a medium between two electrodes. Unlike other types of plasma discharges, such as corona discharge or glow discharge, medium barrier discharge operates at medium frequency, typically ranging from 10 kHz to 1 MHz. This type of discharge is characterized by a uniform plasma distribution and a high energy efficiency, making it suitable for a wide range of applications.2. How Does Medium Barrier Discharge Work?Medium barrier discharge is initiated by applying a high voltage to the two electrodes, which are separated by a dielectric material. This high voltage generates an electric field, causing the dielectric material to break down and form a plasma channel between the electrodes. The plasma channel is composed of ions, electrons, and excited neutral particles, which interact with the surrounding medium and generate various reactive species.3. Applications of Medium Barrier Discharge3.1 Surface ModificationMedium barrier discharge is widely used for surface modification of various materials. The reactive species generated by the discharge, such as reactive oxygenspecies (ROS) and reactive nitrogen species (RNS), can effectively etch, clean, and activate the surface of materials. This allows for improved adhesion, wettability, and surface energy, making it ideal for applications in the semiconductor industry, coating deposition, and biomedical devices.3.2 Pollution ControlMedium barrier discharge has shown promising results in the field of pollution control. The reactive species generated by the discharge can effectively oxidize and decompose various pollutants, including volatile organic compounds (VOCs) and odorous gases. This makes medium barrier discharge a potential technology for air purification, water treatment, and waste gas treatment in industries such as printing, painting, and chemical manufacturing.3.3 Biomedical ApplicationsMedium barrier discharge has gained attention in the biomedical field due to its potential for various applications. The reactive species generated by the discharge can effectively kill bacteria, viruses, and fungi, making it suitable for sterilization and disinfection purposes. Additionally, the discharge can also stimulate cell proliferation, enhance wound healing, and promote tissue regeneration, making it a promising technology for biomedical devices and therapies.4. Advantages of Medium Barrier DischargeMedium barrier discharge offers several advantages compared to other types of plasma discharges. Firstly, it operates at medium frequency, which allows for a higher energy efficiency and a reduced risk of thermal damage to the surrounding materials. Secondly, it generates a uniform plasma distribution, ensuring a consistent treatment over a large surface area. Lastly, the discharge can be easily controlled and optimized, allowing for precise and customizable treatment parameters.5. ConclusionMedium barrier discharge is a powerful and versatile plasma technology that has found applications in various fields. Its high energy efficiency, uniform plasma distribution, and controllability make it suitable for surface modification, pollution control, and biomedical applications. As research and development in plasma technology continue to advance, medium barrier discharge is expected to play an even more significant role in the future.。
大气压均匀介质阻挡放电的应用进展
大气压均匀介质阻挡放电的应用进展作者:王子卿樊楠来源:《科技视界》2018年第07期【摘要】本文首先对大气压均匀放电的产生方法进行了分析,主要是从放电属性、放电结构、放电激励源等方面进行分类与归纳,并从激励电源因素、电极结构与电介质因素以及其它外部因素三个方面对大气压均匀介质阻挡放电的研究现状进行了综述。
最后,详细分析和探讨了在诊断技术、反应器参数优化、功率密度问题以及其它等方面存在的问题与难点。
【关键词】大气压均匀放电;诊断技术;功率密度中图分类号: O461 文献标识码: A 文章编号:2095-2457(2018)07-0132-002Application of Atmospheric Pressure Dielectric Barrier DischargeWANG Zi-qing1 FAN Nan2*(1.North China Electric Power University,Beijing 102206,China;2.Institute of Electronic Computing Technology,China Academy of Railway Sciences,Beijing 100081,China)【Abstract】This paper first analyzes the method of generating atmospheric pressure uniform discharges. It is mainly classified and summarized from the aspects of discharge properties,discharge structure, and discharge excitation source. It also includes factors such as excitation power source, electrode structure and dielectric factors, and other external factors. The research status of atmospheric barrier discharge at atmospheric pressure is summarized in three aspects. Finally, the problems and difficulties in diagnosis technology, optimization of reactor parameters, power density and other issues are analyzed and discussed in detail.【Key words】Atmospheric pressure uniform discharge; Diagnostic techniques; Power density0 引言大气压均匀放电所产生的等离子体在杀菌消毒、材料表面改性、环境保护以及生物医学等领域有着非常广泛的应用。
dbd介质电阻放电臭氧
dbd介质电阻放电臭氧一、介绍DBD(Dielectric Barrier Discharge)介质电阻放电是指在两个电极之间加上一个绝缘层,使得电极之间的气体只能通过绝缘层上的微小孔洞进行放电。
这种放电方式具有低能耗、高效率和环保等特点,被广泛应用于臭氧发生器、空气净化器、水处理和医疗等领域。
二、DBD介质DBD介质通常采用陶瓷、玻璃等材料制成,具有良好的耐高温、耐腐蚀性能和较高的绝缘强度。
常用的材料有氧化铝陶瓷、硅酸盐玻璃等。
三、DBD放电原理当两个电极之间施加高压时,由于绝缘层上存在微小孔洞,导致局部气体被离子化形成等离子体。
随着电场作用力的增大,等离子体逐渐扩展并与对面的等离子体相遇形成互相抵消的边界层。
在这个过程中,由于局部气体被激发而产生了大量活性物质,如电子、正离子、负离子等。
这些活性物质在与空气中的氧分子结合时,可以形成臭氧等有害物质的分解产物,从而实现空气净化、水处理和医疗等应用。
四、DBD放电特点1. 低能耗:DBD放电所需的电压和电流较低,能够节约能源;2. 高效率:DBD放电所产生的活性物质具有高度反应性,可以快速分解空气中的有害物质;3. 环保:DBD放电不需要添加任何化学试剂,不会产生二次污染;4. 安全:DBD放电过程中没有明火和高温,不会引起火灾和爆炸。
五、臭氧臭氧是一种具有强氧化性的有害物质。
在自然界中,臭氧主要存在于大气层中,是一种保护地球生态环境的重要成分。
但是,在人类活动产生大量有机污染物时,臭氧就会变成一种污染源。
长期暴露在高浓度臭氧环境下会对人体健康造成危害。
六、DBD臭氧发生器DBD臭氧发生器是利用DBD放电技术制造的一种空气净化设备。
它通过将空气中的氧分子转化为臭氧,从而达到净化空气的目的。
DBD臭氧发生器具有高效、环保、安全等特点,被广泛应用于工业废气处理、室内空气净化和水处理等领域。
七、DBD臭氧发生器优点1. 高效:DBD臭氧发生器可以快速分解有害物质,净化空气效果显著;2. 环保:DBD臭氧发生器不需要添加任何化学试剂,不会产生二次污染;3. 安全:DBD臭氧发生器过程中没有明火和高温,不会引起火灾和爆炸;4. 维护成本低:DBD臭氧发生器无需更换滤网等耗材,维护成本低廉。
介质阻挡放电工作原理
介质阻挡放电工作原理介质阻挡放电工作原理是一种电气现象,常见于高压电力设备和电气设备中,其原理是通过介质的阻挡作用,阻止电流通过介质流动,从而实现对设备的保护和安全运行。
本文将深入探讨介质阻挡放电工作原理的相关内容,包括其定义、机制、应用领域以及相关研究进展等方面。
首先,我们来定义介质阻挡放电工作原理。
简而言之,介质阻挡放电是指当高压作用下的导体与绝缘体之间存在一定的间隙时,在一定条件下发生放电现象。
这种现象是由于绝缘体对高压导体上的电荷具有一定程度的隔离和屏蔽能力而产生。
了解了介质阻挡放电的基本定义后,我们将深入探讨其工作原理。
首先要了解的是导体与绝缘体之间存在一个称为击穿场强(Breakdown Field Strength)的参数。
当施加在绝缘体上的场强超过击穿场强时,就会发生击穿现象。
在实际应用中,为了保证设备和系统能够安全运行,我们需要选择合适的介质材料和适当的击穿场强。
一般来说,绝缘体的击穿场强越高,其对电流的阻挡能力就越强。
因此,在选择绝缘材料时,我们需要考虑其击穿场强以及其他性能指标。
介质阻挡放电工作原理还与介质材料的性质和结构密切相关。
不同的介质材料具有不同的电学性能和结构特点,因此其对放电现象的响应也有所不同。
例如,在高压电力设备中常用的绝缘材料有气体、液体和固体等。
气体作为一种常见介质,在高压设备中具有较高的击穿场强,因此可以用来阻挡放电。
液体作为一种绝缘介质也广泛应用于高压设备中。
液体具有较好的导热性能和自愈特性,在阻挡放电方面表现出良好效果。
同时,液体还可以起到冷却设备、降低温升等作用。
固体作为一种常见绝缘材料,在高压设备中也起到了重要作用。
固体绝缘材料具有较高的击穿场强和较好的机械强度,能够有效阻挡放电并保护设备的安全运行。
除了介质材料的选择,介质阻挡放电工作原理还与电场分布和介质结构有关。
在高压设备中,为了保证电场分布均匀,我们需要合理设计设备结构和选择合适的绝缘体。
大气压沿面介质阻挡放电等离子体流动控制实验研究
大气压沿面介质阻挡放电等离子体流动控制实验研究大气压放电等离子体气动鼓励作为一种新型的主动流动控制技术, 在改善飞行器动力特性方面具有广阔的应用前景。
大气压沿面介质阻挡放电(Surface Dielectric Barrier Discharge,SDBD) 由于其等离子体鼓励器结构简单、无运动部件、无需改变飞行器现有的气动外形结构、能耗低、响应迅速等特有的优势, 近些年来已成为流动控制领域中的一个热门研究课题。
提高SDBD等离子体鼓励器诱导的电流体动力(Electro-hydro-dynamic,EHD)效应以实现更好的气流控制效果是该课题的一个重要研究方向。
为了使鼓励器能够有效应用于实际工程领域, 通过改变控制参数、优化鼓励器结构、改变电源驱动等手段提升鼓励器的动力特性,并进一步探究实验现象背后的物理机制具有重要的研究意义。
本文以提升SDB等离子体鼓励器所诱导的EHD效应为目标,以分析实验现象背后的物理机制为侧重点,开展了鼓励器性能的优化研究工作。
本文首先介绍了实验研究中所用的仪器设备及测量装置,然后开展了纯交流驱动下SDBD等离子体鼓励器的参数优化研究工作及双高压一“交流高压叠加脉冲偏压〞驱动下SDBD 等离子体鼓励器的性能研究工作。
其中, 在纯交流驱动情况下, 主要研究了交流峰峰值电压及密封电极宽度对鼓励器诱导的气流速度和推力的影响, 简要考察了介质材料、介质板厚度以及电极间隙参数对鼓励器诱导推力的影响; 在双高压驱动下, 首先研究了“交流高压叠加正或负脉冲偏压〞驱动对鼓励器性能的影响, 并在此根底上对“交流高压叠加同步正脉冲偏压〞驱动下的鼓励器性能展开了进一步的研究。
主要内容如下:1. 研究了交流峰峰值电压对鼓励器诱导的气流速度和推力的影响。
借助测量的放电电压电流波形、外表电势分布以及拍摄的放电扩展照片、纹影照片等,探究了实验现象背后的物理机制。
结果说明,鼓励器诱导的气流速度和推力都随着峰峰值电压的增加而增加, 这是因为提顶峰峰值电压能够增强电极间的外电场和外表电荷累积, 而增强的外电场和增加的外表电荷累积将有助于更多的氧负离子沿着介质板外表朝放电延展方向迁移, 从而能够产生较大的气流速度和推力。
介阻挡放电dbd等离子体质
介阻挡放电dbd等离子体质介阻挡放电(Dielectric Barrier Discharge,简称DBD)等离子体是一种通过在介质中引入电场,产生非热等离子体的技术。
DBD等离子体在材料科学中具有广泛的应用,包括表面改性、材料合成、光催化等方面。
本文将深入探讨DBD等离子体的基本原理、特性及其在材料科学中的应用。
一、DBD等离子体的基本原理电场作用:DBD等离子体是通过在介质中施加交变电场来产生的。
介质可以是气体、液体或固体,当介质处于电场中时,电子被加速并与原子、分子碰撞,形成等离子体。
介质屏障:DBD中的介质通常被设计成一个屏障,以防止气体放电在整个空间中扩散。
这种屏障可以是绝缘体、氧化物薄膜等,通过合理设计可以控制放电的形态和位置。
非热等离子体:与热等离子体不同,DBD等离子体通常是非热等离子体,即在产生等离子体的过程中,温度升高较小。
这使得DBD等离子体在许多材料处理过程中更为适用,尤其是对于对温度敏感的材料。
二、DBD等离子体的特性选择性激发:DBD等离子体可以实现对特定化合物的选择性激发。
通过合理选择介质和施加电场条件,可以实现对特定分子的激发,有助于实现一些特殊材料的合成和改性。
低温等离子体:由于DBD等离子体通常是非热等离子体,产生的温升相对较小,使其适用于对温度敏感的材料。
这也为材料表面处理提供了更多的选择。
局部处理:DBD等离子体产生的放电可以被定向和局部化,这为在材料表面进行局部处理提供了便利。
可以通过控制电场和介质屏障来实现对特定区域的处理。
三、DBD等离子体在材料科学中的应用表面改性:DBD等离子体广泛用于材料表面改性,包括表面活性改善、功能化处理等。
通过调控等离子体对表面的影响,改善了材料的性能和功能。
材料合成:DBD等离子体被应用于一些新材料的合成过程,例如纳米颗粒、薄膜等。
通过控制等离子体条件,可以实现对材料结构的精确调控。
光催化:DBD等离子体在光催化领域有着重要的应用。
介质阻挡放电历史英语
介质阻挡放电历史英语The history of Dielectric Barrier Discharge (DBD) spans over a century, with roots tracing back to the early experiments conducted in the domain of electrical discharges. The concept of DBD, also known as Silent Discharge, gained momentum in the late 19th century when scientists began to explore the properties and applications of electrical discharges in gases at atmospheric pressure.Initially, the studies on DBD were focused on understanding the fundamental processes involved in the discharge, such as the generation of plasma and the role of dielectrics in confining the discharge. Over time, the research expanded to explore the potential applications of DBD in various fields, including lighting, ozone generation, surface treatment, and plasma chemistry.The early experiments on DBD were conducted using simple electrode configurations, typically consisting of two metal electrodes separated by a dielectric barrier. These experiments provided valuable insights into the basic mechanisms of DBD, such as the formation of microdischarges and the role of dielectric material in controlling the discharge characteristics.As the understanding of DBD grew, so did the interest in its potential applications. One of the earliest and most significant applications of DBD was in the field of lighting, where it was used to develop efficient and long-lasting light sources. The use of DBD in ozone generation also gained popularity due to its ability to produce large quantities of ozone efficiently.In recent years, there has been a renewed interest in DBD, driven by advances in plasma science and technology. The development of new electrode materials, dielectrics, and discharge configurations has opened up new possibilities for DBD applications in areas such as environmental science, biomedicine, and nanotechnology.Overall, the history of Dielectric Barrier Discharge is a testament to the enduring fascination and utility of electrical discharges in science and technology.From its early beginnings as a tool for fundamental research to its emergence as a versatile technology with a wide range of applications, DBD continues to play a pivotal role in advancing our understanding and utilization of electrical discharges.。
dbd介质阻挡放电特点
dbd介质阻挡放电特点
DBD(Dielectric Barrier Discharge,介质阻挡放电)是一种在两个电极之间的介质中发生的非平衡等离子体放电现象。
以下是DBD放电的特点:
1. 高压激励:DBD放电通常需要较高的电压才能启动,一般在几千伏至数十千伏的范围内。
2. 非热等离子体:DBD放电产生的等离子体温度相对较低,通常在室温附近,因此被称为非热等离子体。
这使得DBD放电可以应用于对敏感材料和生物组织的处理。
3. 空气介质:DBD放电最常用的介质是空气,但也可以使用其他气体或液体作为介质。
空气介质具有广泛的应用领域,如空气净化、杀菌消毒等。
4. 低电流:DBD放电时,电流通常较低,一般在微安至毫安的范围内。
这种低电流特性使得DBD放电具有较低的能耗。
5. 非连续放电:DBD放电是一种非连续的放电形式,即电流在周期性的激励下产生脉冲放电。
这种脉冲放电特性使得DBD放电可以用于一些需要脉冲能量输入的应用。
6. 电晕放电:DBD放电属于电晕放电的一种形式,即通过介质中的电晕区域进行电荷传输和等离子体产生。
这种电晕放电特点使得DBD放电具有较高的电荷密度和较强的局部化效应。
综上所述,DBD放电具有高压激励、非热等离子体、空气介质、低电流、非连续放电和电晕放电等特点。
这些特点使得DBD放电在许多领域有着广泛的应用潜力。
1。
介质阻挡放电
www.art-com.co.kr
Company
Logo
Copyright © by ARTCOM PT All rights reserved.
16
www.art-com.co.kr
测试手段
Company
17
www.art-com.co.kr
测试手段
Company
Logo
Copyright © by ARTCOM PT All rights reserved.
18
www.art-com.co.kr
Company
Logo
等离子表面改性存在老化效应,即等 离子体处理后的材料在放置时,其表面特 性会出现退化。为了考查DBD等离子体处理 后薄膜的老化效应,将处理后的PP膜在敞 开的空气中放置,并监测其表面水接触角 的变化情况,所得到的结果如下图所示:
Logo
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
表面化学成分变化
Company
Loபைடு நூலகம்o
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
结论
等离子体的分类
Company
Logo
1、按等离子焰温度分: (1) 高温等离子体:温度相当于108~109 K完全电离 的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105 K,如电弧、高频和燃烧等离子体。
大气压介质阻挡放电综述
第 2 期
李
喜等 : 大 气 压 介 质 阻 挡 放 电综 述
介 质 阻挡放 电系统 主体有 驱动 电源 、 匹 配结 构 、 放 电结 构 。放 电结 构 主要 有 两块 电极 , 其 中至 少 有一 块 电极上 覆盖 介质 层 , 介 质层 可 以是 陶瓷 、 玻璃 或 者 其他 电介 质 体 , 介 质 层 的存 在 限制 了放
构[ 1 、 介质阻挡 表面放 电结构[ 1 、 圆柱结 构、
高
能
量
密
度
物
理
No. 2
HI G H ENERGY DENSI TY PHYSI CS
J u n . ,2 0 1 3
大 气 压 介 质 阻挡 放 电综 述
李 喜 , 李 杰 , 谢宇彤 , 章林文
( 1 . 中国工程物理研究院流体物理研究所 1 0 6室 , 四川 I 绵阳 6 2 1 9 9 9 ; 2 . 中 国工 程 物理 研 究 院脉 冲 功 率科 学 与 技 术 重 点 实 验 室 , 四J I I 绵 阳 6 2 1 9 9 9 )
3大气压介质阻挡放电研究现状对于大气压dbd的激励电源传统方法是采用高频高压交流电源随着脉冲功率技术的快速发展高压脉冲电源逐渐应用在大气压介质阻挡放电中相对于交流电源采用脉冲电源不仅可以减少热损耗还能获得更高的臭氧产生率更高的电子密度有希望实现大面积大间隙的大气压均匀介质阻挡放电
第 2期
2 0 1 3年 6月
电 源 驱 动 DBD 的研 究现 状 及 放 电 机 理 。
关键 词 : 大 气压介质 阻挡 放 电 ; 交流 电源 ; 脉 冲 电源 ; 等 离子 体
引 言
低 温等 离子 体适 用 于材料 表面处 理 、 生物 制药 、 医学 杀 菌消 毒 、 等 离 子体 显 示 、 食 品 加工 、 真 空 紫外 光 源 、 三 废处 理 、 臭 氧 产生等 方 面 。大 气压 介质 阻挡 放 电是产 生非 平衡低 温 等离子 体 的一种 重
介质阻挡放电在环境领域中应用现状
介质阻挡放电在环境领域中应用现状介质阻挡放电(Dielectric Barrier Discharge,DBD)是一种非热等离子体放电技术,它使用介质中的阻挡层来限制电流流过,从而产生低温放电。
这种技术具有高效、环保等特点,因此在环境领域中得到了广泛的应用。
介质阻挡放电在空气净化领域中有着广泛应用。
空气净化设备中使用DBD技术可以通过引入大量的电子、活性离子和自由基来分解空气中的有机污染物,从而实现空气的净化。
DBD技术不需要添加其他化学物质,不会产生二次污染物,且能够迅速去除特定有机物,因此被广泛用于工业废气、室内空气净化等领域。
介质阻挡放电在废水处理领域中也有着广泛的应用。
废水处理中常见的有机污染物可以通过DBD技术进行高效的去除。
DBD技术可以通过产生大量的离子、自由基等活性物质来氧化降解有机污染物,同时还可以抑制细菌、病毒的生长,从而有效净化废水,降低COD、BOD等指标。
DBD技术还可以用于废水中重金属的去除。
介质阻挡放电还在空气洁净领域、气体污染治理领域等得到了广泛应用。
在空气洁净领域,DBD技术可以去除空气中的微生物、病毒等有害物质,从而提高空气质量,保障人们的健康。
在气体污染治理领域,DBD技术可以去除汽车尾气中的氮氧化物、硫化物等有害物质,减少大气污染。
目前,介质阻挡放电技术在环境领域中仍存在一些挑战和问题。
DBD技术的电击穿电压较高,需要较高的电源电压来驱动放电。
放电过程中会产生大量的臭氧等氧化物,这些氧化物对人体健康有一定的危害性。
DBD技术的设备和材料成本较高,限制了其大规模应用。
介质阻挡放电等离子体特性及其应用
:2 犲 犮 犲 犻 狏 犲 犱犱 犪 狋 犲 0 0 6-0 9-1 2. 犚 : WAN :w 犆 狅 狉 狉 犲 狊 狅 狀 犱 犻 狀 狌 狋 犺 狅 狉 G B a o w e i .犈 - 犿 犪 犻 犾 a n b w g 狆 犵犪 t u . e d u . c n @ j 犉 狅 狌 狀 犱 犪 狋 犻 狅 狀犻 狋 犲 犿:s u o r t e db h eN a t i o n a lN a t u r a lS c i e n c e p p yt ) F o u n d a t i o no fC h i n a( 2 0 6 0 6 0 2 3 .
犜 犻 犪 狀 犻 狀犝 狀 犻 狏 犲 狉 狊 犻 狋 犜 犻 犪 狀 犻 狀3 0 0 0 7 2, 犆 犺 犻 狀 犪) 犼 狔, 犼
0 0 6-0 9-1 2 收到初稿 ,2 0 0 7-0 2-0 3 收到修改稿 。 2 联系人 : 王保 伟 。 第 一 作 者 : 杨 宽 辉 ( ,男, 硕 士 研 1 9 8 3—)
] 1 有利于反应进行 [ 。
( )c b l i n d r i c a lD B D y
图 1 D B D 放电示意图 F i . 1 S c h e m a t i cd i a r a mo fD B D g g d i s c h a r ec o n f i u r a t i o n s g g
1 D B D 等离子体特性
1 1 基本特性 常见的 D B D 反应器按照外形区分有板式和同 心圆 式 , 根 据 介 质 层 数 的 不 同 又 有 单 层 与 双 层 )为单层和双 D B D 之分 , 如图 1 所 示 。 图 1 ( a 层介质的平板式 D )为单层及 B D 反应器 , 图 1 ( b 双层介质的圆 柱 式 D B D 反 应 器。 双 介 质 层 反 应 器 电极不直接与放电气体接触 , 可避免电极因参与反 应而产生 的 腐 蚀 问 题 。D B D 反应器可大面积生成 无火花放电的稳定流注电晕 , 同时避免了设备工作 时的噪声 。 这种型式的装置已成功地应用于臭氧制 备。由 D B D 反应器 改 造 而 得 的 反 应 器 有 填 充 床 放
介质阻挡放电及其应用
介质阻挡放电及其应用
介质阻挡放电(DBD)是一种常见的不稳定等离子体现象,也称
为电晕放电。
当高电压施加到介质上时,介质表面会产生电晕现象,
这是一种与导电电极间距离无关的放电现象。
该现象的原理是电场在
高压下导致气体分子碰撞电离,进而产生电离态气体。
DBD广泛应用于气体传感器、空气净化、表面处理等领域。
在气体传感器中,DBD被用于检测空气中的有害气体,如氨气、
二氧化碳等。
传感器使用薄膜作为介质,在电极间施加交流电压,产
生DBD。
当有害气体进入传感器时,它们会与薄膜上的等离子体反应,产生电信号。
这种信号可以用于检测气体浓度,从而实现空气污染监测。
DBD还被广泛应用于空气净化。
在此应用中,介质通常是多层的,电极和介质交替排列。
空气被引导通过多层介质,等离子体沿着介质
表面扩散,进而有效地去除空气中的污染物。
这种技术被广泛应用于
医院、工业车间等场所的空气净化。
最后,DBD还可以用于表面处理。
在此应用中,DBD通过激发表
面的反应物,从而实现表面改性,如表面涂层、表面清洁等。
由于DBD 的高度选择性和可控性,该技术被广泛应用于微电子、生物学等领域。
虽然DBD已经得到了广泛的研究和应用,但是其稳定性和可靠性还需
要进一步的提高和改进。
ABB介质阻挡放电原理和应用
Abstract: Dielectric-barrier discharges (silent discharges) are non-equilibrium discharges that can be conveniently operated over a wide temperature and pressure range. At about atmospheric pressure electrical breakdown occurs in many independent thin current filaments. These short-lived microdischarges have properties of transient high pressure glow discharges with electron energies ideally suited for exciting or dissociating background gas atoms and molecules. The traditional application for large-scale ozone generation is discussed together with novel applications in excimer UV lamps, high power CO, lasers and plasma display panels. Additional applications for surface treatment and pollution control are rapidly emerging technologies. Recent results on greenhouse gas recycling and utilisation in dielectric-barrier discharges are also discussed.
介电常数与dbd放电
介电常数与dbd放电摘要:1.介电常数的定义和性质2.DBD 放电的基本原理3.介电常数与DBD 放电的关系4.介电常数对DBD 放电的影响5.结论正文:一、介电常数的定义和性质介电常数,又称电介质常数,是描述电介质在电场中极化程度的物理量。
它是无量纲常数,用符号ε表示。
当外加电场作用于电介质时,电介质内部的分子、原子或离子会发生极化现象,形成电偶极矩。
介电常数反映了电介质在电场作用下,电偶极矩的排列程度。
它的数值越大,表示电介质的极化能力越强。
二、DBD 放电的基本原理DBD(Dielectric Barrier Discharge,介质阻挡放电)是一种在两个电极之间建立的气体放电现象。
在这种放电模式中,一个电极被覆盖有一层介质,该介质具有较高的介电常数。
当外加电压达到一定值时,电介质中的气体会发生放电,形成电子、离子和自由基等活性物质。
DBD 放电具有低温等离子体特性,可以在低温下进行表面处理、环境保护等领域的应用。
三、介电常数与DBD 放电的关系介电常数是影响DBD 放电的一个重要因素。
在DBD 放电过程中,电介质的介电常数决定了电场分布和极化程度。
当介电常数较大时,电场分布更加集中,有利于电子和离子的加速和碰撞,从而提高放电的电流和能量。
另一方面,较大的介电常数可以降低放电的电压阈值,使得放电容易发生。
四、介电常数对DBD 放电的影响介电常数对DBD 放电具有显著的影响。
首先,介电常数影响电介质的极化程度。
当介电常数较大时,电介质的极化程度更高,有利于电子和离子的加速和碰撞,从而提高放电的电流和能量。
其次,介电常数影响放电的电压阈值。
当介电常数较大时,放电的电压阈值降低,使得放电容易发生。
最后,介电常数还会影响放电的稳定性。
当介电常数较小时,放电容易发生不稳定现象,如脉冲式放电和振荡放电。
五、结论介电常数是影响DBD 放电的重要因素。
它决定了电场分布和极化程度,影响放电的电流、能量和稳定性。
介质阻挡放电及其应用
介质阻挡放电及其应用王新新(清华大学电机系,北京100084)摘 要:为使读者比较全面地了解介质阻挡放电,根据气体放电理论和实验结果,对介质阻挡放电进行了综述。
首先提出了只有拍摄曝光时间为10ns 左右的放电图像才能判断放电是否为均匀放电,即使是均匀放电,也不能统称其为大气压辉光放电,还必须进一步区分它是辉光放电还是汤森放电。
其次,说明了只有增加放电的种子电子,使放电在低电场下进行才有可能实现大气压下均匀放电。
最后,根据放电图像、电流电压波形、数值模拟结果,证明了大气压氦气均匀放电为辉光放电,而大气压氮气均匀放电为汤森放电。
最后还简要介绍了3种介质阻挡放电的主要工业化应用—大型臭氧发生器、薄膜表面的流水线处理、等离子体显示屏。
关键词:介质阻挡放电;大气压辉光放电;汤森放电;辉光放电;气体放电;等离子体表面处理中图分类号:TM213;TM89文献标志码:A 文章编号:100326520(2009)0120001211基金资助项目:国家自然科学基金重点项目(50537020);博士点专项基金项目(20040003011)。
Project Supported by National Natural Science Foundation (50537020),Special Research Fund for t he Doctoral Program of Higher Education (20040003011).Dielectric B arrier Discharge and Its ApplicationsWAN G Xin 2xin(Depart ment of Elect rical Engineering ,Tsinghua University ,Beijing 100084,China )Abstract :In order to comprehensively understand DBD ,we reviewed the investigations of dielectric barrier discharge (DBD )by focusing on the physics related to the uniform discharge at atmospheric pressure.It is suggested that the best way to distinguish a uniform discharge f rom a filamentary one is to take a picture with an exposure time of about 10ns.Even for a real uniform discharge ,it is important to f urther distinguish a glow discharge f rom a Townsend discharge.The only way to get a uniform discharge at atmospheric pressure is to make the discharge at a lower elec 2tric field by increasing the seed electrons initiating the discharge.Recently ,the uniform discharges at atmospheric pressure have been obtained in helium and nitrogen ,i.e.,subnormal glow discharge in helium and Townsend dis 2charge in nitrogen.Moreover ,we briefly introduced three industrial applications of DBD plasmas ,including the ad 2vanced ozone generator ,continuous double 2sided treatment of foil surface ,plasma display panel.K ey w ords :dielectric barrier discharge ;atmospheric pressure glow discharge ;Townsend discharge ;glow discharge ;gas discharge ;plasma surface modification0 引言近20年来,气体放电产生的低温等离子体得到越来越广泛的应用,等离子体处理技术应运而生。
介质阻挡放电谐振频率
介质阻挡放电谐振频率摘要:1.介质阻挡放电谐振频率的定义和原理2.介质阻挡放电谐振频率的影响因素3.介质阻挡放电谐振频率的应用领域正文:一、介质阻挡放电谐振频率的定义和原理介质阻挡放电(Medium impedance discharge,简称MID)是指在特定电场条件下,绝缘介质中发生的一种电离现象。
当电场强度足够大时,绝缘介质中的电子会被拉出,形成电子雪崩,进而引发电离。
在这种情况下,绝缘介质的阻抗会发生显著变化,导致谐振频率产生。
谐振频率是指在一个封闭系统中,系统振动的固有频率。
当系统的固有频率与外部驱动力的频率相等或接近时,系统振动的振幅会显著增大,这种现象称为谐振。
在介质阻挡放电中,由于绝缘介质的阻抗变化,导致电磁波在介质中的传播速度和衰减特性发生变化,从而产生谐振现象。
二、介质阻挡放电谐振频率的影响因素介质阻挡放电谐振频率受多种因素影响,主要包括以下几点:1.绝缘介质的性质:不同绝缘介质的介电常数、密度、厚度等物理性质不同,会影响谐振频率。
2.电场强度:电场强度是引发介质阻挡放电的关键因素,其大小直接影响谐振频率。
3.驱动力频率:外部驱动力的频率与谐振频率密切相关。
当驱动力频率接近或等于谐振频率时,谐振现象更为明显。
4.系统结构:封闭系统的形状、尺寸等结构参数会影响谐振频率。
三、介质阻挡放电谐振频率的应用领域介质阻挡放电谐振频率在多个领域具有广泛的应用,例如:1.通信技术:在无线通信中,利用介质阻挡放电谐振频率可以实现信号的传输和放大,提高通信系统的性能。
2.雷达技术:雷达系统中,利用谐振频率可以实现对目标信号的检测和跟踪。
3.电子对抗:在电子对抗领域,可以利用介质阻挡放电谐振频率对敌方电磁信号进行干扰和压制。
4.环境监测:在环境监测领域,可以利用谐振频率对大气成分、污染气体等进行探测和监测。
总之,介质阻挡放电谐振频率作为一种重要的物理现象,在多个领域具有广泛的应用价值。
大气压氦气平行板介质阻挡放电的形式转换
大气压氦气平行板介质阻挡放电的形式转换郝艳捧;韩玉英;黄之明;阳林;李立浧【摘要】通过短时曝光图像和回路电流,研究了大气压氦气介质阻挡丝状、柱状、局部均匀和全部均匀等放电形式的特性、转换规律,以及柱状与丝状的区别与诊断方法.研究发现:气隙放电后降低外加电压放电仍维持;3 mm气隙含空气40 Pa在14 kHz、11.4 kHz或10 kHz的起始放电为全部均匀形式,由最低放电维持电压升高到起始放电电压,放电形式依次为局部均匀-柱状-全部均匀;3 mm气隙含空气20 Pa在10 kHz、12 kHz或14 kHz的起始放电为全部均匀形式,由最低放电维持电压升高到起始放电电压,放电依次为柱状-全部均匀;2 mm气隙含空气20 Pa在18 kHz的起始放电为柱状放电,由最低放电维持电压升高到超过起始放电电压,放电形式依次为丝状-柱状-全部均匀.电流波形有毛刺、无汤森放电、放电位置不固定等可诊断丝状放电.【期刊名称】《电工技术学报》【年(卷),期】2018(033)013【总页数】10页(P3041-3050)【关键词】均匀放电;柱状放电;丝状放电;放电转换【作者】郝艳捧;韩玉英;黄之明;阳林;李立浧【作者单位】华南理工大学电力学院广州 510640;华南理工大学电力学院广州510640;南方电网科学研究院有限责任公司广州 510663;华南理工大学电力学院广州 510640;华南理工大学电力学院广州 510640【正文语种】中文【中图分类】TM2130 引言介质阻挡放电(Dielectric Barrier Discharge,DBD)是将绝缘介质插入放电空间的一种非平衡态气体放电,广泛应用于臭氧合成、照明、激光、薄膜沉积、环境保护等工业领域[1,2]。
受电极结构、驱动电源、气隙间距、气体种类、介质材料等影响,大气压介质阻挡放电一般表现为3种形式:丝状放电(filamentary discharge)、均匀放电(diffuse discharge)和斑图放电(patterned discharge)[3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FUNDAMENTALS AND APPLICATIONS OF DIELECTRIC-BARRIER DISCHARGESU. KogelschatzABB Corporate Research Ltd, 5405 Baden, Switzerland, ulrich.kogelschatz@Received: 24.05.20001. IntroductionDielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have found a number of interesting industrial applications in addition to the historical ozone generation. The generation of powerful coherent infrared radiation in CO 2 lasers and of incoherent ultraviolet (UV) or vacuum ultraviolet (VUV) excimer radiation in excimer lamps are examples of more recent developments. VUV excimer radiation generated in DBDs can excite phosphors to emit visible light. This is the basis of mercury-free fluorescent lamps and of flat plasma display panels that will be used as wall hanging TV sets. Processes like pollution control and surface treatment with DBDs show great promise for the future.The most important characteristic of DBDs is that non-equilibrium plasma conditions can be provided at elevated pressure, for example atmospheric pressure. In DBDs this can be achieved in a much simpler way than with other alternative techniques like low pressure discharges, fast pulsed high pressure discharges or electron beam injection. The flexibility of DBD configurations with respect to geometrical shape, operating medium and operating parameters is remarkable. In many cases discharge conditions optimized in small laboratory experiments can be scaled up to large industrials installations. Efficient low cost power supplies are available up to very high power levels.2. Discharge physicsTypical electrode configurations of planar and cylindrical dielectric-barrier discharges are given in Fig. 1. DBDs are characterized by the presence of one or more insulating layers in the current path between metal electrodes in addition to the discharge gap(s).HighVoltage Barrier Dielectric Discharge GapElectrodeAC Fig. 1: Common dielectric-barrier discharge electrode configurationsA discharge having one or two dielectric boundaries has many similarities with discharges operated between metal electrodes. For the first ignition breakdown in a homogeneous electrical field is governed by the same Paschen law that is known from breakdown between metal electrodes. One fundamental difference is, of course, that DBDs cannot be operated with dc voltages because the capacitive coupling of the dielectric(s) necessitates an alternating electric field to drive a displacement current. Prudent utilization of the current limiting properties of the dielectric barriers is one of the major features in designing DBD configurations and their matching to the power supplies. As soon as charges are deposited on the dielectric they have an influence on local fields. After the first ignition these memory charges soon dominate DBD behavior. DBDs can be operated with sinusoidal or square-wave currents between line frequency and microwave frequencies or with special pulsed wave forms. For large-scale industrial applications power supplies operating between 500 Hz and 500 kHz are preferred.2.1 Filamentary dielectric-barrier dischargesIn atmospheric pressure gases breakdown in a plane parallel gap with insulated electrodes normally occurs in a large number of individual tiny breakdown channels, referred to as microdischarges. When an overvoltage is applied to the discharge gap electron avalanches soon reache a critical stage where the local “eigenfield” caused by space charge accumulation at the avalanche heads leads to a situation where extremely fast streamer propagation becomes possible. As a result thin conductive channels are formed. The properties of these microdischarges have been investigated experimentally as well as theoretically [1-10]. Typical parameters for air discharges in a 1 mm gap are summarized in Table 1.Table 1: Characteristic microdischarge properties in air at atmospheric pressureDuration: Filament Radius: Peak Current Current Density:10-9-10-8 sabout 10-4 m0.1 A106 – 107 A m-2Total Charge:Electron Density:Mean Electron Energy:Filament Temperature:10-10 – 10-9 C1020 - 1021 m-31-10 eVclose to average gastemperature in the gapAt a dielectric surface the microdischarge channels spread into surface discharges covering a much larger region than the original channel diameter. The microdischarge filaments can be characterized as weakly ionized plasmas with properties resembling those of transient high pressure glow discharges. They start when the breakdown field is reached locally and extinguish when the field is reduced to such an extent that electron attachment and recombination dominate over ionization. Due to charge build-up on the dielectric surfaces the field at the location of a microdischarge collapses within a few ns after breakdown, thus terminating the current flow at this location. The short duration results in little transient gas heating of the current channel. Humidity tends to increase the strength of a microdischarge while irradiating the cathode with UV photons tends to decrease it. The dielectric barrier limits the amount of charge and energy deposited in an individual microdischarge and distributes the microdischarges evenly over the entire electrode surface. As long as the external voltage is rising additional microdischarges are initiated at new locations because the presence of residual charges on the dielectric has reduced the electric fields at positions where microdischarges have already occurred. When the voltage is reversed, however, the next microdischarges will form at old microdischarge locations. Consequently, high voltage low frequency operation tends to spread the microdischarges, while low voltage high frequency operation tends to reignite the old microdischarge channels every half period. This memory effect due to charge accumulation on the dielectrics is a dominant feature in all DBDs.2.2 Diffuse dielectric-barrier dischargesIt has been demonstrated that homogeneous diffuse discharges can also be obtained in DBD configurations even at atmospheric pressure. In 1976 K. Donohoe obtained a uniform glow discharge with pulsed excitation in a helium/ethylen mixture [11]. S. Okazaki and her group at Sophia University in Tokyo did pioneering work in this field using sinusoidal feeding voltages in different gases with and without additives [12-14]. They proposed the term APG, standing for atmospheric pressure glow. To generate uniform glow discharges at atmospheric pressure in helium, air, argon, oxygen and nitrogen even when using a 50 Hz power source they used an electrode configuration consisting of two metal foils covered with a special metal mesh and ceramic plates. More detailed investigations followed by F. Massines and her group at Toulouse [15, 16]. Apparently independently of these investigations, a group around J.R. Roth at the University of Tennessee at Knoxville re-invented what they called an OAUGDP (one atmosphere uniform glow discharge plasma) and even obtained a US patent for a "Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure" [17].Glow discharges in atmospheric pressure gases were already mentioned by von Engel, Seeliger and Steenbeck in 1933 [18] and by Gambling and Edels in 1956 [19]. The subject became an important issue when transversely excited atmospheric pressure (TEA) lasers were investigated in N2, in CO2/N2/He, and in excimer forming gas mixtures. It was found thatsufficient preionization by x-rays, electron beams or by double-discharge techniques helped to establish such a uniform glow phase. Necessary requirements of a minimum initial electron density were formulated by Palmer [20] and by Levatter and Lin [21]. One requirement for establishing a volume-stabilized glow discharge is that the preionization electron density is large enough to cause appreciable overlap and coalescence of primary avalanche heads and smoothing of space-charge field gradients at the stage when streamer formation would otherwise occur. More recently Brenning et al. [22] formulated more detailed conditions for obtaining homogenous high-pressure pulsed avalanche discharges. They point out the importance of an additional minimum preonization rate just prior to and during breakdown. The most important quantity is the effective primary ionization coefficient áeff (including all attachment and detachment processes) at the moment of breakdown or, more precisely, its derivative with respect to the reduced field: d(áeff/n)/d(E/n). This quantity is strongly effected by impurities, gas additives and the presence of metastables and residual ions. In dielectric-barrier discharges we can make use of residual species from the previous half period. Thus, in addition to the already mentioned memory charges on the dielectric surface(s), we also have a memory effect in the volume if the repetition frequency is properly chosen. Also special dielectric properties can help to establish a homogeneous volume discharge. As Tepper et al.[23] demonstrated, electret dielectrics are capable of accumulating appreciable amounts of charges on the surface. Supported by the applied voltage the charges are trapped uniformly on the surface. When the electric field changes its polarity and exceeds a certain threshold value, the charge carriers are expelled spontaneously from the surface and initiate a homogeneous discharge.Up to now it is difficult and tricky to reliably control homogeneous glow discharges at atmospheric pressure. For instance, changes of the electrode configuration or small variations of the amplitude or repetition frequency of the applied voltage can cause a transition into a more stable filamentary discharge mode. For industrial applications this could be a severe drawback compared to filamentary discharges. If however reliable control can be provided and if an average energy transfer into the discharge can be obtained comparable to that of filamentary discharges, this type of discharge may become of particular interest for certain industrial applications.3. Applications of dielectric-barrier dischargesMost industrial DBD applications utilize filamentary discharges [3, 9, 24]. The technology for large-scale applications was initially developed with ozone generation in mind. In the mean time novel DBD applications have established new markets that reach annual sales amounting to at least ten times the original ozone market.3.1 Industrial ozone generationTechnical ozone generators use cylindrical discharge tubes of about 20-50 mm diameter and 1-3 m length [25, 26]. Borosilicate glass tubes have for a long time been the favorite dielectric material. They are mounted inside stainless steel tubes to form annular discharge gaps of about 1 mm radial width. Metal coatings, e.g. thin aluminum films, inside the glass tubes serve as high voltage electrodes, which are contacted by metal brushes. Modern high-performance ozone generators use special layered dielectrics with characteristics optimized for ozone formation. Large ozone generators use several hundred discharge tubes in big steel tanks to provide the required electrode area for mass ozone production. The outer steel tubes are welded between two end flanges and form a sealed cooling compartment. A transverse water flow cools the steel tubes in a classical heat exchanger configuration. Efficient cooling is essential for good ozonizer performance.Modern high-power ozone generators take advantage of semiconductor power conditioning. They utilize thyristor or transistor controlled frequency converters to impress square-wave currents or special pulse trains in the medium frequency range. Typical operating frequencies are between 500 Hz and 5 kHz. Using this technology, applied voltages can be reduced to the range of about 5 kV. With large ozone generators power factor compensationhas become an important issue. Typical power densities now reach 1-10 kW/m 2 of electrode area.Large ozone generating facilities produce several hundred kg ozone per hour at a power consumption of several MW. The ozone production capacity of a big ozone generator is of the order 100 kg/h. Progress with respect to attainable ozone concentrations and energy consumption has continued to be achieved in recent years [27]. It has been suggested that ozone generation might be further improved by homogeneous discharge conditions [28-31].3.2 Excimer lamps and plasma displaysExcimer lamps, spontaneous emission sources based on excimer formation, can be pumped by pulsed or dc longitudinal discharges, by preionized pulsed transverse discharges, by microwave discharges or by dielectric-barrier discharges. More recently, discharges in supersonic jets, constricted glow discharges and microhollow cathode discharges have also been proposed to generate excimer emission. When DBDs are operated in high-pressure rare gases or rare gas/halogen mixtures each microdischarge can act as an intense source of ultraviolet (UV) or vacuum ultraviolet (VUV) radiation. During the last decade powerful and efficient excimer lamps have been developed [3, 32-36] and have found several applications in industrial UV induced processes [9, 24, 33, 37-39]. For large-scale industrial applications dielectric-barrier discharges using fairly simple discharge configurations currently represent the most mature excimer lamp technology. Their main advantage is simplicity, lack of internal electrodes, high efficiency and low cost. Sealed lamps of different planar and cylindrical geometries are common (Fig. 2). Recent applications of excimer lamps include UV curing of photoreactive polymers, photo-deposition of large area or patterned thin metal or semiconductor films, of high- and low-dielectric-constant insulating layers, photo-assisted low-temperature oxidation of Si, SiGe and Ge, polymer etching and microstructuring of polymer surfaces. Applications investigated so far clearly demonstrate that high power excimer lamp systems can provide an interesting alternative to excimer lasers for industrial large-scale low-temperature materials processing.UV Transparent HV AC GeneratorFig. 2: Sealed cylindrical and planar dielectric-barrier discharge excimer lamp configurationsThe width of the discharge gap ranges from 0.1 mm to several mm. Filling pressures range from 104 to 5·105 Pa. In many cases a third buffer gas (He, Ne) is added to the binary excimer forming mixture. This facilitates ignition and provides additional control over the electron energy distribution. Operating frequencies range from 50 Hz to some GHz, applied voltages from a few hundred V to several kV. Commercial excimer lamps are offered for the wavelengths 126 nm (Ar 2*), 146 nm (Kr 2*), 172 nm (Xe 2*), 222 nm (KrCl *) and 308 nm (XeCl *). For UV curing applications cylindrical XeCl * lamps up to 2 m length are available.Typical efficiencies range from 5–40%. In recent years also powerful and efficient XeI * and XeBr * lamps radiating at 253 nm [40] and 282 nm [41], respectively, have been investigated.Most excimer lamps concentrate their emission in a narrow wavelength region. Even at high electrical input powers cooled versions can operate close to room temperature.By far the most important representative is the xenon excimer lamp. It reaches an efficiency of 40%. Phosphors can be used to transform its VUV radiation to visible light. Thiswavelength conversion is utilized in mercury-free fluorescent lamps, in flat panels illuminating liquid crystal displays and in flat plasma display panels with up to 1.5 m picture diagonal. In tiny addressable DBD cells of 0.1 mm electrode spacing and 0.2 mm width xenon VUV radiation is converted to red, green or blue image points by activating internally applied phosphor layers. Gas mixtures containing 5-10% Xe in Ne or He are used at pressures of 50-70 kPa. The operating voltage is only 200-300 V. Multi-billion dollar investments in production facilities for these flat television screens in Japan, Taiwan and South Korea have recently led to a new dimension of large-scale industrial DBD applications. In 1998 already about 50’000 flat plasma displays with 1 m picture diagonal were sold. The market volume is expected to increase to 5 million sets by the year 2005 [42].3.3 Silent-discharge CO2 lasersDBDs have also found applications in high power CO2 lasers. Based on their experience with ozone generators N. Tabata and S. Yagi at Mitsubishi Electrical Corporation developed an industrial high power laser. This SD CO2 laser (SD stands for silent discharge) soon became the most successful commercial laser for material processing on the Japanese market. The water-cooled plane metal electrodes, separated by 50 mm, are covered with glass or alumina dielectrics. A high-velocity transverse gas flow passes the discharge gap at a speed of 50-80 m/s for heat removal and discharge stabilisation. Due to the large fraction of helium in the laser gas mixture (about 30%) and the low operating pressure (6.4 kPa) the discharge appears uniformly diffused. Operating at 160 kHz there is not enough time for the ions to decay or to be swept out between succeeding half periods . As a consequence, the discharge behaves very much like a resistive load (ion trapping discharge). Nearly diffraction limited infrared radiation at the wavelength ë=10.6 µm is obtained with output powers up to 5 kW. The efficiency exceeds 10%. The main application of this SD CO2 laser is high speed welding and cutting of thick metal plates and other materials [43].3.4 Pollution controlApplications of DBDs for pollution control and for the destruction of poisonous compounds have received growing attention. After initial work on military toxic wastes an increasing number of investigations have been devoted to the treatment of nitrogen oxides and sulphur oxides in flue gases, and to the decomposition of volatile organic compounds (VOCs). Typical examples are hydrocarbons, chlorocarbons and chlorofluorocarbons (CFCs). Contamination of exhaust air streams with gaseous hydrocarbons or organic solvent vapors occurs in many industrial processes, e. g. in chemical processing, in print and paint shops, in semiconductor processing as well as in soil remediation and water treatment. Recent reviews of the subject were published by B.M. Penetrante et al. [44, 45] and by L.A. Rosocha [46, 47].Many hazardous organic molecules are readily attacked by free radicals, electrons or UV photons. DBDs are utilized to provide reactive species such as N2*(A3Óu+), N2*(B3Πg), O2*(a1∆g), O(1D), O(3P), H, OH, and N. These species are initially generated by electron collisions in the microdischarge filaments and subsequently initiate a number of reaction paths generating additional O, OH or HO2 radicals for decomposing pollutants.3.5 Surface modification and surface coatingPlasma treatment of polymer surfaces to promote wettability, printability and adhesion has a long tradition [48, 49]. In many publications this process is referred to as “corona treatment”. In reality, in most applications a dielectric barrier is used to guarantee stable operation without arc formation. Large-area plastic foils are treated on one or both sides by passing them at high speed through a DBD maintained by an alternating high voltage applied between knife edge electrodes and a rotating drum covered by a dielectric. Electrode assemblies of several parallel knife edges or tube electrodes covered with dielectric layers are also used. Foils up to 10 m width are treated at speeds up to 10 m/s. This application requires discharge powers of about 100 kW. Useful operating frequencies are in the range 10-50 kHz.As an additional process the deposition of thin films in DBDs has been investigated. A number of authors used homogeneous glow discharges for this purpose [50-52]. Analternative approach has been taken by J. Salge and co-workers [53-56]. They showed that by using pulsed dielectric-barrier discharges microdischarge properties can be influenced in such a manner that superior surface modification and coatings of excellent quality can be obtained. Special power supplies were developed to generate repetitive pulse trains resulting in improved statistical distribution of the microdischarges across the surface, a prerequisite for uniform treatment. Working in acetylene pin-hole free polymeric films with properties resembling those of polyacetylene were obtained. Also thin deposits of silicon oxide were obtained at atmospheric pressure in an atmosphere of propargyl alcohol vapor and silane. In both cases the surface tension of polypropylene foils could be doubled.The treatment of surfaces at low temperature and close to atmospheric pressure is an important advantage for large-scale industrial applications. It is to be expected that coating techniques using vapor or gas phase deposition in DBDs and also the annealing and oxidation of sol-gel films subjected to DBDs will be further developed.4. Outlook: Catalytic dielectric-barrier dischargesIn recent years research activities investigating the combination of DBDs and special catalytic substances have evolved. The idea is to enhance the selectivity of the plasma chemical reactions. In catalytic chemistry this selectivity towards certain desired reaction paths can often only be attained at high temperature and pressure. The immersion of a catalyst in a DBD plasma can substantially lower its apparent activation energy and achieve activity already at much lower temperature. Typical examples are different types of packed bed reactors in which pellets or granular materials are introduced into a DBD. We have investigated the inverse geometry, where DBDs are operated in miniature pores of reticulated ceramic foams [57]. The internal surface of the foam structure can be covered with catalytic coatings. This way close contact between the DBD plasma and a very large specific surface area with catalytic activity is established. Conceivable applications are utilization of greenhouse gases and gas to liquid conversion.5. References[1] B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D: Applied Phys. 20(1987) 1421-1437[2] V.G. Samoilovich, V.I. Gibalov, K.V. Kozlov, Physical Chemistry of the BarrierDischarge (in Russian), Moscow State University (1989), English translation: J.P.F.Conrads, F. Leipold, (Eds.), DVS-Verlag GmbH, Düsseldorf (1997)[3] B. Eliasson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19(1991) 309-322[4] D. Braun, U. Küchler, G. Pietsch, J. Phys. D: Appl. Phys. 24 (1991) 564-572[5] D. Braun, V. Gibalov, G. Pietsch, Plasma Sources Sci. Technol. 1(1992) 166-172[6] V.I. Gibalov, G. Pietsch, Russ. J. Phys. Chem. 68(1994) 839-846[7] B. Eliasson, W. Egli, U. Kogelschatz, Pure & Appl. Chem. 66 (1994) 1275-1286[8] Z. Falkenstein, J.J. Coogan, J. Phys. D: Appl. Phys. 30(1997) 817-825[9] U. Kogelschatz, B. Eliasson, W. Egli, XXIII. International Conference on Phenomena inIonized Gases, Toulouse (1997) Invited Papers, C4-47 to C4-66[10] Z. Falkenstein, J. Appl. Phys. 81(1997) 5975-5979.[11] K.G. Donohoe, PhD Thesis, California Institute of Technology, Pasadena, CA (1976)[12] S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, 8th International Symposium onPlasma Chemistry, Tokyo (1987) 1839-1844[13] S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, J. Phys. D: Appl. Phys.21 (1988)838-840[14] S. Okazaki, M. Kogoma, M. Uehara, Y. Kimura, J. Phys. D: Appl. Phys. 26 (1993) 889-892[15] F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, P. Ségur, Int. Conf. on GasDischarges and their Applications, Swansea, UK (1992) 730-733[16] F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Ségur, C. Mayoux, J. Appl. Phys.83 (1998) 2950-2957[17] J.R. Roth, P.P. Tsai, L.C. Wadsworth, US Patent No. 5,403,453 of April 4, 1995[18] A. v. Engel, R. Seeliger, M. Steenbeck, Z. Physik 85 (1933) 144-160[19] W.A. Gambling, H. Edels, Brit. J. Appl. Phys. 7(1956) 376-379[20] A.J. Palmer, Appl. Phys. Lett. 25(1974) 138-140[21] J.I. Levatter, S. Lin, J. Appl. Phys. 51(1980) 210-222[22] N. Brenning, I. Axnäs, J.O. Nilsson, J.E. Eninger, IEEE Trans. Plama Sci. 25 (1997) 83-88[23]J. Tepper, M. Lindmayer, J. Salge, HAKONE VI, Cork, Ireland (1998) 123-127[24] U. Kogelschatz, International Conference on Gas Discharges and their Applications,Swansea, UK (1992) 972-982[25] U. Kogelschatz: Advanced Ozone Generation, in: Process Technologies for WaterTreatment, S. Stucki (Ed.), Plenum Press, New York (1988) 87-120[26] U. Kogelschatz, B. Eliasson: Ozone Generation and Applications, in: Handbook ofElectrostatic Processes, J.S. Chang, A.J. Kelly, J.M. Crowley (Eds.), MarcelDekker, New York (1995) 581-605[27] U. Kogelschatz, International Ozone Symposium, Basel (1999) 253-265[28] A.I. Zakharov, K.S. Klopovskii, A.P. Opsipov, A.M. Popov, O.B. Popovicheva, T.V.Rakhimova, V.A. Samarodov, A.P. Sokolov, Sov. J. Plasma Phys. 14(1988) 191 – 195[29] M. Kogoma, S. Okazaki, J. Phys. D: Appl. Phys. 27(1994) 1985-1987[30] J. O. Nilsson, PhD Thesis, Royal Institute of Technology, Stockholm (1997)[31] J.O. Nilsson, J.E. Eninger, IEEE Trans. Plama Sci. 25 (1997) 73 – 82[32] B. Eliasson, U. Kogelschatz, Appl. Phys. B 46 (1988) 299-303[33] U. Kogelschatz, Pure & Appl. Chem. 62 (1990) 1667-1674[34] B. Gellert, U. Kogelschatz, Appl. Phys. B 52 (1991) 14-21[35] K. Stockwald, M. Neiger, Contrib. Plasma Phys. 35(1995) 15 – 22[36] J.-Y. Zhang, I.W. Boyd, J. Appl. Phys. 80(1996) 633-638[37] U. Kogelschatz, B. Eliasson, H. Esrom, Materials & Design 12 (1991) 251-258[38] U. Kogelschatz, Appl. Surf. Sci. 54 (1992) 410-423[39] I.W. Boyd, J.-Y. Zhang , Nucl. Instrum. Methods in Phys. Res. B 121 (1997) 349-356[40] J.-Y. Zhang, I.W. Boyd, J. Appl. Phys. 84 (1998) 1174-1178[41] Z. Falkenstein, J.J. Coogan, J. Phys. D: Appl. Phys. 30 (1997) 2704-2710[42] S. Mikoshiba, SID Int. Symp., San Jose CA, 1999, Seminar Lect. Notes, M-4/3-M-4/68[43] Y. Takenaka, M. Kuzumoto, K. Yasui, S. Yagi, M. Tagashira, IEEE J. QuantumElectron.27(1991) 2482-2487[44] B.M. Penetrante, S.E. Schultheis, (Eds.), Non-Thermal Plasma Techniques for PollutionControl, NATO ASI Series, Vol. G 34,Springer, Berlin (1993)[45] B.M. Penetrante, J. N. Bardsley, M. C. Hsiao, Jpn. J. Appl. Phys. 36 (1997) 5007-5017[46] L.A. Rosocha in: Plasma Science and the Environment, W. Manheimer, L.E. Sugiyama,T.H. Stix (Eds.), American Institute of Physics, Woodbury, New York (1997) 261-298[47] L.A. Rosocha, J. Adv. Oxid. Technol. 4(1999) 247-264[48] J.L. Linsley Hood, Int. Conf. on Gas Discharges and their Applications, Edinburgh(1980) 86-90[49] T. Uehara in: Adhesion Promotion Techniques, K. L. Mittal, A. Pizzi (Eds.), MarcelDekker, New York (1999) 139-174[50] K.G. Donohoe, T. Wydeven, J. Appl. Polymer Sci. 23(1979) 2591-2601[51] S. Kanazawa, M. Kogoma, S. Okazaki, T. Moriwaki, Nucl. Instrum. Methods in Phys.Res. B37/38(1989), 842-845[52] F. Massines, R.B. Gadri, P. Decomps, A. Rabehi, P. Ségur, C. Mayoux, XXII. Int. Conf.on Phenomena in Ionized Gases, Hoboken NJ (1995) 306-315[53] U. Reitz, PhD Thesis, Technical University Braunschweig (1992)[54] R. Schwarz, PhD Thesis, Technical University Braunschweig (1995)[55] J. Salge J., Surf. Coat. Technol. 80(1996) 1-7[56] S. Meiners, J.G.H. Salge, E. Prinz, F. Förster, Surf. Coat. Technol. 98(1998) 1121-1127[57] M. Kraus, U. Kogelschatz, B. Eliasson, A. Wokaun, 14th International Symposium onPlasma Chemistry, Praha (1999) 2679-2684。