矩阵理论与应用题目和答案

合集下载

矩阵理论习题与答案

矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。

为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。

一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。

答案:矩阵的转置是将其行和列互换得到的新矩阵。

所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。

2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。

答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。

3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。

答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。

计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。

解特征多项式得到特征值λ1 = 5,λ2 = -1。

然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。

对于λ2 = -1,解得特征向量v2 = [1, -1]。

所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。

二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。

答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。

计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。

然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。

接下来,求解对称矩阵的特征值和特征向量。

将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。

最后,计算D^T和U的乘积D^TU,得到正交矩阵V。

矩阵论复习题 带答案1

矩阵论复习题 带答案1

矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。

证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。

因此A 与B 的特征值相同。

#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

(0.0.3)
是 U + W 的一组基. 为此需要证明该向量组线性无关, 且 U + W 的任何向量均可由这些向量 线性表示.

k1α1 + k2α2 + · · · + krαr + br+1βr+1 + · · · + bsβs + cr+1γr+1 + · · · + ctγt = 0. (0.0.4)
0 = V0 ⊂ F α1 ⊂ (F α1 ⊕ F α2) · · · ⊂ (F α1 ⊕ · · · ⊕ F αm) ⊂ · · · ⊂ (F α1 ⊕ · · · ⊕ F αn) = V
显然是一个空间的真包含的链,其长度 m = n. 因此需证的等式成立。该等式说明线性空间的 维数是子空间按包含关系所形成的链的最大长度。
3. (1) 设 V 是线性空间, U 与 W 是 V 的两个子空间. 证明:
dim (U + W ) = (dim U + dim W ) − dim (U ∩ W ).
(2) 设 V 是有限维线性空间. 证明并解释下面的维数公式: dim V = max{m | 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V, Vi 是 Vi+1 的真子空间}
5. 设
112
A = 0 1 1 ,
134
求 A 的四个相关子空间. 解:
R(A) = [(1, 0, 1)T , (1, 1, 3)T ], R(AT ) = [(1, 0, 1)T , (0, 1, 1)T ], N (A) = [(−1, −1, 1)T ], N (AT ) = [(−1, −2, 1)T ]

矩阵理论答案(上海交大版)

矩阵理论答案(上海交大版)

0 2 2 2 , 3 1 2 1 3

T
e1, e2 , e3 e1, e2 , e3 A,




e1,
e2 , e3 '
'
,e1
'
,e 则 2
e3 .
P
' ' e1' , e2 , e3 e1, e2 , e3 PAP 1. 故使为对角形的基 e1, e2 , e3 P1 即可。
u1 ; w1 ; 故 U W 的基为 3w1 w2 , U 的基为 3w1 w2 , W 的基为 3w1 w2 , U W
的基为 3w1 w2 , u1 , w1 。 6. U W ( x, y, z, w)

1 1 1 1 x y z w 0 , r 2, 1 1 1 1 x y z w 0
数非 0 且不满足此方程式的元即可生成此补空间。 5. 记 U= u1, u2 , u3 , W w1, w2 ,把 U,W 放在一起成 4 行 5 列的矩阵,其 Hermite 标 准形为
1 0 0 0
4 5 1 2 1 5 1 1 3 9 , 0 0 1 3 0 0 0 0
5. | Em AB |
mn
, En BA 知除 0 外 AB 与 BA 的特征值全相同(包括代数重数)
而迹为矩阵特征值之和。
2 6. (1)特征多项式 x 8 x 7 为最小多项式,可能角化
(2) | E A | 1 2 3 为最小多项式,可对角化 ( 3 )特征多项式为 1

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案矩阵论及其应用习题四答案矩阵论是数学中重要的分支之一,它研究的是矩阵的性质、运算规律以及在各个学科中的应用。

在学习矩阵论的过程中,习题是不可或缺的一部分,通过解答习题可以加深对矩阵理论的理解和应用。

下面是习题四的答案,希望能对大家的学习有所帮助。

1. 设A、B、C为同阶矩阵,证明:(AB)C=A(BC)解答:我们需要证明(AB)C的每个元素与A(BC)的对应元素相等。

设(AB)C的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b,C的第k行第j列元素为c。

则有:x = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

而A(BC)的第i行第j列元素为y,可表示为:y = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)C=A(BC)。

2. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)A=A。

解答:我们需要证明(AB)A的每个元素与A的对应元素相等。

设(AB)A的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

而A的第i行第j列元素为y,可表示为:y = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)A=A。

3. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)B=B。

解答:我们需要证明(AB)B的每个元素与B的对应元素相等。

设(AB)B的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

而B的第i行第j列元素为y,可表示为:y = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。

7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。

对于矩阵C = [2 1; 1 2],其行列式det(C)是________。

8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。

对于矩阵D = [4 1; 0 3],其特征值是________。

9. 矩阵的迹是主对角线上元素的和。

对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。

矩阵理论试题答案最终版

矩阵理论试题答案最终版


G

(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1

1
−1
2*(t 2 − 1)dt

矩阵理论与应用(张跃辉 上海交大研究生教材)第四答案

矩阵理论与应用(张跃辉 上海交大研究生教材)第四答案

1. 判断下列矩阵能否酉对角化, 如能, 则求一个酉矩阵 U , 使 U ∗ AU 为对角形: −1 i 0 0 i 1 i i 0 (1) A = −i 0 −i ; (2) A = −i 0 0 ; (3) A = i 1 0 . 0 i −1 1 0 0 0 i i i 1 i 解:(1) U = (2) U =
2 i=1 λi |yi |
= max
∑n
i=k
|yk |2 +···+|yn |2 =1,y ⊥wi 1≤i≤n−k
λi |yi |2 ≥ λk .
9. 设 A = (aij )n×n 是复矩阵, λ1 , λ2 , · · · , λn 为 A 的 n 个特征值. 证明 n n ∑ ∑ (1) (Schur 不 等式 ) |λi |2 ≤ |aij |2 ∑ i,j =1
|aij |2
且等号成立当且仅当 B 是对角矩阵当且仅当 A 是正规矩阵, 即得 (2). 10. 直接证明实对称矩阵与 (实) 正交矩阵可以酉对角化, 从而均为正规矩阵. 证明:由线性代数知实对称矩阵可以正交对角化故可酉对角化。 设 A 是正交矩阵,则存在酉矩阵 U 使得 U ∗ AU = T 是上三角矩阵, 但 A 也是酉矩阵, 从而 T 也是酉矩阵,于是 T 只能是对角矩阵。 11. 设 A 是 n 阶实矩阵, 证明 A 是正规矩阵 ⇐⇒ 存在正交矩阵 Q 使得 QT AQ = A1 ⊕ A2 ⊕ · · · ⊕ As , 其中每个 Ai 或者是 1 阶实矩阵, 或者是一个 Schur 型. 证明:由于每个 Schur 型均为正规矩阵,故充分性是显然的。必要性。由实矩阵的三角 A1 ∗ A2 化定理 (见第三章习题 5) 可知存在正交矩阵 Q 使得 QT AQ = = B ,其 . . . 0 Ak 中 Ai , 1 ≤ i ≤ s 是 1 阶实矩阵 (即 A 的一个实特征值), Ai , s+1 ≤ i ≤ n 是一个 Schur 型 (对应 A 的一对非实数特征值, 其模长平方恰为该型的行列式). 设 A 是实正规矩阵,λ1 , λ2 , · · · , λn k k s n ∑ ∑ ∑ ∑ tr(Ai AT |Ai | = |Ai |2 + |λi |2 = 为 A 的 n 个特征值. 则 tr(BB T ) = tr(AAT ) = i ).

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。

通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。

下面给出一些矩阵练习题及其答案,供大家参考。

1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。

解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。

因此,A 的转置矩阵为 A^T = [4; 2]。

2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。

解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。

通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。

3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。

解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。

特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。

解方程可得特征值λ1 = 1 和λ2 = 3。

特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。

特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。

4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。

解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。

计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。

矩阵的秩表示矩阵中独立的行或列的最大个数。

对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。

矩阵论试题

矩阵论试题

矩阵论试题一、选择题1.设A是n阶方阵,若|A|=0,则A()。

A. 一定是可逆矩阵B. 一定是不可逆矩阵C. 可能是可逆矩阵,也可能是不可逆矩阵D. 以上说法均不正确答案:B2.若矩阵A与B相似,则A与B具有()。

A. 相同的特征值B. 相同的特征向量C. 相同的秩D. 相同的行列式答案:A、D(相似矩阵具有相同的特征值和行列式,但特征向量不一定相同,秩也一定相同,但此题只问具有什么,故A、D为正确答案)3.下列矩阵中,属于正交矩阵的是()。

A. 单位矩阵B. 对角矩阵C. 上三角矩阵D. 任意方阵答案:A(单位矩阵是正交矩阵的一种特殊情况)二、填空题1.设矩阵A=(1324),则A的行列式|A|=______。

答案:-2(根据行列式的定义和计算方法,有|A|=1×4-2×3=-2)2.若矩阵A与B满足AB=BA,则称A与B为______。

答案:可交换矩阵(或称为可交换的)3.设n阶方阵A的伴随矩阵为A,则|A|=______。

答案:|A|(n-1))三、计算题1.设矩阵A=(2113),求A的逆矩阵A^(-1)。

解答:首先求|A|,有|A|=2×3-1×1=5≠0,所以A可逆。

然后利用逆矩阵的公式A^(-1)=(1/|A|)×A*,其中A*是A的伴随矩阵。

A的伴随矩阵A=(3−1−12)(伴随矩阵的元素是A的每个元素的代数余子式构成的矩阵的转置)。

所以A^(-1)=(1/5)×A=(3/5−1/5−1/52/5)。

2.设矩阵A=147258369,求A的秩R(A)。

解答:对矩阵A进行初等行变换,将其化为行最简形。

通过初等行变换,可以得到A的行最简形为1002−303−60。

所以R(A)=2(非零行的个数)。

四、证明题1.证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。

证明:根据可逆矩阵的定义,若矩阵A可逆,则存在n阶方阵B,使得AB=BA=E(E为单位矩阵)。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*)
其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.

矩阵理论第3章习题解答

矩阵理论第3章习题解答

第三章 习题解答1.求矩阵1141⎡⎤=⎢⎥⎣⎦A 的谱分解.解:(1) 求特征值()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-.(2) 求特征向量:13λ=对应的特征向量为()11,2;Tp =21λ=-对应的特征向量为()21,2Tp =-.(3)谱分解:令1211(,)22P p p ⎡⎤==⎢⎥-⎣⎦,则1121124.1124TT P ωω-⎡⎤⎢⎥⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦令1111124,112TA p ω⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦2221124,112T A p ω⎡⎤-⎢⎥==⎢⎥⎢⎥-⎢⎥⎣⎦故谱分解式为123A A A =- 2 求单纯矩阵296182051240825A -⎛⎫⎪=- ⎪ ⎪-⎝⎭的谱分解式.3.设()1,2,i i n λ=是正规矩阵n?n A ∈C 的特征值,证明:()21,2,ii n λ=是H A A 与HAA 的特征值.证:根据题设矩阵A ,则A 酉相似与对角矩阵,即()12diag ,,,H n A U U λλλ=其中U 为酉矩阵,则()()()()1212diag ,,diag ,,HH H H n n A A U U U U λλλλλλ=()22212diag ,,,HnU Uλλλ=即HA A 的特征值为()21,2,ii n λ=,同理可证()21,2,i i n λ=也是H AA 的特征值。

4 设A 是n n ⨯阶的实对称矩阵,并且20,A =你能用几种方法证明0.A =证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与对角矩阵()12diag ,,,n λλλ所以0.A =(2)设0,A ≠则20,HA A A =≠与题设矛盾,所以结论成立。

5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3A S =。

《矩阵论及其应用》课后答案(大合集)

《矩阵论及其应用》课后答案(大合集)

{
}
的 x = c1 sin t + c 2 sin 2t + ⋯ + c k sin kt , − x = −c1 sin t − c2 sin 2t − ⋯ − ck sin kt 是其负元素. 由于函数的加法与数乘运算满足线性空间要求的其它各条,故集合 V 关于函数的加法与数乘构成实数域上的线性空间. 为证明函数组 sin t,sin 2 t, ⋯,sin kt 是 V 的一个基,由于 V 中的任意函数均可 由该组函数表示,故只需证明 sin t,sin 2 t, ⋯,sin
⋯, Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = ( aij ) n× n , 其 中 aij = a ji , 有
n n
A = ∑∑ aij Fij ,故 F11 ,⋯ , F1n , F22 , ⋯, F2 n , ⋯, Fnn 是 R n× n 中全体对称矩阵所构
k+l
= aa−1 = 1
= a k a l = a k ⊕ a l = (k � a) ⊕ (l � a )
⑧ k � (a ⊕ b) = k � (ab ) = ( ab) k = a k b k = (k � a) ⊕ ( k � b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否. 设 V2 = y ( x ) y ′′ + a1 y ′ + a0 y = f ( x ), f ( x) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭. 例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 . 故不构成线性空间. (6)是. 集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。

历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。

以下是对矩阵理论历年试题的汇总及答案解析。

矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。

答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。

接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。

特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。

答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。

计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。

黄有度-矩阵理论及其应用习题答案

黄有度-矩阵理论及其应用习题答案

习题18.在4R 中,求由基n x x x ,,,21⋯到基n y y y ,,,21⋯的过渡矩阵A ,并求向量a 在指定基下的坐标,设(1)⎪⎪⎩⎪⎪⎨⎧−−=−=−=−=T T T T x x x x )1,0,1,1()1,1,2,1()1,1,1,1()0,1,2,1(4321⎪⎪⎩⎪⎪⎨⎧=−===T T T T y y y y )2,1,3,1()2,1,1,2()2,2,1,0()1,0,1,2(4321下的坐标在基4321,,,)0,0,0,1(x x x x a T =.(2)⎪⎪⎩⎪⎪⎨⎧−−=−−=−−==T T T T x x x x )1,1,1,1()1,1,1,1()1,1,1,1()1,1,1,1(4321⎪⎪⎩⎪⎪⎨⎧−−====T T T T y y y y )1,1,1,0()0,0,1,1()1,3,1,2()1,0,1,1(4321下的坐标在基4321,,,)1,0,0,1(y y y y a T −=.解:(1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−=−0100111010*********11120311112028723143243155623131222111203111120211100111121211111A TT x x x x a )下的坐标为(在基设43214321,,,,,,)0,0,0,1(µµµµ=,则有:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−000111100111121211114321µµµµ解方程得:133,132,135,1334321−=−===µµµµTT y y y y a 133,132,135,133(:,,,)1,0,0,1(4321−−−=下的坐标为在基(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−=−1011103112111273411011103011110121111111111111111141101110301111012111111111111111111A TT y y y y a )下的坐标为(在基设43214321,,,,,,)1,0,0,1(µµµµ−=,则有:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡•⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−100110111030111101214321µµµµ解方程得:23,4,21,24321−==−=−=µµµµTT y y y y a 23,4,21,2(:,,,)1,0,0,1(4321−−−−=下的坐标为在基9.设{}3322131233,0)(a a a a R a A M ij ==+∈==×,(1)验证M 是33×R 的一个子空间;(2)求M 的维数和一组基;(3)求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−=315034221A 在所求出的基下的坐标。

张跃辉-矩阵理论与应用 前第四章答案

张跃辉-矩阵理论与应用 前第四章答案

A C
B D
可逆并求其逆.
(
解:(1)
A 0
B)−1 C
=
(A−1 0
−A−1BC C −1
−1
)
.
3
(2) 由 13 题可知该分块矩阵可逆. 根据 13 题证明中的下述等式
(
)(
)(
)
I0 −CA−1 I
AB CD
=
A
B
0 D − CA−1B
,
再由本题 (1) 中的结论可知 (以下记 G = D − CA−1B)
设矩阵 )
A

A − BC
均可逆,
试用
A, A−1, B, C
表示
(A − BC)−1.(提示:
研究分块
矩阵
AB CI
的逆矩阵.)
(
)(
)( )
证明:记 X = A − BC. 由于
A C
B I
=
A − BC 0
B I
I C
0 I
, 所以
( A C
B)−1 I
=
( I
−C
)( 0 A − BC
I
0
B)−1
17. 求下列各矩阵的满秩分解:
123 0
(1) A = 0 2 1 −1 ;
102 1
1 −1 1 1
(2)
A =
−1 −1
1 −1
−1 1
−1 1
.
1 1 −1 −1
答案:
1
(1) A = 0
1
0 −1 1
(
1 0
2 −2
3 −1
)
0 1
;
1

矩阵理论与应用(张跃辉)(上海交大)第六章参考答案

矩阵理论与应用(张跃辉)(上海交大)第六章参考答案

证明:直接验证即可. 6. 证明命题 6.1.1. ∑ 证明:直接验证可知 A† A 与 AA† 均为正交投影矩阵. 再设 A = U V ∗ 是 A 的奇异值 ∑ ∑ ∑ ∑ 分解, 则 A† = V † U ∗ , A∗ = V ∗ U ∗ . 由于 † 与 ∗ 的列空间与零空间相同, U, V 可逆, 故 R(A† ) = R(A∗ ), N (A† ) = N (A∗ ). 7. 设 A ∈ Cm×n , 又 U ∈ Cm×m 和 V ∈ Cn×n 均为酉矩阵. 证明 (U AV )† = V ∗ A† U ∗ . ∑ ∗ ∑ ∗ 证明:设 A = P Q 是 A 的奇异值分解, 则 U P Q V 是 U AV 的奇异值分解. 因 ∑ ∑ † 此 (U AV )† = (U P Q∗ V )† = V ∗ (Q P ∗ )U ∗ = V ∗ A† U ∗ . 8. 设 H 为幂等 Hermite 矩阵, 证明 H31. 证明命题 6.4.3. 32. (1) 哪些矩阵的 {1, 2}- 逆等于它的转置矩阵? (2) 哪些矩阵的 {1, 4}- 逆等于它的转置矩阵? 33. 试求一个与书中公式形式不同的计算秩为 1 的矩阵的各种广义逆的公式. 34. 不可逆的方阵可否有可逆的 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆? 35. 哪些不可逆的方阵有唯一的 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆? 36. 是否存在矩阵其 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆不唯一但只有有限个? 37. 设正规矩阵 A 仅有一个非零特征值 λ. (1) 证明 A† = λ−2 A; (2) 试求 A 的 {1, 2}- 逆, {1, 3}- 逆及 {1, 4}- 逆的表达式; −2 1 1 (3) 根据 (1) 与 (2) 计算矩阵 1 −2 1 的各种广义逆. 1 1 −2 38. 设 L, M 是 Cn 的子空间. 证明: (1) PL+M = (PL + PM )(PL + PM )† = (PL + PM )† (PL + PM ); (2) PL∩M = 2PL (PL + PM )† PM = 2PM (PL + PM )† PL . 39. 证明: A† = A(1,4) AA(1,3) . 40. 取 A1 , A2 分别为第 18 题的 (1) 和 (2), 并设 b1 = (1, 1, 0, 1)T , b2 = (1, 1, 2)T . 分别求 出方程组 A1 x = b1 和 A2 x = b2 的通解. ) ) ( ( 2 1 2 −1 . 求 Ax = b 的最小范数解. ,b= 41. 设 A = −1 0 −1 0 ) ( ) ( 2 1 2 −1 . 求矛盾方程组 Ax = b 的最小二乘解. ,b= 42. 已知 A = 0 −1 −2 1 43. 证明推论 6.5.1. 44. 确定矩阵方程矩阵方程 AXB = 0 的通解, 并以此证明定理 6.5.6. 1 0 0 1 1 1 0 0 . 45. 设 A = 0 1 1 0 0 0 1 1 (1) 当 b = (1, 1, 1, 1)T 时, 方程组 Ax = b 是否相容? (2) 当 b = (1, 0, 1, 0)T 时, 方程组 Ax = b 是否相容? 若方程组相容, 求其通解和最小范数解; 若方程组不相容, 求其最小范数的最小二乘解. 46. 证明线性方程组 Ax = b 有解 ⇐⇒ AA† b = b. 这里 A ∈ Cm×n , b ∈ Cm . 47. 判断矩阵方程 AXB = C 是否有解, 有解时求其解, 其中

张跃辉矩阵理论与应用 第五章参考答案

张跃辉矩阵理论与应用 第五章参考答案

证明:(1), (2) 与 (3) 参见第 13 题;
(4) 由于 Hermite 矩阵是正规矩阵,故由 (2)(可知谱)半径给出( V 上的) 一个向量范数. 由
谱半径给出的向量范数不是矩阵范数:设 A =
11 00
,B =
11 00
, 则 ρ(AB) = 2 >
(
)
1 = ρ(A)ρ(B). 即使限定在 Hermite 矩阵范围内,也不满足次乘性,比如 A =
因此
||v||α ||v||β

C1.
类似地可证存在
C2
>
0,使得
||v||β ||v||α

C2.
48
9. 证明例 5.1.8 中的两个范数不等价.
证明:由定义直接计算可得
lim
n→∞
||fn||1
=
0,
lim
n→∞
||fn||∞
=
1.
10. 证明赋范线性空间中的单位球均为凸集, 即若 x, y 属于单位球, 则 αx + βy 也属于单 位球, 其中 α, β 为正数且 α + β = 1. 对照习题 5, 解释这种现象.
11 10
= B,


ρ(AB)
=
3
>
3+ 2
5
=
ρ(A)ρ(B).
17. 试构造两种矩阵范数使得一个矩阵 A 的两种范数分别为 2 与 1/3. 能否使所有非零矩
阵的两种范数之积等于 1?
(
)
解:第一种范数取为 1- 范数,第二种取为 1- 范数的 1/6,则矩阵 A =
20 00
满足条
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档