小学数学比例解行程问题含答案
比例解行程问题习题附答案65题-小学数学
11.甲、乙两人同时从A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在A、B之间行走方向不会改变,已知两人第一次相遇点距离B地1800 米,第三次相遇点距离B地800米,那么第二次相遇的地点距离B地多少米?
12.每天早晨,小刚定时离家步行上学,张大爷也定时出家门散步,他们相向而行,并且准时在途中相遇.有一天,小刚提早出门,因此比平时早 7 分钟与张大爷相遇.已知小刚步行速度是每分钟70 米,张大爷步行速度是每分钟40 米,那么这一天小刚比平时早出门多少分钟?
21.甲、乙两列火车的速度比是5∶4。乙车先从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车开往B站。如果两列火车相遇的地方离A,B两站距离的比是3∶4,那么A,B两站之间的距离为多少千米?
22.大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为4∶5,两车开出后60分相遇,并继续前进。 问:大客车比小客车晚多少分到达目的地?
7.如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有80 米,D离B有60 米,求这个圆的周长.
8.甲、乙两人从相距490 米的A、B两地同时步行出发,相向而行,丙与甲同时从A出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲也立即返回).已知丙每分钟跑240 米,甲每分钟走40 米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距210 米,那么乙每分钟走________米;甲下一次遇到丙时,甲、乙相距________米.
23.从甲地到乙地全部是山路,其中上山路程是下山路程的 。一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时。这辆汽车从乙地返回甲地需要多少时间?
比例解决行程问题
比例法解决行程问题例题1:甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 例题2: 甲、乙两人分别从A 、B 两地出发,相向而行,出发时他们的速度比是3:2。
他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样,当几B 地时,乙离A 地还有14千米。
那么A 、B 两地间的距离是多少千米?把A 、B 两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。
甲到达B 点还需行2份的路程,这时乙行了2÷18×13=149份路程,从图35-3可以看出14千米对应(5—2—149)份 [3×(1+20%)]:[2×(1+30%)]=18:132÷18×13=149(份) 5—(2+149 )=159(份) 14÷159×5=45(千米) 答:A 、B 两地间的距离是45千米。
图35——3B19份例题3:甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。
为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。
甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。
小学奥数 比例行程 知识点+例题+练习 (分类全面)
7、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的3/甲、乙两城相距多少千米?(240)
8、小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。
有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。
那么小明每天步行上学需要时间多少分钟?
【解】后一半路程和原来的时间相等,这样前面一半的路程中和平时的速度比=3:1,所以时间比=1:3,也就是节省了2份时间就是10分钟,所以后一半路程走路的时间就是10÷2×3=15分钟,全部路程原来需要30分钟。
9、甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
(176)。
小学奥数五年级测试及答案(比例法解行程问题、多次相遇及追击)
正确答案:A
解析
1、比例法解行程问题
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题
第2题
第3题
第4题
第5题
试题答案
第1题:
正确答案:B
答案解析
第2题:
正确答案:B
答案解析
第3题:
正确答案:B
答案解析
第4题:
正确答案:B
答案解析
第5题:
正确答案:A
答案解析
2、多次相遇与追及(一)
第1题
第2题
第3题
第4题
第5题
试题答案
第1题:
正确答案:C
答案解析
第2题:
正确答案:A
答案解析
第3题:
正确答案:B
答案解析
第4题:
正确答案:C
答案解析
第5题:
正确答案:C
答案解析
3、多次相遇与追及(二)
第1题
第2题
第3题
第4题
第5题
试题答案
第1题:
正确答案:C
答案解析
第2题:
正确答案:B
答案解析
第3题:
正确答案:B
答案解析
六年级数学解比例方程及答案
六年级数学解比例方程及答案解比例 :1112 3x:10=4:30.4:x=1.2:2 2.4 = x1 1 132 : 5 = 4 :x0.8:4=x:84:x=3:122 8 36 54 1.25:0.25=x:1.69 =xx=32 24 4.5 6x: 3=6:25x= 2.2 45:x=18:261 1 12.8:4.2=x:9.610:x=8 :42.8:4.2=x:9.63 14 35 1 1x:24= 4: 38:x=5:48:6 =x: 121 10.6 1.50.6∶4=2.4 ∶x6∶x =5∶312 = x3 14 11 4 251 14∶2=x ∶512∶5=36∶xx ∶14=0.7 ∶210∶50=x ∶401.3 ∶x = 5.2 ∶20 x∶ 3.6 =6∶181 1 164.6 83 x 3∶ 20= 9 ∶ x0.2=x8=641、工程队修一条水渠,原计划每天修 360 米,30 天修完。
修 10 天后,每天多修 40 米,再修多少天就能完成任务?2、农场挖一条水渠,头5 天挖了 180 米,照这样速度,又用了 16 天挖完这条水渠。
这条水渠全长多少米?3、一列火车从甲地开往乙地, 5 小时行了 350 千米,照这样计算,共要行9 小时。
甲乙两地相距多少千米?4、40 千克小麦能磨面粉 32 千克,照这样计算, 7 吨小麦能磨面粉多少千克?5、机床厂 4 天能生产小机床 32 台,照这样计算,要生产 120 台小机床需几天?6、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是 1.6 米,同时测得电线杆的影子长度是 4 米,求电线杆高多少米?7、要测量一棵树的高度,量得树的影子长度是8.4 米,同时用一根 2 米长的标杆直立在地面上,量得影子长度是 1.2 米,这棵树高是多少米?8、修路队修一段路,头 3 天修了 135 米,照这样速度,又修了8 天才修完这段路,这段路长多少米?9、一辆汽车从甲地开往乙地,甲乙两地相距405 千米,头 4 小时行驶了 180千米,剩下的路程还要行多少小时?10、某印刷厂计划三月份印刷课本20000 本,结果上旬就印刷7000 本,照这样速度,三月份可以多印刷多少本?11、用 5 辆同样汽车运粮食一次能运22.5 吨,照这样计算,要把36 吨粮食一次运完,需要增加多少辆这样的汽车?12、服装厂生产制服,前 3 个月生产 0.48 万套,照这样计算,今年可以生产制服多少万套?13、农场用 3 辆拖拉机耕地,每天共耕225 公顷,如果用 5 辆同样的拖拉机,每天共耕在多少公顷?14、一艘轮船,从甲地开往乙地,每小时行20 千米, 12 小时到达,从乙地返回甲地时,每小时航行 4 千米,几小时可以到达?15、100 千克黄豆可以榨油13 千克,照这样计算,要榨豆油 6.5 吨,需黄豆多少吨?6、一个房间,用边长 3 分米的方砖铺地,需要432 块,如果改用边长4分米的方砖铺地,需要多少块?39、把 3 米长的竹竿直立在地面上,测得影长 1.2 米,同时测得一根旗杆的影长为 4.8 米,求旗杆的高是多少米?40.在一幅地图上,测得甲、乙两地的图上距离是12 厘米,已知甲乙两地的实际距离是480 千米。
六年级数学 用比例解行程问题 PPT带答案
练习6
一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到 达.如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前 1小时到达,那么按原速行驶了全部路程的几分之几?
例题7
甲、乙两人同时从 A地出发到 B 地,经过 3 小时,甲先到 B 地,乙 还需要 1 小时到达 B 地,此时甲、乙共行了 35 千米.求 A, B 两 地间的距离.
练习1
欢欢和贝贝是同班同学,并且住在同一栋楼里.早晨 7 : 40 ,欢欢 从家出发骑车去学校, 7 : 46 追上了一直匀速步行的贝贝;看到身 穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原 来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝 贝也恰好到学校.如果欢欢在家换校服用去 6分钟且调头时间不计, 那么贝贝从家里出发时是几点几分.
例题8 如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发 反向而行,两人在 C 点第一次相遇,在 D 点第二次相遇.已知 C 离 A 有 80 米,D 离 B 有 60 米,求这个圆的周长.
根据总结可知,第二次相遇时,乙一共走了 80×3=240 米,两人的总路程和为一周 半,又甲所走路程比一周少 60 米,说明乙的路程比半周多 60 米,那么圆形场地的 半周长为 240-60=180 米,周长为 180×2=360 米.
例题6
王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高 了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北 京、上海两市间的路程是多少千米?
从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时 间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计 划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米 后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的 1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度 行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为: 5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的 路程为:84 ×15= 1260(千米).
小学数学比例解行程问题含答案
比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析 2 个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v甲,v乙;t甲,t乙;s甲,s乙来表示,大体可分为以下两种情况:1. 当 2 个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s甲v甲t甲,这里因为时间相同,即t甲t乙t, 所以由t甲s甲,t乙s乙s乙v乙t乙v甲v乙得到t s甲s乙,s甲v甲,甲乙在同一段时间t 内的路程之比等于速度比v甲v乙s乙v乙2. 当 2 个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时, 2 个物体所用的时间之比等于他们速度的反比。
s甲v甲t甲,这里因为路程相同,即s甲s乙s ,由s甲v甲t甲,s乙v乙t乙s乙v乙t乙得s v甲t 甲v乙t乙,v甲t乙,甲乙在同一段路程s 上的时间之比等于速度比的反比。
v乙t甲例题精讲【例 1 】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离 B 地1800米,第三次的相遇点距离 B 地800米,那么第二次相遇的地点距离 B 地。
【考点】行程问题之比例解行程【难度】 3 星【题型】填空【解析】设甲、乙两人的速度分别为v1 、v2 ,全程为s ,第二次相遇的地点距离B地x 米。
由于甲的速度大于乙的速度,所以甲第一次遇到乙是甲到达 B 地并调头往回走时遇到乙的,这时甲、乙合走了两个全程,第一次相遇的地点与B地的距离为v1 2s s v1 v2 s,那v1 v2 v1 v2么第一次相遇的地点到B地的距离与全程的比为v1 v2;v1 v2 两人第一次相遇后,甲调头向B地走,乙则继续向B 地走,这样一个过程与第一次相遇前相似,只是这次的“全程”为第一次相遇的地点到 B 地的距离,即1800米。
行程问题之比例的应用 非常完整版 超详细解析+答案
行程问题之比例的应用【知识点总结】当速度一定时,时间和路程成正比例关系当时间一定时,速度和路程成正比例关系当路程一定时,时间和速度成反比例关系【例题讲解】例1一列客车和一列货车同时从甲乙两地同时相向而行,客车与货车的速度比是11∶8,甲乙两地相距380千米。
求相遇时,客车比货车多行了多少千米?解答:在时间相同时,速度与路程成正比例V客:V货=11:8S客:S货=11:8按比例分配:380÷(11+8)=20(千米)客车比火车多行的路程:20×(11-8)=60(千米)举一反三1、小军和小明同时从A、B两地相向而行,A、B两地相距600米,小军和小明的速度比是3∶2,相遇时,小明走了多少米?解答:在时间相同时,速度与路程成正比例V军:V明=3:2S军:S明=3:2按比例分配:600÷(3+2)=120(千米)小明走的路程:120×2=240(千米)2、哥哥和弟弟同时从家和学校相向而行,哥哥和弟弟的速度比是5∶3,相遇时哥哥比弟弟多走了200米,求家离学校有多少米?解答:在时间相同时,速度与路程成正比例V哥:V弟=5:3S哥:S弟=5:3按比例分配:200÷(5-3)=100(千米)总路程:100×(5+3)=800(千米)3、聪聪和明明的速度比是6∶5,聪聪在明明后面20米,他们同时同向出发,聪聪要走多少米就可以追上明明?解答:在时间相同时,速度与路程成正比例V聪:V明=6:5S聪:S明=6:5按比例分配:20÷(6-5)=20(千米)聪聪走的路程:20×6=120(米)例2一辆货车从甲城开往乙城,又立即按原路从乙城返回到甲城,一共用了9小时,去时每小时行40千米,返回时每小时行50千米。
甲乙两城相距多少千米?解答:去和返回所走的总路程相同,在路程相同前提下,速度和时间成反比例V去:V回=40:50=4:5t去:t回=5:4,总时间时9小时,按比例分配得:9÷(5+4)=1(小时)t去:1×5=5(小时)总路程:5×40=200(千米)举一反三1、一架侦查飞机最多能带飞行18小时的汽油,它从基地带满油到某地去侦察(中途没有加油站),去时顺风每小时飞行1500千米,回时逆风飞行每小时飞行1200千米。
比例法解行程问题
相同时间内,甲乙两车的速度比与路程比相等
全程的60%,客车每小时比货车快15千米,两地的距离是多少千米?
A、4:3
B、4:5
C、5:4
D、3:4
9
2、货车的速度是客车的
那么有:7x-5x=42 解得x=21
10
,货车和客车分别从甲乙两地同时相向而行,在
设:离客车两到地达甲中地点时,3千货车米走处了x相千米遇得,: 相遇后,两车分别用原来的速度继续前行,到达甲乙
比例法解行程问题
课前回忆
甲、乙两辆汽车的速度比为3:4,它们分别行驶3小时之后的路程比 是多少?
解:设甲速为3x,乙速为4x 那么:甲3小时行驶的路程可表示为:3×3x=9x
乙3小时行驶的路程可表示为:3×4x=12x 那么:甲3小时行驶的路程:乙3小时行驶的路程
=9x:12x=3:4
相同时间内,甲乙两车的速度比与路程比相等
答:客车到达甲地时,货车离乙地还有11.4千米
活学活用:
1、客车3小时所行的路程是汽车4小时所行路程的60%,客车与小汽车的
速度比为:〔
〕〔2021年中大附中〕
A、4:3
B、4:5
C、5:4
D、3:4
2、甲、乙两辆船同时从A地开往B地,乙船的速度是甲船的1.2倍,经过12 小时,乙船到达B地,此时甲船离B地还有54千米,求A、B两地的路程。 〔2021年天河外国语〕
答:甲乙两地相距294千米。
相那同么时 有间10内x设-,9甲:x=乙6客两车车的解到速得度:达比x=甲与6 路地程时比相,等货车走了x千米得:
相设同:时 货间车内的,速5甲度4乙为: x两13车=x,的1客速0车度:9的比速与度路为程1比解5x相得等:x=48.6
用比例解答行程问题
用比例解答行程问题例一:客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的3/4,甲、乙两城相距多少千米?【解】客车速度:货车速度=4:3,那么同样时间里路程比=4:3,也就是说客车比货车多行了1份,多30千米;所以客车走了30×4=120千米,所以两城相距120×2=240千米。
例2、小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。
有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。
那么小明每天步行上学需要时间多少分钟?【解】后一半路程和原来的时间相等,这样前面一半的路程中某日和平时的速度比=3:1,所以时间比=1:3,也就是节省了2份时间就是10分钟,所以后一半路程走路的时间就是10÷2×3=15分钟,全部路程原来需要30分钟。
例3、甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的倍,求A,B两地的距离。
【解】甲车速度是乙车的倍,相遇时甲车和乙车行驶距离的比是6:5,甲车行驶6份,乙车行驶5份,甲车比乙车多行驶1份,一份是2*8=16千米,A,B两地的距离就是11*16=176千米。
例4、上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是12时几分?【解】:从爸爸第一次追上小明到第二次追上小明时,小明走了4千米,爸爸走了12千米.这说明,爸爸的速度是小明的3倍,爸爸走4千米所用的时间是是小明的三分之一,比小明少8分,所以小明走4千米需要12分,走8千米要24分,所以第2次追上时是8时32分。
这道题关键是发现爸爸和小明的速度比。
巩固练习11、一辆汽车从甲地开往乙地,去时每小时行48千米,返回时,每小时行56千米,返回比去时少用1小时,求甲、乙两地的路程。
行程问题之比例的应用 非常完整版 超详细解析+答案
行程问题之比例的应用【知识点总结】当速度一定时,时间和路程成正比例关系当时间一定时,速度和路程成正比例关系当路程一定时,时间和速度成反比例关系【例题讲解】例1一列客车和一列货车同时从甲乙两地同时相向而行,客车与货车的速度比是11∶8,甲乙两地相距380千米。
求相遇时,客车比货车多行了多少千米?解答:在时间相同时,速度与路程成正比例V客:V货=11:8S客:S货=11:8按比例分配:380÷(11+8)=20(千米)客车比火车多行的路程:20×(11-8)=60(千米)举一反三1、小军和小明同时从A、B两地相向而行,A、B两地相距600米,小军和小明的速度比是3∶2,相遇时,小明走了多少米?解答:在时间相同时,速度与路程成正比例V军:V明=3:2S军:S明=3:2按比例分配:600÷(3+2)=120(千米)小明走的路程:120×2=240(千米)2、哥哥和弟弟同时从家和学校相向而行,哥哥和弟弟的速度比是5∶3,相遇时哥哥比弟弟多走了200米,求家离学校有多少米?解答:在时间相同时,速度与路程成正比例V哥:V弟=5:3S哥:S弟=5:3按比例分配:200÷(5-3)=100(千米)总路程:100×(5+3)=800(千米)3、聪聪和明明的速度比是6∶5,聪聪在明明后面20米,他们同时同向出发,聪聪要走多少米就可以追上明明?解答:在时间相同时,速度与路程成正比例V聪:V明=6:5S聪:S明=6:5按比例分配:20÷(6-5)=20(千米)聪聪走的路程:20×6=120(米)例2一辆货车从甲城开往乙城,又立即按原路从乙城返回到甲城,一共用了9小时,去时每小时行40千米,返回时每小时行50千米。
甲乙两城相距多少千米?解答:去和返回所走的总路程相同,在路程相同前提下,速度和时间成反比例V去:V回=40:50=4:5t去:t回=5:4,总时间时9小时,按比例分配得:9÷(5+4)=1(小时)t去:1×5=5(小时)总路程:5×40=200(千米)举一反三1、一架侦查飞机最多能带飞行18小时的汽油,它从基地带满油到某地去侦察(中途没有加油站),去时顺风每小时飞行1500千米,回时逆风飞行每小时飞行1200千米。
六年级解比例习题及答案
六年级解比例习题及答案六年级解比例习题及答案在数学学科中,比例是一个非常重要的概念。
它不仅在日常生活中有广泛的应用,而且在解决实际问题时也起着重要的作用。
在六年级的数学课程中,解比例习题是一个重要的内容。
本文将为大家介绍一些六年级解比例习题及答案。
首先,我们来看一个简单的例子:小明用了3天时间走了60公里的路程。
如果他以相同的速度继续前进,那么他需要多少天才能走完剩下的120公里?解答:根据题目中给出的信息,我们可以得到一个比例关系:3天/60公里 = x 天/120公里。
我们可以通过交叉乘法的方法解这个比例关系,即3 × 120 = 60 × x,得到x = 6。
所以,小明需要6天才能走完剩下的120公里。
接下来,我们来看一个稍微复杂一些的例子:小红用了4小时做完一份作业,而小明用了6小时才完成相同的作业。
如果他们以相同的速度继续做作业,那么小明用多长时间才能追上小红?解答:根据题目中给出的信息,我们可以得到一个比例关系:4小时/1份作业= x小时/1份作业。
由于小红和小明的速度相同,所以他们完成相同的作业所用的时间也是相同的。
所以,我们可以得到另一个比例关系:6小时/1份作业= x小时/1份作业。
将这两个比例关系联立起来,我们可以得到一个方程:4/x = 6/x。
通过交叉乘法的方法解这个方程,我们可以得到x = 6。
所以,小明需要6小时才能追上小红。
除了上述的例子,还有很多其他类型的比例习题。
比如,有些习题给出了一个比例关系,要求我们根据这个比例关系计算其他未知量的值;有些习题给出了一些已知量和一个比例关系,要求我们根据这些已知量和比例关系计算其他未知量的值;还有一些习题给出了一些已知量和一个比例关系,要求我们根据这些已知量和比例关系判断其他未知量的大小关系等等。
在解比例习题时,我们可以运用一些常用的解题方法。
比如,我们可以使用交叉乘法、分数的化简、代入法、逆向推理等等。
(小学奥数)比例解行程问题
1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。
從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。
比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。
我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。
模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。
當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。
【考點】行程問題之比例解行程【難度】2星【題型】解答【關鍵字】希望杯,5年級,1試【解析】兩車相遇時共行駛330千米,但是甲多行30千米,可以求出兩車分別行駛的路程,可得甲車行駛180千米,乙車行駛150千米,由甲車速度可以知道,當乙車行駛150千米的時候,甲車實際只行是乙車速度的56駛了5⨯=千米,那麼可以知道在乙車出發之前,甲車已經行駛了1501256180-125=55千米。
小学奥数比例类行程问题
比例类行程问题内容概述本讲主要讲解如何利用比例求解行程问题,而行程问题中的三个量:速度、时间、路程在某些时候存在比例关系.典型问题1.甲、乙、丙三辆汽车各以一定的速度从4地开往B地.若乙比丙晚出发10分钟,则乙出发后40分钟追上丙;若甲比乙又晚出发20分钟,则甲出发后1小时40分钟追上丙;那么甲出发后追上乙所需要的时间为多少分钟?【分析与解】我们知道开始时,乙走了40分钟与丙走了40+10=50分钟的路程相等,所以速度比为乙:丙=5:4;甲走了100分钟,丙走了100+20+lO=130分钟所走的路程相等,所以速度比为:甲:丙=13:10于是.甲:乙:丙=26:25:20.于是,乙比甲先走20分钟,路程相当于20⨯25=500,速度差相当于26-25=l;于是,追击时间为500÷1=500分钟.2. 客车和货车分别从甲、乙两地出发相向而行.如果两车出发的时间都是6:00,那么它们在11:00相遇;如果客车和货车分别于7:00和8:00出发,那么它们在12:40相遇.现在,客车和货车出发的时间分别是10:00和8:00,则何时它们相遇?(本题中所述的时间均为同一天,采用24小时制计法.)【分析与解】第一次,客、货各走了5小时;第二次,客、货各走了5小时40分,4小时40分,但是两次客、货所走的路程和不变;于是有300客+300货=340客+280货;40客=20货,所以客、货两车的速度比为1:2:将全程看成“1”,则客、货车速度和为1÷5=15;所以客车速度为113515÷=;货车的速度为122=1515⨯;货车先出发2小时,于是行走了2421515⨯=;于是剩下的路程为41111515-=;还需要的时间为111111553÷=小时,还需要3小时40分钟,在10:00后计时,所以相遇时间为13点40分.3.在久远的古代,有一个智者叫做芝诺,他曾经说过:兔子永远追不上10米外的乌龟.他这样解释:当兔子跑到10米处(即乌龟原来的地方),乌龟已经往前走了一点;当兔子再次到达乌龟的位置时,乌龟又往前走了一点,……,也就说当兔子到达乌龟以前的位置时,乌龟总是往前走了一点,所以兔子永远追不上乌龟.你认为芝诺的说法错在哪里?【分析与解】因为兔子的速度比乌龟快,为了方便叙述,假设兔子的速度是乌龟的10倍.那么,按芝诺的说法,这些时间,乌龟走的路程为:10,1,0.1,0.01,0.001,……是无穷的,而10+1+0.1+0.01+0.001+…=1009,也就是说兔子只是在乌龟行走1009米之前追不上.等乌龟在1009米之后,兔子就在它的前面了.在这里,芝诺用无穷个数的和来说明它们的和一定是无穷的,这显然是谬误的.。
小升初奥数思维训练第15讲:行程(三) 行程中的比例(含答案解析)
而本来这三分钟甲能多走80×3=240(米),
这就说明C点与D点之间的距离为240米,由条件“A、B中点E到C点的距离是到D点距离的2倍”可以得到中点到C、D两点之间的距离.不过这里要分两种情况:
(一)中点E在C、D之间,那么ED、EC的距离和为240米,EC的距离为:240÷(2+1)×2=160米
综上所述,A、B两地之间距离为2240米或6720米.
【点睛】如果只涉及到距离关系,没有提到位置关系,而且这些点在同一条直线上,那么就不只有一种位置关系.
8.A、B两地间有一座桥,甲、乙两人分别从A、B两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.5小时出发,则仍旧在桥上相遇.如果甲延迟0.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A、B两地相距多少千米?
【答案】 小时
【解析】
【详解】关键是找到步行距离、汽车行驶距离、总路程之间的比例关系.由于题目条件只涉及速度和总路程,所以如果要求出时间必须首先将速度和路程对应起来,即明确学生或者大巴车的行程路段,因此我们应该画出整个行程过程的线段示意图.
如图所示:虚线为学生步行部分,实线为大巴车行驶路段,由于大巴车的速度是学生的11倍,所以大巴车第一次折返点D到出发点A的距离是乙班学生搭车前步行距离AB的(11+1)÷2=6倍,如果将乙班学生搭车前步行距离AB看作是一份的话,大巴车第一次折返点到出发点的距离AD为6份,大巴车第一次折返点D到接到乙班学生B又行驶了5份距离,同样的大巴车在B点接到乙班学生到在E点追上甲班学生所走的路程也应该是6份距离,而从E点回来到C点接到丙班的距离为5份,大巴车从C点到终点F的距离为6份,这样大巴车一共行驶了6+5+6+5+6=28份距离,而A到F的总距离为6-5+6-5+6=8份,所以大巴车一共行驶了8÷8×28=28(千米),所花的总时间为28÷55= 小时.
五年级奥数-用比例解行程问题(含答案解析)
1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.用比例解行程问题用比例解多次相遇问题乙21BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE乙甲21DCBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? 20092008甲DBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?101100乙甲A相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 1 M N2 3 3M 3N3 5 5M 5N… … … …n 21n - (21)n M - (21)n N - 相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 2 M N 2 4 4M 4N 3 6 6M 6N … … … … n2n 2nM 2nN[分析]因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V====乙乙甲甲:S:,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=,所以第100次相遇地点是在从B地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.2123.5乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】 甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米. 第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了BAD 1003300=⨯=(米),又知到AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米.【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙甲21DB设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4==方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?DC 甲B A乙甲ABC乙甲AB【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展] 如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析] 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】 甲、乙二人分别从A 、B 两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A 、B 两地的距离.【分析】 先画图如下:C262666乙甲BA方法一: 若设甲、乙二人相遇地点为C ,甲追及乙的地点为D ,则由题意可知甲从A 到C 用6分钟.而从A 到D 则用26分钟,因此甲从C 走到D 之间的路程时,所用时间应为:26620-=(分).用比例解其他行程问题同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+=时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为13 3所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固](第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是千米.[分析]由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离. [分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S=甲乙,6v S v S +=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2. 甲、乙两列车同时从A 、B 两地相对开出,第一次在离A 地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B 地55千米处,求A 、B 两地相距多远.【分析】 通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3. 甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?【分析】 甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB 的长度是10048200÷⨯=(千米).4. 甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】 从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长是:(52+40)⨯6=552(千米),A 、B 两地相距的路程是:552÷6=92(千米).5. 一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】 根据题意可知车速提高后与原来速度比为(1+20%) :1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)。
六年级 行程问题(综合)奥数 答案
正比例和反比例的性质参考答案典题探究一、行程问题考点1)一般行程问题:基本公式:路程=速度×时间高级公式:(务必倒背如流,此两公式太重要了)相遇问题(速度和×相遇时间=路程和),追击问题(速度差×追击时间=路程差)2)流水问题:水速对追击和相遇时间无影响。
原因?四者中只要知2就可求另外2个量。
基本公式:顺水速度=船速+水速逆水速度=船速-水速高级公式:船速=(顺+逆)÷2,水速=(顺-逆)÷23)非环形跑道多次相遇问题:要注意“第一次相遇行的全程数”与“第二次相遇行的全程数”的关系。
环形跑道:每相遇一次,总路程多了一圈,不存在以上关系。
所以如果速度和不变,则每相遇一次所用时间相同。
二:行程问题主要方法:(1)列方程求解;(2)画图分析;(3)抓住原因分析求解;(4)比例(常用到设数的方法)例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。
例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A 地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析 2 个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v甲,v乙;t甲,t乙;s甲,s乙来表示,大体可分为以下两种情况:1. 当 2 个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s甲v甲t甲,这里因为时间相同,即t甲t乙t, 所以由t甲s甲,t乙s乙s乙v乙t乙v甲v乙得到t s甲s乙,s甲v甲,甲乙在同一段时间t 内的路程之比等于速度比v甲v乙s乙v乙2. 当 2 个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时, 2 个物体所用的时间之比等于他们速度的反比。
s甲v甲t甲,这里因为路程相同,即s甲s乙s ,由s甲v甲t甲,s乙v乙t乙s乙v乙t乙得s v甲t 甲v乙t乙,v甲t乙,甲乙在同一段路程s 上的时间之比等于速度比的反比。
v乙t甲例题精讲【例 1 】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离 B 地1800米,第三次的相遇点距离 B 地800米,那么第二次相遇的地点距离 B 地。
【考点】行程问题之比例解行程【难度】 3 星【题型】填空【解析】设甲、乙两人的速度分别为v1 、v2 ,全程为s ,第二次相遇的地点距离B地x 米。
由于甲的速度大于乙的速度,所以甲第一次遇到乙是甲到达 B 地并调头往回走时遇到乙的,这时甲、乙合走了两个全程,第一次相遇的地点与B地的距离为v1 2s s v1 v2 s,那v1 v2 v1 v2么第一次相遇的地点到B地的距离与全程的比为v1 v2;v1 v2 两人第一次相遇后,甲调头向B地走,乙则继续向B 地走,这样一个过程与第一次相遇前相似,只是这次的“全程”为第一次相遇的地点到 B 地的距离,即1800米。
根据上面的分析可知第二次相遇的地点到B地的距离与第一次相遇的地点到B地的距离的比为v1 v2;v1 v2类似分析可知,第三次相遇的地点到 B 地的距离与第二次相遇的地点到 B 地的距离的比为v1v2;那么,800 x,得到x 1200,故第二次相遇的地点距离B 地1200米。
v1 v2 x 1800答案】1200巩固】甲、乙两人都从A地经B地到C地。
甲8点出发,乙8点45分出发。
乙9点45分到达B地时,甲已经离开B地20 分。
两人刚好同时到达 C 地。
问:到达C地时是什么时间?考点】行程问题之比例解行程【难度】 2 星【题型】解答解析】10点33分。
解:到达B地甲用85 分,乙用60分,也就是说,甲走85分的路程,乙要少走25 20分。
由此推知,从B到C,乙要比甲少走20 分,即乙要走60 20 48分。
所以两人同时到C地25 的时间为10 点33 分。
答案】10 点33 分例 2 】某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10分前我超过一个骑自行车的人。
”这人继续走了10 分,遇到了这个骑自行车的人。
如果自行车的速度是人步行速度的三倍,那么汽车速度是人步行速度的多少倍?考点】行程问题之比例解行程【难度】 2 星【题型】解答解析】7倍。
提示:汽车行10分的路程,等于步行10 分与骑车20分行的路程之和。
答案】7 倍巩固】从甲地到乙地全部是山路,其中上山路程是下山路程的2。
一辆汽车上山速度是下山速度的一半,3从甲地到乙地共行7 时。
这辆汽车从乙地返回甲地需要多少时间?考点】行程问题之比例解行程【难度】 2 星【题型】解答解析】8 时。
解:根据题意,上山与下山的路程比为2∶3,速度比为1:2 ,所用时间比为32 1 :3 2 2: 4:3 。
因为从甲地到乙地共行7时,所以上山用4时,下山用3时。
2如下图所示,从乙地返回甲地时,因为下山的速度是上山的时),从丙到甲用 4÷2=2(时),共用 6+ 2=8(时)。
答案】 8 时干分后,甲火车从 A 站出发开往 B 站。
上午 9:00 两列火车相遇,相遇的地点离 A ,B 两站的距 离的比是 15∶16。
甲火车从 A 站发车的时间是几点几分?答案】 8 点 15 分巩固】 甲、乙两列火车的速度比是 5∶4。
乙车先从 B 站开往 A 站,当走到离 B 站 72 千米的地方时,甲车从 A 站发车开往 B 站。
如果两列火车相遇的地方离 A ,B 两站距离的比是 3∶4,那么 A ,B 两站 之间的距离为多少千米?考点】行程问题之比例解行程 【难度】 2 星 【题型】解答 解析】 315 千米。
解:从甲火车出发算起,到相遇时两车走的路程之比为5∶ 4= 15∶ 12,而相遇点距A ,B 两站的距离之比是 3∶4=15∶20,说明相遇前乙车走的 72千米占全程的 20 12 8 ,所以全15 20 35 程为 72 8 315 (千米)35答案】 315 千米例 4 】 甲、乙两班学生到离校 24 千米的飞机场参观, 但只有一辆汽车, 一次只能乘坐一个班的学生. 为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地 下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步 行速度相同,汽车速度是他们步行速度的 7 倍,那么汽车应在距飞机场多少千米处返回接乙班学 生,才能使两班同时到达飞机场 ?考点】行程问题之比例解行程 【难度】 3 星 【题型】解答 解析】 设 学生步行时速度为“ 1”,那么汽车的速度为“ 7”,有如下示意图.2 倍,所以从乙到丙用 3×2= 6例 3 】甲火车 4 分行进的路程等于乙火车 5 分行进的路程。
乙火车上午 8:00 从 B 站开往 A 站,开出若考点】行程问题之比例解行程 难度】 3 星 题型】解答 解析】 8 点 15 分。
解:从甲火车出发算起, 到相遇时两车走的路程之比为 5∶4=15∶ 12,而相遇点距 A ,B 两 站的距 离 的比 是 15∶16, 说明相遇前乙车所走路程等于乙火车1时所走路程的16 121 16 1 ,也就是说已走了 4 1 时。
所以甲火车发车时间是 4 8点 15 分。
我们让甲班先乘车,那么当乙班步行至距学校 l 处,甲班已乘车至距学校 7l 处.此时甲班下 车步行,汽车往回行驶接乙班,汽车、乙班将相遇.汽车、乙班的距离为 7l -l =6l ,两者的速度和为 7+1=8,所需时间为 6l ÷ 8=0.75 l ,这段时间乙班学生又步行 0.75l 的路程,所以乙班学生共步行 l +0.75 l =1.75 l 后乘车而行.应要求甲、乙班同时出发、 同时到达,且甲、乙两班步行的速度相等, 所以甲班也应在步行1.75l 路程后达到飞机场,有甲班经过的全程为 7l +1.75 l =8.75 l ,应为全程.所以有 7l =24÷8.75 ×7=19.2 千米,即在距学校 19.2 千米的地方甲班学生下车步行,此地距 飞机场 24-19.2=4.8 千米.即汽车应在距飞机场 4.8 千米的地方返回接乙班学生,才能使两班同时到达飞机场.答案】 4.8 千米 巩固】 小明和小光同时从解放军营地回校执行任务,小光步行速度是小明的 4 倍,营地有一辆摩托车,3 只能搭乘一人,它的速度是小明步行速度的 16 倍。
为了使小光和小明在最短时间内到达,小明 和小光需要步行的距离之比是多少?考点】行程问题之比例解行程 【难度】 3 星 【题型】解答 解析】 11∶15。
解:设开始时小光乘车,小明步行;车行至 B 点,小光下车步行,车调头去接小明;车到 A 点接上小明后调头,最后小明、小光同时到达学校(见下图) 。
由题中条件,车速是小明速度的 16 倍,是小光速度的 12 倍。
设从营地到 A 点的距离为 a 。
当车接到小明时,小明走了 a ,车行了 16a ,因为车开到 B 后又返回到 A ,所以 A 到 B 的距离为 7.5 a 。
车放下小光后,直到又追上小光,比小光多行 15a 。
由于车速是小光的 12倍,所以小光走的距离是车追上距离的 1 ,即 15 a 。
小明和小光步行的距离之比是 a:15a 11:1511 11 11答案】 11:15C 、A 、B爬行,然后返回自己出发的洞穴。
如果甲、乙、丙三只蚂蚁爬行的路径例 5 】 甲、乙、丙三只蚂蚁从 A 、B 、C 三个不同的洞穴同时出发,分别向洞穴 B 、 C 、A 爬行,同时到达后,继续向洞穴相同,爬行的总距离都是7.3 米,所用时间分别是 6 分钟、7 分钟和8 分钟,蚂蚁乙从洞穴 B 到达洞穴C时爬行了()米,蚂蚁丙从洞穴C到达洞穴 A 时爬行了()米。
考点】行程问题之比例解行程【难度】 3 星【题型】填空解析】 2.4 ;2.1 答案】 2.4 ; 2.1巩固】在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行, 6 分后两人相遇,再过 4 分甲到达B 点,又过8 分两人再次相遇. 甲、乙环行一周各需要多少分?考点】行程问题之比例解行程题型】解答解析】由题意知,甲行 4 分相当于乙行 6 分. (抓住走同一段路程时间或速度的比例关系)从第一次相遇到再次相遇,两人共走一周,各行12 分,而乙行12 分相当于甲行8 分,所以甲环行一周需12 +8=20(分),乙需20÷4×6=30(分).答案】30 分例 6 】小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的 1.6 倍,那么上坡的速度是平路速度的多少倍?考点】行程问题之比例解行程【难度】 2 星【题型】解答解析】设小芳上学路上所用时间为 2 ,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是 1 1.6 5,因此,走上坡路85 11 11需要的时间是 2 5 11,那么,上坡速度与平路速度的比等于所用时间的反比,为1:118:11 ,8 8 8所以,上坡速度是平路速度的8倍.11答案】8倍11巩固】每天早晨,小刚定时离家步行上学,张大爷也定时出家门散步,他们相向而行,并且准时在途中相遇.有一天,小刚提早出门,因此比平时早7 分钟与张大爷相遇.已知小刚步行速度是每分钟70 米,张大爷步行速度是每分钟40 米,那么这一天小刚比平时早出门多少分钟?考点】行程问题之比例解行程【难度】 2 星【题型】解答解析】 比 平时早 7 分钟相遇, 那么小刚因提早出门而比平时多走的路程为小刚和张大爷 7 分钟合走的 路程,所以当张大爷出门时小刚已经比平时多走了(70 +40 )×7 =770 米,因此小刚比平时早出门 770 ÷70 =11 分钟.答案】 11 分钟 例 7 】一辆车从甲地开往乙地, 如果把车速提高 20%,那么可以比原定时间提前 1时到达; 如果以原速行驶 100 千米后再将车速提高 30%,那么也比原定时间提前 1 时到达。