简易数字频率计的设计与仿真设计
数字频率计的课设报告以及仿真电路
河北联合大学2011级本科课程设计简易数字频率计的设计姓名: 张如林学号: 201114050113班级: 11电气1班2013年12月18摘要 (1)一,概述 (2)二,方案设计 (2)1.设计题目 (2)2.设计任务和要求 (2)3.程序设计思路 (2)三,单元电路设计与Multisim仿真分析 (3)1.1Hz时基电路 (4)2.六进制计数器门控电路 (4)3.NE555施密特整形电路 (7)4.计数、锁存、驱动、显示电路 (7)5.整体仿真电路 (7)四,总原理图及元器件清单 (8)1.总原理图 (8)2.元器件清单 (9)五.结论 (10)六.心得体会 (10)七.参考文献 (11)八.附录 (12)在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。
在计算机及各种数字仪表中,都得到了广泛的应用。
在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。
1一、概述频率是周期信号每秒钟内所含的周期数值。
输入电路:由于输入的信号可以是正弦波,方波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益时,被测信号得以放大。
实验六基于Multisim8的简易数字频率计仿真
闸门
门控
B 放大 整形
S2
1000Tx
1Tx
10Tx 100Tx
÷10
÷10
计数锁存译码 显示系统
÷10
四、实验参考电路
(1)控制时序产生电路
图4.8.5 是由秒脉冲发生器(可由晶体振荡器和 多级分频器组成)和可重触发单稳态74LS123 组成
的控制时序产生电路。秒脉冲发生器产生脉冲宽度 为的定时脉冲,74LS123单稳态电路产生锁存和清 零脉冲。(仿真软件Multisim 8的元件库中,没有 74LS123单稳态电路,可用555定时器组成单稳态 电路)。 5V
4. 闸门电路
闸门电路由与门组成,该电路有两个输入端和一 个输出端,输入端的一端,接门控信号,另一端接 整形后的被测方波信号。闸门是否开通,受门控信 号的控制,当门控信号为高电平“1”时,闸门开启; 而门控信号为低电平“0”时,闸门关闭。显然,只 有在闸门开启的时间内,被测信号才能通过闸门进 入计数器,计数器计数时间就是闸门开启时间。可 见,门控信号的宽度一定时,闸门的输出值正比于 被测信号的频率,通过计数显示系统把闸门的输出 结果显示出来,就可以得到被测信号的频率。
5. 电子计数器测量周期
当被测信号频率比较低时,用测量周期的方法来 测量频率比直接测量频率有更高的准确度和分辨率, 且便于测量过程自动化。该测量方法在许多科学技 术领域中都得到普遍使用。图4.8.4是用电子计数器 测量信号周期的原理方框图。
晶振
Tx
时基 分频
1µs
S1 Tc
10µs 1ms 100µs Tx1
①可控制的计数、锁存、译码显示系统; ②石英晶体振荡器及分频系统(可用Multisim 8中
的函数发生器替代);
简易数字频率计设计 完整版
河南科技大学课程设计说明书课程名称现代电子系统设计题目简易数字频率计设计学院__电信学院_____班级_______学生姓名____________________指导教师_________日期__2010-01-10______课程设计任务书(指导教师填写)课程设计名称现代电子系统课程设计学生姓名刘轮辉专业班级电信科071 设计题目简易数字频率计设计一、课程设计目的掌握高速AD的使用方法;掌握频率计的工作原理;掌握GW48_SOPC实验箱的使用方法;了解基于FPGA的电子系统的设计方法。
二、设计内容、技术条件和要求设计一个具有如下功能的简易频率计。
(1)基本要求:a.被测信号的频率范围为1~20kHz,用4位数码管显示数据。
b.测量结果直接用十进制数值显示。
c.被测信号可以是正弦波、三角波、方波,幅值1~3V不等。
d.具有超量程警告(可以用LED灯显示,也可以用蜂鸣器报警)。
e.当测量脉冲信号时,能显示其占空比(精度误差不大于1%)。
(2)发挥部分a.修改设计,实现自动切换量程。
b.构思方案,使整形时,以实现扩宽被测信号的幅值范围。
三、时间进度安排布置课题和讲解:1天查阅资料、设计:4天实验:3天撰写报告:2天四、主要参考文献何小艇《电子系统设计》浙江大学出版社2008.1潘松黄继业《EDA技术实用教程》科学出版社2006.10指导教师签字:2009年12月14日目录一、摘要 (4)二、系统方案论证 (4)2.1频率测量方案 (5)三、数字频率频率计的基本原理 (6)四、各个模块设计 (7)4、1 A/D模数转换模块 (8)4、2 比较模块 (9)4、3 频率和占空比测量模块 (10)五、各个模块仿真波形 (12)六、心得体会 (14)七、参考文献 (15)附录一 (16)附录二 (22)一.摘要频率计是数字电路中的一个典型应用,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,频率测量在科技研究和实际应用中的作用日益重要。
简易数字频率计设计报告
简易数字频率计设计报告目录一.设计任务和要求 (2)二.设计的方案的选择与论证 (2)三.电路设计计算与分析 (4)四.总结与心得..................................... 错误!未定义书签。
2五.附录........................................... 错误!未定义书签。
3六.参考文献....................................... 错误!未定义书签。
8一、 设计任务与要求1.1位数:计4位十进制数。
1.2.量程第一档 最小量程档,最大读数是9.999KHZ ,闸门信号的采样时间为1S. 第二档 最大读数是99.99KHZ ,闸门信号采样时间为0.1S.第三档 最大读数是999.9KHZ ,闸门信号采样时间为10mS.第四档 最大读数是9999KHZ ,闸门信号采样时间为1mS.1.3 显示方式(1)用七段LED 数码管显示读数,做到能显示稳定,不跳变。
(2)小数点的位置随量程的变更而自动移动(3)为了便于读数,要求数据显示时间在0.5-5s 内连续可调1.4具有自检功能。
1.5被测信号为方=方波信号二、设计方案的选择与论证2.1 算法设计频率是周期信号每秒钟内所含的周期数值。
可根据这一定义采用如图 2-1所示的算法。
图2-2是根据算法构建的方框图。
被测信号图2-2 频率测量算法对应的方框图 输入电路 闸门 计数电路 显示电路闸门产生整体方框图及原理频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。
被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。
时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。
被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。
周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。
简单数字频率计的设计与制作
简单数字频率计的设计与制作1结构设计与方案选择1.1设计要求(1)要求用直接测量法测量输入信号的频率(2)输入信号的频率为1~9999HZ1.2设计原理及方案数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。
所谓频率就是在单位时间(1s)内周期信号的变化次数。
若在一定时间间隔T内测得周期信号的重复变化次数为N,则其频率为f=N/T(1-1)据此,设计方案框图如图1所示:图1 数字频率计组成框图图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为测信号的频率fX1s,则们控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。
秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间内的累计= N Hz。
数,所以被测频率fX被测信号f经整形电路变成计数器所要求的脉冲信号○1,其频率与被测信X号的频率相同。
时基电路提供标准时间基准信号○2,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f=NHz,如图2(a)所示,即为数字频率计的组成框图。
图2(a)数字频率计的组成框图图2(b)数字频率计的工作时序波形逻辑控制单元的作用有两个:其一,产生清零脉冲④,使计数器每次从零开始计数;其二,产生所存信号⑤,是显示器上的数字稳定不变。
这些信号之间的时序关系如图2(b)所示数字频率计由脉冲形成电路、时基电路、闸门电路、计数锁存和清零电路、译码显示电路组成。
1.3数字频率计的主要技术指标1.3.1 频率准确度:一般用相对误差来表示,本文设计的频率准确度并没有要求。
简易数字频率计(数字电路课程设计)
数字电路课程设计报告1)设计题目简易数字频率计2)设计任务和要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1)测量范围:1H Z—9.999K H Z,闸门时间1s;10 H Z—99.99K H Z,闸门时间0.1s;100 H Z—999.9K H Z,闸门时间10ms;1 K H Z—9999K H Z,闸门时间1ms;2)显示方式:四位十进制数3)当被测信号的频率超出测量范围时,报警.3)原理电路和程序设计:(1)整体电路数显式频率计电路(2)单元电路设计;(a)时基电路信号号(b)放大逻辑电路信号通信号(c)计数、译码、驱动电路号(3)说明电路工作原理;四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。
两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。
当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。
当输入第十个脉冲,就通过CO输入下一个CD40110的CP+,所以此四位计数器范围为1—9999。
其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。
时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。
计数公式:]3)2243[(443.1CRRRf++=来确定。
与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。
数字频率计设计与仿真
数字频率计设计一、实验目的1、了解等精度测频的方法和原理。
2、掌握如何在FPGA 内部设计多种功能模块。
3、掌握VHDL 在测量模块设计方面的技巧。
二、实验原理所谓频率就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T(也称闸门时间)内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T由上面的表示式可以看到,若时间间隔T 取1s,则f=N。
由于闸门的起始和结束的时刻对于信号来说是随机的,将会有一个脉冲周期的量化误差。
进一步分析测量准确度:设待测信号脉冲周期为Tx,频率为Fx,当测量时间为T=1s时,测量准确度为δ=Tx/T=1/Fx。
由此可知这种直接测频法的测量准确度与被测信号的频率有关,当待测信号频率较高时,测量准确度也较高,反之测量准确度较低。
因此,这种直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。
若要得到在整个测量频段内的测量精度保持不变的要求,应该考虑待精度频率测量等其它方法。
等精度频率测频的实现方法,可以用图23-1 所示的框图来实现。
三、实验内容本实验要完成的任务就是设计一个频率计,系统时钟选择核心板上的20M 的时钟,闸门时间为1s(通过对系统时钟进行分频得到),在闸门为高电平期间,对输入的频率进行计数,当闸门变低的时候,记录当前的频率值,并将频率计数器清零,频率的显示每过2 秒刷新一次。
被测频率通过一个拨动开关来选择是使用系统中的数字时钟源模块的时钟信号还是从外部通过系统的输入输出模块的输入端输入一个数字信号进行频率测量。
当拨动开关为高电平时,测量从外部输入的数字信号,否则测量系统数字时钟信号模块的数字信号。
其实现框图如下图在本实验中,用到的模块有数字信号源模块、拨动开关模块、20M 系统时钟源模块、数码管显示模块等。
其中数码管、数字信号源、拨动开关与FPGA的连接电路和管脚连接在以前的实验中都做了详细说明,这里不在赘述。
简易数字频率计设计报告
根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。
主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。
由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。
频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。
为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。
若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。
由它对频率计的 每一个计数器的使能端进行同步控制。
当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。
在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。
设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。
锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。
时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。
其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。
简易数字频率计的设计与仿真
《电子仿真技术》实训报告题目简易数字频率计的设计、仿真所在学院电子信息工程学院专业班级***学生姓名 *** 学号***指导教师 ***完成日期 * 年* 月* 日一.设计思路(1)电路简述所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。
可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。
数字频率计的主要功能是测量周期信号的频率。
频率是单位时间(1S )内信号发生周期变化的次数。
如果我们能在给定的1S 时间内对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。
可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。
(2)任务目标利用multisim9.0软件设计一个简易数字频率计,其基本要求是:1. 被测信号的频率范围1KHZ~100MHZ(理想频率范围);2. 被测信号可以为正弦波、三角波或方波信号;3. 四位数码管显示所测频率,并用发光二极管表示单位。
简易数字式频率计仿真设计
简易数字频率计仿真设计报告班级学号姓名平时成绩答辩成绩报告成绩总分122039304 杨现涛30122039310 郭慧泽30目录一、设计要求 (2)二、设计过程 (2)三、元器件清单 (3)四、电路连线图 (4)放大整形电路图 (4)单脉冲发生器电路图 (4)闸门电路电路图 (5)计数部分电路图 (5)译码显示电路图 (6)整体电路图 (7)五、实验(仿真结果) (8)六、出现的问题及解决方法 (8)一)设计要求1)设计一个单脉冲发生器,其脉冲宽度t 与手动按钮时间长短无关,与两次按钮的时间间隔无关,仅与时钟脉冲频率有关,且有下列关系:t=1/f12)设计一个四位十进制计数器,实现0000-9999计数。
3)将上述两种电路图组成一个简易数字式频率计。
实现如图效果: F2 F1 0-1 1清零信号1清11111清零清零信号二、设计过程根据实验要求,要完成数字式频率计的设计任务就要了解其中包含的电路以及用到的知识及元器件。
首先经过查阅资料了解数字是频率计的原理和工作过程,下面简单介绍一下数字是频率计。
数字式频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物频率进行测 量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经 过传送带的产品数量等等,这些物理量的变化情况可以有关传感器先转变成周 期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出 来。
闸门电路译码显示电路闸门控制信号产生的电路(t )计数电路其次是了解本次试验设计的频率计的工作原理和具体工作过程,本次的频率计基本上与以往的频率计大同小异,首先要设计的是一个放大整形电路,通过采用555多谐振荡器件把输入到频率计的各种波形整形成标准的方波以便进行取样计数。
然后设计的是一个闸门控制信号产生电路,使其输入1hz基准频率能够产生一个脉冲宽度为1s的单脉冲,同时该电路接上一个0-1手动按钮,按下按钮该电路能够发出两种信号,一种为宽度为1s的单脉冲控制闸门的开启,开启时间为1s,另一种为清零信号,输入到计数器中,使计数器清零。
低频数字频率计设计仿真电路图及报告
数字频率计设计报告一内容提要:数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.本文粗略讲述了我在本次实习中的整个设计过程及收获。
二设计内容及要求:要求设计一个简易的数字频率计,其信号是给定的脉冲信号,是比较稳定的。
1.测量信号:方波;2.测量频率范围: 1Hz~999Hz ;3.显示方式: 3位十进制数显示;4.时基电路由 555 定时器产生;三设计思路及原理:数字频率计由四部分组成:时基电路、闸门电路、逻辑控制电路以及可控制的计数、译码、显示电路。
由555 定时器,分级分频系统及门控制电路得到具有固定宽度T的方波脉冲做门控制信号,时间基准T称为闸门时间.宽度为T的方波脉冲控制闸门的一个输入端B.被测信号频率为fx,周期Tx.到闸门另一输入端A.当门控制电路的信号到来后,闸门开启,周期为Tx的信号脉冲和周期为T的门控制信号结束时过闸门,于输出端 C 产生脉冲信号到计数器,计数器开始工作,直到门控信号结束,闸门关闭.单稳1的暂态送入锁存器的使能端,锁存器将计数结果锁存,计数器停止计数并被单稳2暂态清零. (简单地说就是:在时基电路脉冲的上升沿到来时闸门开启,计数器开始计数,在同一脉冲的下降沿到来时,闸门关闭,计数器停止计数.同时,锁存器产生一个锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率.而在锁存信号的下降沿到来时逻辑控制电路产生一个清零信号将计数器清零,为下一次测量做准备,实现了可重复使用,避免两次测量结果相加使结果产生错误.) 若T=1s,计数器显示fx=N(T时间内的通过闸门信号脉冲个数) 若T=0.1s,通过闸门脉冲个数位N时,fx=10N,(闸门时间为0.1s时通过闸门的脉冲个数).也就是说,被测信号的频率计算公式是fx=N/T.由此可见,闸门时间决定量程,可以通过闸门时基选择开关,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.被测信号频率通过计数锁存可直接从计数显示器上读出.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.因此,可得出数字频率计的原理框图如下:四:设计分析1.时基电路其基本电路图如左:I555定时器组成的振荡器(即脉冲产生电路),要求其产生1S高电平的脉冲.振荡器的频率计算公式为:T1=(R30+R31)*C*ln2,因此,我们可以计算出各个参数通过计算确定了R30取30k欧姆,R31取10k欧姆,电容取47uF.这样我们得到了比较稳定的一秒时基信号。
数字频率计的设计和仿真
数字频率计的设计和仿真石岩蟒摘要:以单片机为核心器件,实现了数字频率计的设计,并在Proteus软件仿真环境下搭建仿真电路,采用Kell软件进行软硬联调,成功地实现了数字频率计的仿真。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
电子计数测频有两种方式,一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,即周期测频法。
直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量[1]。
本次设计的频率测量系统以单片机AT89C52为核心,采用汇编语言和直接测量方法,成功地实现了宽领域,高精度的数字频率计的设计和仿真。
关键词:数字频率计单片机Proteus仿真Kell仿真一、设计思路该频率计首先以信号放大整形后的方波脉冲作为控制闸门信号,然后采用计数器和锁存器对不同频率范围的信号直接进行计数来完成分频功能,分频后的信号由接口电路送给单片机,由单片机的计数器对其进行计数,最后将计数结果通过运算转变为原信号的频率数值,最后通过动态显示电路显示数值。
由于单片机内部振荡频率很高,所以一个机器周期的量化误差相当小,可以有效的提高低频信号的测量准确性。
本设计以单片机AT89C52为核心,通过译码、分频、计数等电路,以及软件程序的编写,实现脉冲频率的显示。
整体设计思路可用框图1表示。
框图中,各部分的作用及所采用的器件说明如下。
二、计数测量部分包括计数器电路和数据锁存器电路计数器电路采用了74LS590芯片完成计数功能。
对于频率较小的输入脉冲可以只让一个74LS590芯片发挥作用,即计数的个数小于256时则只有一74LS590芯片进行计数,对于频率较大的输入脉冲需要让两个74LS590芯片发挥作用,即计数个数大于256小于65535时两个74LS590芯片分别进行高八位、低八位计数。
基于Multisim的数字频率计电路的设计与仿真
摘要本论文主要介绍应用Multisim2001软件进行数字频率计的设计与仿真。
数字频率计是用数字显示被测信号频率的仪器,广泛应用于机械振动的频率、转速、声音的频率以及产品的计件等等。
Multisim操作简单方便,易于学习和掌握。
应用Multisim2001软件可以进行电子电路的设计与仿真。
本论文通过数字频率计的设计与仿真反映了应用Multisim2001软件进行电子电路的设计与仿真提高了电子电路设计的效率,节省了设计者的时间、设备。
关键词:数字频率计 Multisim 设计与仿真目录前言第一章 Multisim2001软件简单介绍1.1 Multisim2001简介1.2 Multisim2001的用户界面1.2.1 菜单栏1.2.2 工具栏1.2.3 Multisim2001对元器件的管理1.3 在Multisim2001软件上绘制仿真电路1.3.1 绘制仿真电路的过程1.3.2 在Multisim2001软件上创建电路图第二章课题设计2.1 主要技术要求2.2 设计方案图2.3 电路简述2.4单元电路的设计与仿真致谢参考文献附件:附录图1 在Mutilsim中设计的总电路图附录图2 被侧信号100Hz时的仿真结果图附录图3 被侧信号45Hz时的仿真结果图前言数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。
电子计算机的飞速发展有效地解决了这个问题。
Multisim软件的良好信誉以及Multisim的卓越表现使之很快成为众多EDA用户的首选软件。
Multisim操作简单方便,易于学习和掌握。
并且能弥补设备种类和数量不足,充分扩展学生的思维空间,给他们更大的自由发挥的天地。
使学生可以根据不同需要无限制地进行各种电路分析实验,验证实验,常规实验,设计实验。
(完整版)简易数字频率计毕业课程设计论文
摘要频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称基础时间为1秒。
基础时间也可以大于或小于一秒。
基础时间越长,得到的频率值就越准确,但基础时间越长则没测一次频率的间隔就越长。
基础时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
本文数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
关键词:数显、频率计、时基、protues仿真、555构成多谐振荡器简易数字频率计的设计数字频率计是直接用十进制数字来显示被测量信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波和尖端冲信号的频率,而且还可以测量它们的周期。
频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔 T 内测得这个周期性信号的重复变化次数为 N ,则其频率可表示为 f=NT 。
原理框图中,被测信号 Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,其高电平持续时间t1=1s,当1s信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s信号结束时闸门关闭,停止计数。
若在基础时间1S内计数器计得的脉冲个数为N,则被测信号频率fx=NHz。
逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生“0”脉冲Ⅴ,使计数器每次测量从零开始计数。
1.电路设计方案及其论证1-1 ICM7216D构成数字频率计电路图1.1由ICM7216D构成的数字频率计由ICM7216D构成的10MHZ频率计电路采用+5V单电源供电。
高精度晶体振荡器和构成10MHz并联振荡电路,产生时间基准频率信号,经内部分频后产生闸门信号。
输出分别连接到相应数码显示管上。
ICM7216D要求输入信号的高电平大于3.5V,低电平小于1.9V,脉宽大于50ns,所以实际应用中,需要根据具体情况增加一些辅助电路。
简易频率计的设计仿真与制作
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易频率计的设计仿真及制作初始条件:本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统设计。
用数码管显示频率计数值。
要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对简易频率计的设计、仿真、装配及调试。
2、技术要求:①设计一个频率计。
要求用4位7段数码管显示待测频率,格式为0000Hz。
②测量频率范围:10~9999Hz。
③测量信号类型:正弦波、方波和三角波。
④测量信号幅值:0.5~5V。
⑤设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1S。
⑥确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1) 2010 年 6 月 26~27 日,查阅相关资料,学习设计原理。
2) 2010 年 6 月 28~30 日,方案选择和电路设计仿真。
3) 2010 年 7 月 1~3 日,电路调试和设计说明书撰写。
4) 2010 年 7 月 4 日上交课程设计成果及报告,同时进行答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日简易频率计的设计仿真及制作目录1 Protues软件介绍 (3)2 设计要求......... (4)2.1整体功能要求 (4)2.2系统结构要求 (4)2.3测试指标 (4)3单元电路设计及分析 (5)3.1 数字频率计的基本原理 (5)3.2 数字频率的设计 (6)3.2.1 放大整形电路 (6)3.2.2 时基电路 (6)3.2.3 逻辑控制电路 (7)3.2.4 输出实现电路 (8)4整体电路的设计仿真及调试 (10)4.1整机电路图 (10)4.2 元件清单 (12)5课程设计心得 (14)6参考文献 (15)7成绩评定表 (16)1 Protues 软件介绍Proteus 是目前最好的模拟单片机外围器件的工具,它可以仿真51 系列、AVR,PIC 等常用的MCU 及其外围电路(如LCD,RAM,ROM,键盘,马达,LED,AD/DA,部分SPI 器件,部分IIC 器件...)。
简易频率计的设计与仿真
简易频率计的设计与仿真目录:一、简易频率计的设计要求及任务分析1、设计要求2、任务分析二、简易频率计的设计1、整形电路的设计和仿真2、时基控制电路的设计和仿真3、计数器、锁存器、显示器的设计和仿真三、总结四、心得体会五、参考文献简易频率计的设计与仿真一、简易频率计的设计要求及任务分析1、设计要求(1)设计原理和原理图分析计算(2)仿真过程说明(3)误差分析(4)总结(5)频率范围为1—9999Hz2、任务分析所谓频率就是指周期信号在单位时间内变化的次数。
若在一定时间间隔T内测得周期性信号的重复变化次数为N,则频率可表示为f=N/T(Hz)。
根据设计要求,数字频率计主要由以下几部分组成:放大整形电路、时基电路、闸门控制脉冲、计数器、锁存器、显示器等。
具体组成结构图如图一。
图一简易频率计的组成框图被测信号v x经放大整形电路变成计数器所要求的方波信号,其频率与被测信号v x的频率f x相同。
时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲。
当1s信号来到时,闸门电路开通,被测脉冲信号通过闸门电路,成为计数器的计数脉冲,计数器开始计数直到1s信号结束时闸门电路关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为M,则被测信号频率f=M Hz。
控制脉冲的作用是产生锁存脉冲,使显示器上的数字稳定。
二、简易频率计的设计由于设计的电路较复杂,所以将整个电路的设计分为三个部分:放大整形电路、时基控制电路(包括时基电路、闸门控制电路)、计数显示电路(包括计数器、锁存器、显示器),最后再将各部分组合连接在一起。
1、整形电路的设计和仿真整形电路由信号发生器与整形电路组成,输入信号先经过限幅器,在经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限幅作用。
由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。
线路图如图二,波形图如图三。
图二整形电路元件图图三整形电路波形图注:图中正弦波形为输入信号,方波脉冲为输出信号。
数字频率计自己动手制作
数字频率计自己动手制作一、系统设计用数字频率计测量信号频率,需要将被测信号转换成脉冲形式,再用计数器记录一秒内信号脉冲的个数,即得到信号频率值,最后将该频率值进行锁存、显示,这就完成了一次频率测量,如果需要进行实时测量,则应对计数器清零之后再次重复上述操作。
因此可以将整个系统划分为下列模块:(1)放大模块,将小信号放大,以便测量信号频率;(2)整形模块,将放大后的被测信号进行过零比较,变成方波供计数器识别;(3)计数模块,计量输入脉冲信号的个数;(4)锁存模块,将得到的频率值锁存,并输出到LED进行显示;(5)控制模块,控制计数器的启动、停止和清零,锁存器的数据置入;(6)秒脉冲模块,由晶振产生精度较高的时间基准,为控制电路提供触发信号。
整个系统框图如下图所示。
二、模块分析1.放大模块放大模块比较简单,但参数要求较高,需达到60dB,同时保证500kHz的带宽。
可使用给定的TLV2464芯片构成多级放大器,既得到高增益,又保证电路工作的稳定性。
如果采用三级放大,则每级只需放大10倍,如下图所示即为10倍放大的反相放大器,因输入信号为交流,应采用±3V双电源供电。
由于输入信号幅度很小,而且频率最低达10Hz,所以应采用直接耦合的方式级联。
2.整形模块整形模块应使用给定的TLC372芯片构成过零电压比较器,将放大信号转换成TTL电平,因此采用+5v单电源供电即可,如下图所示。
3.计数模块计数模块使用给定的CC4518芯片构成,EN端作为时钟输入端以便级联使用,CLK作为计数控制端,MR接清零信号,即实现十进制计数,如下图所示。
其最高位输出Q3直接连接次级EN,即可实现级联,每个CC4518包含两个计数器,因此至少需要3片CC4518才能完成lOOk计数。
4.锁存模块锁存模块使用给定的SN74LS175芯片构成,由于测量精度为lOHz~lOOkHz,因此至少需要显示4个数据。
每个锁存器存储4位BCD二进制码,DO—D3接计数器的数据输出,CLK接锁存控制信号,MR接高电平禁止清零,输出接LED显示,如下图所示。
数字频率计设计仿真
数字频率计设计与仿真1 引言在现代电子技术中,频率是基本的参数之一,并与许多电子参量的测量方案和测量结果有密切的关系。
因此我们对于频率的认识显得就更为重要。
频率的测量方法有很多,其中数字频率计具有测量精度高、使用方便和测量迅速等优势,是目前测量频率的主要手段。
Multisim 是以Windows 为基础的一种仿真工具,适合用于数字电路或者模拟电路的设计工作。
它有直观的捕捉和强大的仿真功能,能够轻松,快速,高效对电路图进行设计和验证。
图1-1 频率计方框图数字频率计是一种最基本的测量仪器,是通信设备、计算机应用、音频视频设备等等科研生产领域里不测或缺的测量设备之一,是一种用十进制数字显示被测信号的频率的数字的测量仪器,迄今为止已经有几十年的发展历史,频率计的基本功能是用来测量三角波信号、正弦波信号及方波信号等单位时间内变化的物理量。
因而其实际运用范围是很广泛的。
在早期,人们对于数字频率计的研究主要表现在扩大测量范围和提高精确度,而这些技术现在已日却成熟,现在人们对数字频率计又提出很多新的要求,例如价格低,操作方便,高精度,高稳定度甚至还包括数据处理和分析功能。
较老的频率计是输主门 十进制计数器显示器主门触发器 十进制计数器时基振荡器 输入放大器多芯片同步十进制技术,新型频率计要求芯片的数量要少,这样器件越少的话对于频率计的技术就会更准确,误差也会越小。
一个基本的频率计的方框图如图1-1所示。
而本课题涉及的主要内容是对输入信号的整形,闸门电路控制输入信号,以及对脉冲的计数,锁存和译码,通过该项设计可以将数字电路和模拟电路的理论知识运用到实际的设计中去,具有方便快捷,容易测量等特点。
2 选择测量方式信号频率指的是信号在单位时间内周期信号变化的次数,其表达式可写为f=N/T ,其中f 指被测信号的频率,N 为信号所累计的脉冲的个数,T 是产生N 个脉冲所需要的时间参数。
该表达式其所记录的结果就是被测信号的频率。
简易数字频率计的设计--电路仿真分析与PCB板图绘制
毕业设计(论文)设计(论文)题目简易数字频率计的设计---电路仿真分析与PCB板图绘制学院电信工程学院教学系通信技术系班级原理图和PCB图我剪了。
要的加QQ 姓名不要图就直接下吧 QQ 1300400058。
指导教师我花了200买的图。
2012 年 4 月简易数字频率计的设计—电路仿真分析与PCB板图绘制摘要数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。
被测信号可以是正弦波、方波或其它周期性变化的信号。
数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。
随着微电子技术和计算机技术的不断发展,信号完整性分析的应用已经成为解决高速系统设计的唯一有效途径。
借助功能强大的Protel99SE仿真软件,利用IBIS模型,对高速信号线进行布局布线前信号完整性仿真分析是一种简单可行的分析方法,可以发现信号完整性问题,根据仿真结果在信号完整性相关问题上做出优化的设计,从而缩短设计周期。
讨论了基Protel99SE仿真软件模型的建立并对仿真结果进行了分析。
研究结果表明在高速电路设计中采用基于信号完整性的仿真设计是可行的, 也是必要的。
关键词:数计频率设计方案优化设计 PCB目录1 绪论 (1)2数字频率计功能及要求 (2)2.1频率计功能 (2)2.2 元器件数量 (2)2.3整体电路设计图及原理 (3)3 Multisim8电路仿真分析 (5)3.1直流工作点分析 (5)3.2瞬态分析 (5)3.3交流分析 (6)3.4傅里叶分析 (7)4.Protel99SE简介 (8)5 pcb板图绘制 (9)5.1 PCB设计的一般原则 (9)5.1.1 布局 (9)5.1.2 布线 (10)5.2 元器件的自动和手工布局 (11)6.原理图和PCB板图 (13)7 结论 (14)谢辞 (15)参考文献 (16)1 绪论随着信息宽带化和高速化的发展,以前的低速PCB已完全不能满足日益增长信息化发展的需要,人们对通信需求的不断提高,要求信号的传输和处理的速度越来越快,相应的高速PCB的应用也越来越广,设计也越来越复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电子仿真技术》实训报告题目简易数字频率计的设计、仿真
所在学院电子信息工程学院
专业班级 ***
学生 *** 学号***
指导教师 ***
完成日期 * 年 * 月 * 日一.设计思路
(1)电路简述
所谓频率,就是周期性信号在单位时间 (1s) 变化的次数.若在一定时间间隔T测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。
可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。
数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )信号发生周期变化的次数。
如果我们能在给定的 1S 时间对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T 的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。
可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。
(2)任务目标
利用multisim9.0软件设计一个简易数字频率计,其基本要求是:
1. 被测信号的频率围1KHZ~100MHZ(理想频率围);
2. 被测信号可以为正弦波、三角波或方波信号;
3. 四位数码管显示所测频率,并用发光二极管表示单位。
二、设计电路原理框图
设计方案框图如图所示:
如图所示此频率计的主体电路由时基电路、整形电路、锁存器电路和计数显示电路组成。
它的工作过程是由时基电路产生一标准时间信号控制阀门,调节时基电路中的电阻可产生需要的标准时间信号。
信号输入整形电路中,经过整形,输出一方波,通过阀门后,计时器对其计数。
当计数完毕,时基电路输出一个上升沿,使锁存器打开,计数器计数结果输入译码器,从而让显示器
显示。
三.单元电路设计与分析
1.时基电路模块的设计
时基信号控制计数器计数的标准时间信号,其精度在很大程度上决定了频率计的频率测量精度。
要求较高时,一般使用晶体振荡器通过分频获得。
在本设计中依然使用了555定时器构成了单稳态触发器,输入单脉冲,输出一标准时间信号,从而在时间上控制计数器计数的时间。
在此频率计中,时钟信号采用由555构成的单稳态触发器。
由一个按钮开关来产生脉冲源,其原理为悬空为高电平,按下开关产生低电平,松开又为高电平,从而产生一单脉冲。
2. 逻辑控制电路的设计
控制电路是数字频率计正常工作的中枢部分。
在这一部分的设计构思过程中,认真对各种频率信号的组合及搭配进行分析,可以分别得到用采控制计数译码的锁存信号和清零信号。
控制电路的时序电路如图所示:
X1
X2gate hold
图:子电路
控制部分的工作原理:当清零信号由0变为1时,此时计数器的清零工作已经完成。
闸门开始打开,当闸门打开时,即闸门信号为高电平
时,计数器开始计数我们所设计的闸门的高电平时间为1S,在此时间计数器计数被测信号的变化次数,所得结果便是被测信号的频率。
3.十进制计数器模块设计
十进制计数器具体的电路图如图所示
将十进制计数器封装为子电路,如下图所示:
X1
X1clock load cten QA1QB1QC1QD1QA2QB2QC2QD2QA3QB3QC3QD3QA4QB4QC4QD4QA5QB5QC5QD5
4. 总体电路设计与调试
搭建好以上电路以后,进行调试,首先分模块进行调试,待每一个模块调试正确后,再进行不规则联调。
四.仿真
数字频率计总体电路如图所示:
五.分析与总结
在本次《电子仿真技术》课程设计中,我了解到了数字频率计的工作原理,并且进一步学习了模拟电路仿真技术。
同时还发现了自己的很多不足,在理论知识上的很多漏洞,认识到自己的思维还是不够活跃。
本次课程设计过程中虽然遇到一些阻碍,但通过我的努力,最终还是克服了这些困难,让我体味到设计电路、连接电路、调测电路过程中的乐趣,提高了独立思考以及克服困难的能力。
设计是我们将来必需的技能,这次设计恰恰给我们提供了一个应用自己所学知识的机会。
在实习的过程中发现了以前学的数字电路的知识掌握的不牢,同时在设计的过程中,遇到了一些以前没有见到过的元件,但是通过查找资料来学习这些元件的功能和使用,让自己的知识面更加的开阔。
因此,电子课程设计使我们获益匪浅,希望还有机会学习更多有关此类课程设计的知识。
通过这次课程设计实践,巩固了学过的知识并能够较好的利用,对自己是一次很好的实践锻炼机会。
课程设计实践不单是将所学的知识应用于实际,在设计的过程中,只拥有理论知识是不够的。
逻辑思维、电路设计的步骤和方法、考虑问题的思路和角度等也是很重要,是需要我们着重锻炼的能力。