(完整)人教版八年级数学上册知识整理与经典例题
人教版八年级数学上册《分式》知识点复习及典例解析
人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
初中数学八年级上册知识点梳理(人教版)
初中数学八年级上册知识点梳理(人教版)数学八年级上册知识点梳理第十一章三角形11.1与三角形有关的线段一、三角形的边三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形,叫做三角形。
注意点:(1)三条线段(2)不在同一直线上(3)首尾顺次相接三角形的表示:三角形用符号“△”表示,记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,△CAB,△ACB等.三角形的分类:直角三角形不等边三角形锐角三角形底和腰不相等的等腰三角形按角分按边分等腰三角形等边三角形钝角三角形等腰三角形:两边相等的三角形叫等腰三角形。
相等的两边都叫腰,另一边叫做底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
三角形中三边的关系:三角形两边的和大于第三边,三角形两边的差小于第三边。
(在做题时,不仅要考虑到两边之和大于第三边,还必须考虑到两边之差小于第三边.)2、三角形的高、中线与角平分线三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段,叫做三角形这边的高,简称三角形的高。
1、锐角三角形的三条高交于同一点。
三条高都在三角形的内部。
2、直角三角形的三条高交于直角顶点.3、钝角三角形的三条高不订交于一点。
钝角三角形的三条高所在直线交于一点。
总结:三角形的三条高的特性高在三角形内部的数量高所在的直线是不是订交高之间是否相交三条高所在直线的交点的位置锐角三角形3相交订交三角形内部直角三角形1相交相交直角顶点钝角三角形1相交不相交三角形外部三角形的三条高所在直线交于一点三角形的中线:在三角形中,保持一个顶点和它对边中点的线段叫做这个三角形这边的中线.三角形中线的符号语言:∵AD是△ABC的中线三角形的三条中线相交于一点,交点在三角形的内部。
三角形三条中线的交点叫做三角形的重心。
三角形的角平分线:在三角形中,一个内角的角平分线与它的对边订交,这个角的顶点与交点之间的线段,叫做三角形的角平分线。
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
(word完整版)初二数学上学期知识点和典型例题总结,文档
全等三角形种类一:全等三角形性质的应用1、如图,△ ABD≌△ ACE, AB=AC,写出图中的对应边和对应角.思路点拨 : AB=AC,AB和 AC是对应边,∠ A 是公共角,∠ A 和∠ A 是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解.剖析: AB和 AC是对应边, AD和 AE、BD和 CE是对应边,∠ A 和∠ A 是对应角,∠ B 和∠ C,∠ AEC 和∠ ADB是对应角 .总结升华:两对对应极点,那么以这两对对应极点为极点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边.两对对应边,第三对边是对应边,对应边所对的角是对应角.贯穿交融:【变式 1】如图,△ ABC≌△ DBE. 问线段 AE和 CD相等吗?为什么?【答案】证明:由△ ABC≌△ DBE,得 AB=DB,BC=BE,那么 AB-BE=DB-BC,即 AE=CD。
【变式 2】如右图,,。
求证: AE∥CF【答案】∴AE∥CF2、如图, ABC≌Δ DEF,∠ A=30°,∠ B=50°, BF=2,求∠ DFE的度数与 EC的长。
思路点拨 : 由全等三角形性质可知:∠ DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ ACB的度数与 BF的长即可。
剖析:在ABC中,∠ACB=180°- ∠A-∠ B,又∠ A=30°,∠ B=50°,所以∠ ACB=100° .又由于ABC≌Δ DEF,所以∠ ACB=∠ DFE,BC=EF〔全等三角形对应角相等,对应边相等〕。
所以∠ DFE=100°EC=EF-FC=BC-FC=FB=2。
总结升华:全等三角形的对应角相等,对应边相等。
贯穿交融:【变式 1】以以下图,ACD≌Δ ECD,CEF≌Δ BEF,∠ ACB=90° .求证:〔 1〕CD⊥ AB;〔 2〕 EF∥AC.【答案】(1 〕由于ACD≌Δ ECD,所以∠ ADC=∠EDC〔全等三角形的对应角相等〕 .由于∠ ADC+∠EDC=180°,所以∠ADC=∠EDC=90° .所以 CD⊥AB.(2 〕由于CEF≌Δ BEF,所以∠ CFE=∠BFE〔全等三角形的对应角相等〕 .由于∠ CFE+∠BFE=180°,所以∠ CFE=∠BFE=90° .由于∠ ACB=90° , 所以∠ ACB=∠BFE.所以 EF∥AC.种类二:全等三角形的证明3、如图, AC=BD,DF= CE,∠ ECB=∠ FDA,求证:△ ADF≌△ BCE.思路点拨 : 欲证△ ADF≌△ BCE,由可知已具备一边一角,由公义的条件判断还缺少这角的另一边,可经过 AC=BD而得剖析:∵AC=BD( )∴AB-BD= AB-AC(等式性质 )即 AD=BC在△ ADF与△ BCE中∴△ ADF≌△ BCE(SAS)总结升华:利用全等三角形证明线段( 角) 相等的一般方法和步骤以下:(1)找到以待证角 ( 线段 ) 为内角 ( 边 ) 的两个三角形,(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角 ( 线段 ) 相等.贯穿交融:【变式 1】如图, AB∥ DC,AB=DC,求证: AD∥BC【答案】∵ AB∥CD∴∠ 3=∠ 4在△ ABD和△ CDB中∴△ ABD≌△ CDB(SAS)∴∠ 1=∠ 2( 全等三角形对应角相等 )∴ AD∥BC(内错角相等两直线平行 )【变式 2】如图, EB⊥ AD于 B,FC⊥ AD于 C,且 EB=FC, AB=CD.求证 AF= DE.【答案】∵ EB⊥AD( )∴∠ EBD=90° ( 垂直定义 )同理可证∠ FCA=90°∴∠ EBD=∠ FCA∵AB=CD, BC=BC∴AC=AB+BC=BC+CD=BD在△ ACF和△ DBE中∴△ ACF≌△ DBE(S.A.S)∴ AF=DE(全等三角形对应边相等 )种类三:综合应用4、如图, AD为ABC的中线。
(完整word版)人教版八年级上册数学重要知识点总结
(完整word版)人教版八年级上册数学重要知识点总结亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~八年级数学上册重要知识点归纳1、三角形具有稳定性2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边(符号表示:a+b>c ) (2)推论:三角形的两边之差小于第三边(符号表示:a-b<c ) (3)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围; ③证明线段不等关系。
3、(1)三角形的内角和等于180°,三角形的外角和等于360°;(2)n 边形的内角和等于n -⋅(2)180,n 边形的外角和等于360°; (3)正n 边形每个内角等于n n-⋅(2)180,正n 边形每个外角等于3604、三角形全等的条件:一般三角形SSS ,SAS ,ASA ,AAS ,直角三角形HL5、角的平分线的性质:角平分线上的点到角两边的距离相等符号表示:BD 为角平分线,DA ⊥AB ,DC ⊥BC ,AD =DC.6、垂直平分线性质:垂直平分线上的点到线段两端的距离相等 符号表示:CD 为AB 的垂直平分线 AC=BC ,AE=BE.7、等腰三角形 (1)“等边对等角”和“三线合一”的性质 已知ABC ∆是等腰三角形,AB=AC,,,,B C BD CD BAD CAD AD BC ∴∠=∠=∠=∠⊥(等角对等边)(三线合一)(2)“等角对等边”的判定方法B C AB AC ∠=∠∴=∆已知(等角对等边)ABC 是等腰三角形8、等边三角形的性质和判定(性质)等边三角形的三个内角都相等,并且每一个角都等于60° (判定1)三个角都相等的三角形是等边三角形。
人教版初中数学八年级上册全册知识梳理及练习(基础版)(家教补习复习专用)
新人教版八年级上册数学全册知识点及巩固练习题与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD是ΔABC的高,或AD是ΔABC的BC边上的高,或AD⊥BC于D,或∠A DB =∠ADC=∠90°.注意:AD是ΔABC的高 ∠ADB=∠ADC=90°(或AD⊥BC于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠BAC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A、△ABC中,AD是BC边上的高正确,故本选项错误;B、△GBC中,CF是BG边上的高正确,故本选项错误;C、△ABC中,GC是BC边上的高错误,故本选项正确;D、△GBC中,GC是BC边上的高正确,故本选项错误.故选C.【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:C D5.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC中,D、E分别为BC、AD的中点,且4ABCS△,则S阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F . 因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】(2015春•安岳县期末)如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠EC B)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.(2015春•江阴市校级月考)已知如图∠xOy=90°,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,当点A ,B 分别在射线Ox ,Oy 上移动时,试问∠ACB 的大小是否发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C 的大小保持不变.理由:∵∠ABY=90°+∠OAB ,AC 平分∠OAB ,BE 平分∠ABY ,∴∠ABE=∠ABY=(90°+∠OAB )=45°+∠OAB ,即∠ABE=45°+∠CAB ,又∵∠ABE=∠C+∠CAB ,∴∠C=45°,故∠ACB 的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC 中,P 为内角平分线AD 、BE 、CF 的交点,过点P 作PG ⊥BC 于G ,试说明∠BPD 与∠CPG 的大小关系并说明理由.【答案】解:∠BPD =∠CPG .理由如下:∵ AD 、BE 、CF 分别是∠BAC 、∠ABC 、∠ACB 的角平分线,∴ ∠1=12∠ABC ,∠2=12∠BAC ,∠3=12∠ACB . ∴ ∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°. 又∵ ∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.与三角形有关的角(基础)巩固练习【巩固练习】一、选择题1.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ).A.直角三角形 B.等边三角形C.钝角三角形 D.等腰三角形2.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( ).A.40° B.80° C.60° D.120°3.(云南昆明)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=( ).A.80° B.90° C.100° D.110°4.(2015•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°5.(山东济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形6.(山东菏泽)一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠α等于( ).A.30° B.45° C.60° D.75°二、填空题7.如图,AD⊥BC,垂足是点D,若∠A=32°,∠B=40°,则∠C=_______,∠BFD=_______,∠AEF=________.8.在△ABC中,∠A+∠B=∠C,则∠C=_______.9.根据如图所示角的度数,求出其中∠α的度数.10.如图所示,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)38°(即∠A =38°),飞到了C地.已知∠ABC=20°,现在飞机要到达B地,则飞机需以_______的角飞行(即∠BCD的度数).11.如图,有_______个三角形,∠1是________的外角,∠ADB是________的外角.12.(2014春•通川区校级期末)如图中,∠B=36°,∠C=76°,AD、AF分别是△ABC的角平分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠3+∠4的度数.14.已知:如图所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.15.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC,(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.16.如图是李师傅设计的一块模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠B=75°,∠C=85°,∠D=55°.能否判定模板是否合格,为什么?【答案与解析】一、选择题1. 【答案】D.2. 【答案】B;【解析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+x°+60°=180°,解得x°=40°,∠B=2x°=80°.3. 【答案】D.4. 【答案】C;【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.5. 【答案】B;【解析】先求出三角形的三个内角度数,再判断三角形的形状.6. 【答案】D;【解析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7. 【答案】58°,50°,98°;【解析】在Rt△ADC中,∠A=32°,∠C=58°;在Rt△BDF中,∠B=40°,∠BFD=50°;在△BEC,∠AEF=∠B+∠C=98°.8. 【答案】90°.9. 【答案】 (1)48°; (2)27°; (3)85°;【解析】充分利用:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.10.【答案】58°.11.【答案】8,△DBC,△ADE;【解析】考查三角形外角的定义.12.【答案】20;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=36°+34°=70°,∵AF⊥BC,∴∠AFD=90°,∴∠DAF=180°﹣∠ADC﹣∠AFD=180°﹣70°﹣90°=20°.三、解答题13.【解析】解:连接AD,在△ADC中,∠1+∠CAD+∠CDA=180°,在△ABD中,∠3+∠BAD+∠BDA=180°.∴∠1+∠2+∠3+∠4=∠1+∠CAD+∠BAD+∠3+∠CDA+∠BDA.=(∠1+∠CAD+∠CDA)+(∠3+∠BAD+∠BDA)=180°+180°=360°.14.【解析】解:设∠A=x°,则∠ABC=∠C=2x°.在△ABC中,由内角和定理有x+2x+2x=180°,∴ x=36°.∴∠C=72°,在△BDC中,∵ BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°,∴∠DBC=90°-∠C=18°.15.【解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.16.【解析】解:分别延长CB、DA交于点P.因为∠C=85°,∠D=55°,由三角形内角和可知∠P=180°-∠C-∠D=40°,即DA与CB相交成40°角.同理可得BA与CD相交成20°角.所以这个模板是合格的.多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°; 知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°; (3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF 中,从顶点A 出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?凸多边形 凹多边形【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
新人教版八年级上册数学知识点归纳及常考题型
8、求多边形的内角和,外角和(正多边形)。P22
考点1.五边形的外角和是
,内角和是
考点2.一个多边形的每个外角都是36°,这个多边形是
。 边形。
第十二章全等三角形考点归纳
1、全等三角形性质的考法。P32
考点1.已知△ABC≌△DEF,∠A=80°,∠E=40°,BC=6,
则∠D=
,EF=
。
2、全等三角形的判定(添加条件证三角形全等)P36-42
1、轴对称图形的判断。
考点1.下列“表情”中属于轴对称图形的是 (
)
A.
B.
C.
D.
考点2.如图14-110所示,图中不是轴对称图形的是( )
考点3:如右图,图中显示的是从镜子中看到背后墙上的电
子钟读数,由此你可以推断这时的实际时间:(
)
A、10:05
B、20:01
C、20:10
D、10:02
考点4.一辆汽车牌在水中的倒影为
考点 1.如图 3,已知 ACB DBC ,要使⊿ ABC ≌⊿ DCB ,
只需增加的一个条件是
.A
D
B
图3
C
考点2.如图2,已知∠1=∠2,要得到
△ABD≌△ACD,还需从下列条件中补选一
个,则错误的选法是( )
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,已知点A、D、B、
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
初二数学知识点归纳及例题
初二数学知识点归纳及例题初二数学知识点归纳(人教版)一、三角形。
1. 三角形的三边关系。
- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
- 例如:已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x <8。
- 解析:根据三边关系,5 - 3 < x < 5+3,即2 < x <8。
2. 三角形的内角和定理。
- 三角形内角和为180°。
- 例如:在△ABC中,∠A = 50°,∠B = 60°,则∠C=180° - 50°-60° = 70°。
- 解析:直接利用三角形内角和定理,用180°减去已知的两个角的度数。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
- 例如:在△ABC中,∠ACD是∠ACB的外角,∠A = 50°,∠B = 60°,则∠ACD=50° + 60°=110°。
- 解析:根据外角性质,∠ACD等于∠A与∠B的和。
二、全等三角形。
1. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。
- 解析:因为三边分别相等,满足SSS判定定理。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。
- 解析:两边及夹角对应相等,符合SAS判定定理。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- 例如:在△ABC和△DEF中,∠A = ∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。
- 解析:两角及其夹边相等,满足ASA判定定理。
八年级上册数学第一章知识点加经典例题
八年级上册数学第一章知识点加经典例题Chapter 11.1 Understanding TrianglesXXX:1.XXX.2.XXX.3.XXX.4.Understand the concepts of angle bisectors。
medians。
and altitudes in triangles。
XXX.Key Points:1.n: XXX that are not on the same line and are connected end-to-end。
The symbol "△" is used to represent a triangle。
and a XXX as "△ABC"。
The sum of the r angles of a triangle is 180°.2.Properties: The sum of any two sides of a triangle is greater than the third side。
the difference een any two sides of a triangle is less than the third side (the shortest distance een two points is a straight line)。
Note: XXX line segments can form a triangle。
compare the sum of the two XXX.3.XXX:Acute triangle (all three r angles are less than 90°);Right triangle (one r angle is 90°) (denoted as Rt△ABC);Obtuse triangle (one XXX is greater than 90°).4.Angle bisectors。
人教版八年级上册数学各章知识点及测试题、总复习题
第十一章 全等三角形 1. 全等三角形的性质:2. 全等三角形的判定:3. 角平分线的性质: 4. 角平分线推论:例 1已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE2 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23 如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 4.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):OEDCBA第十二章 轴对称1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60°,12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形 有两个角是60°的三角形是等边三角形。
13.直角三角形中,30°角所对的直角边等于斜边的一半。
(完整)人教版八年级数学上册知识整理与经典例题
八年级数学上册知识总结与相关练习第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。
二、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。
注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(2)“能够完全重合”是指在一定的叠放下,能够完全重合。
2、全等三角形的符号表示、读法△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于” 。
注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。
(2)对应角夹的边是对应边,对应边的夹角是对应角。
(3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。
3、全等三角形的性质全等三角形的对应边相等,对应角相等。
4、三角形全等的识别方法(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS” 。
(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。
(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。
(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。
注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。
5、三角形全等的证明思路找夹角——SAS(1)已知两边都是直角三角形——HL找另一边——SSS找边的对角——AAS(2)已知一边一角找夹角的另一边——SAS找夹边的另一角——ASA(3)已知两角找夹边——ASA找其他任意一边——AAS6、全等变换一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。
初二数学上学期知识点和典型例题总结
全等三角形类型一:全等三角形性质的应用1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.思路点拨: AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解.解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角.总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边.已知两对对应边,第三对边是对应边,对应边所对的角是对应角.举一反三:【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么?【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE,则AB-BE=DB-BC,即AE=CD。
【变式2】如右图,,。
求证:AE∥CF【答案】∴AE∥CF2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数与EC的长。
思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。
解析:在ΔABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为ΔABC≌ΔDEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)。
所以∠DFE=100°EC=EF-FC=BC-FC=FB=2。
总结升华:全等三角形的对应角相等,对应边相等。
举一反三:【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°.求证:(1)CD⊥AB;(2)EF∥AC.【答案】(1)因为ΔACD≌ΔECD,所以∠ADC=∠EDC(全等三角形的对应角相等).因为∠ADC+∠EDC=180°,所以∠ADC=∠EDC=90°.所以CD⊥AB.(2)因为ΔCEF≌ΔBEF,所以∠CFE=∠BFE(全等三角形的对应角相等).因为∠CFE+∠BFE=180°,所以∠CFE=∠BFE=90°.因为∠ACB=90°,所以∠ACB=∠BFE.所以EF∥AC.类型二:全等三角形的证明3、如图,AC=BD,DF=CE,∠ECB=∠FDA,求证:△ADF≌△BCE.思路点拨:欲证△ADF≌△BCE,由已知可知已具备一边一角,由公理的条件判断还缺少这角的另一边,可通过AC=BD而得解析:∵AC=BD(已知)∴AB-BD=AB-AC(等式性质)即 AD=BC在△ADF与△BCE中∴△ADF≌△BCE(SAS)总结升华:利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形,(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式1】如图,已知AB∥DC,AB=DC,求证:AD∥BC【答案】∵AB∥CD∴∠3=∠4在△ABD和△CDB中∴△ABD≌△CDB(SAS)∴∠1=∠2(全等三角形对应角相等)∴AD∥BC(内错角相等两直线平行)【变式2】如图,已知EB⊥AD于B,FC⊥AD于C,且EB=FC,AB=CD.求证 AF=DE.【答案】∵EB⊥AD(已知)∴∠EBD=90°(垂直定义)同理可证∠FCA=90°∴∠EBD=∠FCA∵AB=CD,BC=BC∴AC=AB+BC=BC+CD=BD在△ACF和△DBE中∴△ACF≌△DBE(S.A.S)∴AF=DE(全等三角形对应边相等)类型三:综合应用4、如图,AD为ΔABC的中线。
(完整版)新人教版八年级数学上册知识点总结和经典习题
八年级数学上册知识点总结第十一章三角形、知识框架:二、知识概念:1 .三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形^2 .三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边^3 .高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高^钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高的交点在三角形内,三条高线的交点叫做三角形的垂心4 .中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5 .角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线角形三条角平分线的交点到三边距离相等,三条角平分线的交点叫做内心6 .三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性^(例如自行车的三角形车架利用了三角形具有稳定性)7 .多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形^8 .多边形的内角:多边形相邻两边组成的角叫做它的内角.9 .多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角^10 .多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线^11 .正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12 .平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13 .公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和^性质2:三角形的一个外角大于任何一个和它不相邻的内角^⑶多边形内角和公式:n边形的内角和等于(n 2)• 180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(n 3)条对角线,把多边形分成(n 2)个三角形.②n边形共有n(n 3)条对角线.2经典例题:1. 一个三角形的三个内角中()A.至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°2.如图,△ ABC中,高CD BE、AF相交于点O,则△ BOC的三条高分别为 .3、三角形的一个外角大于相邻的一个内角,则它的形状 ;三角形的一个外角小于相邻的一个内角,则它的形状三角形的一个外角等于相邻的一个内角,则它的形状。
人教版八年级上数学全册知识点复习及练习
第十一章 三角形 1.三角形:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形叫做三角形.
三角形具有稳定性. 2.三角形的内角:三角形的每两条边所组成的角叫做三角形的内角. 3.三角形的外角:三角形的任意一边与另一边的反向延长线所成的角叫三角形的外角. 4.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和
【例8】 三角形的一个外角大于相邻的一个内角,则它是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.不能确定
4 / 32
【例9】 已知一个等腰三角形两内角的度数之比为 1∶4,则这个等腰三角形顶角的度数 为.
【例10】 若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )
C.6,8,9 D.3,3,6
【例4】 设三角形三边之长分别为 3,8,1-2a,则 a 的取值范围为( )
3 / 32
A.-6<a<-3 B.-5<a<-2 C.-2<a<5 D.a<-5 或 a>2
【例5】 如图,AD 是△ABC 的边 BC 上的中线,已知 AB=5cm,AC=3cm,求△ABD与△ACD 的周长之差.
高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对
人教版数学八年级上册知识汇总及练习
人教版数学八年级上册知识汇总及练习(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--八年级上册知识汇总第十一章三角形10.已知AD,AE分别是三角形ABC的中线和高,三角形ABC的周长比三角形ACD的周长大3厘米,且AB=7厘米⑴求AC的长,⑵求△ABD与△ACD的面积关系。
11.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC的度数为12.如图,已知△ABC中,已知∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数。
13.如图,D是△ABC的BC边上一点,且∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数。
14.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:⑴第四个图案中有白色地板砖______块;⑵第n个图案中有白色地板砖 ______块.15.如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,已知AB=6,AD=5,BC=4,求CE的长.第十二章全等三角形重点内容知识要点全等三角形全等形:能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的对应边相等,全等三角形的对应角相等。
全等三角形的判定(1)三边分别相等的两个三角形全等(“边边边”或“SSS”)(2)两边和它们的夹角分别相等的两个三角形全等(“边角边”或“SAS”)(3)两角和它们的夹边分别相等的两个三角形全等(“角边角”或“ASA”)(4)两角和其中一个角的对边分别相等的两个三角形全等(“角角边”或“AAS”)(5)斜边和一条直角边分别相等的两个直角三角形全等(“斜边、直角边”或“HL”)角的平分线的性质角的平分线上的点到角的两边的距离相等。
(人教版)八年级上册第十五章分式知识点总结及练习【精美版】
第十五章 分式一、知识概念: 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bccc±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbbdbd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a cac b dbd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad bdb cbc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nn a a-=(0a ≠,n 是正整数)9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式常考例题精选1.若分式2a+1有意义,则a 的取值范围是 ( ) A.a=0 B.a=1 C.a ≠-1D.a ≠02.把分式方程2x+4=1x 转化为一元一次方程时,方程两边需同乘以 ( ) A.xB.2xC.x+4D.x(x+4)3.分式方程12x −9-2x−3=1x+3的解为 ( ) A.3B.-3C.无解D.3或-34.今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程 ( )A.8 600x= 9 800x+60B.8 600x= 9 800x−60C.8 600x−60=9 800xD.8 600x+60=9 800x5.若分式 2x−1 有意义,则x 的取值范围是 .6.若代数式 2x−1 -1的值为零,则x= ________.7.若关于x 的分式方程xx−1=3a2x−2-2有非负数解,则a 的取值范围是 .8.化简:(a −1a)÷a 2−2a+1a.9.先化简,再求值:(1m −1n )÷m 2−2mn+n 2mn,其中m=-3,n=5.10.某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.先化简,再求值:(x+2x−x−1x−2)÷x−4x −4x+4,其中x 是不等式3x+7>1的负整数解.12.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题: 请求出篮球和排球的单价各是多少元?1.分式1x -1有意义,则x 的取值范围是( ) A .x>1 B .x ≠1 C .x<1 D .一切实数2.下列各分式与ba 相等的是( ) A .b 2a 2 B .b +2a +2 C .aba 2 D .a +b 2a3.下列分式的运算正确的是( ) A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.化简(a +3a -4a -3)(1-1a -2)的结果等于( ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-36.已知关于x 的分式方程m x -1+31-x =1的解是非负数,则m 的取值范围是( )A .m>2B .m ≥2C .m ≥2且m ≠3D .m>2且m ≠37.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( )A .24x +2-20x =1B .20x -24x +2=1C .24x -20x +2=1D .20x +2-24x =18.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b3x +a 的值为0,则a +b= .9.方程5x =7x -2的解是x = .10.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是 .11.关于x 的分式方程m x 2-4-1x +2=0无解,则m = .12.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).13.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.14.先化简(1+1x-2) ÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;15.小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?第1节探究电流与电压、电阻的关系实验(建议时间:20分钟)1. (2019铜仁)小李为了探究“电流与电压的关系”,请你与他合作并完成以下实验步骤.(1)请你在虚线框中设计出相应的电路图.第1题图(2)小李在探究电流与电压的关系时,要控制________不变.通过实验探究,得到以下数据,在进行数据分析时,小李发现表格中有一组错误的数据,请你找出第________组数据是错误的.序号 1 2 3 4 5电压U/V 0.8 1.2 1.6 2.0 2.4电流I/A 0.16 0.24 0.32 0.44 0.48(3)为了分析电流与电压的定量关系,请你利用正确的数据,在坐标中绘制出电流与电压关系的图像.2. (2019巴中)同学们想探究“导体中电流跟导体两端电压的关系”:(1)小明同学通过学习知道了________是形成电流的原因,因此做出了如下三种猜想:A. 电流跟电压成反比B. 电流跟电压成正比C. 电流跟电压无关(2)为了验证猜想,小明设计了如图甲所示的电路图,其中电源为三节新干电池,电阻R为10 Ω,滑动变阻器R标有“50 Ω 1 A”字样,电压表电流表均完好.第2题图实验次数 1 2 3电压U/V 2 2.6 3电流I/A 0.20 0.26 0.30第2题图丙①根据甲电路图将乙图实物电路连接完整;②闭合开关前,小明应将滑动变阻器滑片移到________阻值处(选填“最大”或“最小”);③他检查电路时发现电压表、电流表位置互换了,若闭合开关电流表________(选填“会”或“不会”)被烧坏;④排除故障后小明进行了实验,得到表格中的实验数据.分析数据,可得出的正确结论是:电阻一定时,________________________________.(3)小明还想用这个电路测量小灯泡的额定功率,于是他将电阻R换成一只额定电压是4 V 的小灯泡(阻值约为13 Ω),电阻一定时,并将电压表量程更换为15 V,闭合开关S后,调节滑片至电压表示数为4.0 V时,电流表示数如图丙所示为______A,小灯泡的额定功率为________W.3. (2019临沂)在“探究电流与电阻关系”的实验中,小明依次选用阻值为5 Ω、10 Ω、20 Ω的定值电阻进行实验.第3题图(1)图甲是实验的实物连线图,其中有一条导线连接错误,请在该导线上打“×”并画出正确连线.(2)改正错误后闭合开关,电流表有示数而电压表无示数,电路故障可能是________.(3)排除故障后闭合开关,移动滑动变阻器的滑片至某一位置,电流表的示数如图乙所示,此时电路中的电流为________A.(4)断开开关,将5 Ω的定值电阻换成10 Ω的并闭合开关,此时应将滑动变阻器的滑片向______(选填“左”或“右”)端移动,这一过程中眼睛要一直观察________表示数的变化.(5)下表是实验中记录的数据,分析数据可知:①10 Ω定值电阻的功率为________W.②当导体两端的电压一定时,通过导体的电流与导体的电阻成________比.参考答案第十五章欧姆定律第1节探究电流与电压、电阻的关系实验1. (1)如答图甲所示第1题答图甲(2)电阻 4 (3)如答图乙所示第1题答图乙2. (1)电压(2)①如答图所示②最大③不会④导体中的电流与它两端的电压成正比(3)0.3 1.2第2题答图3. (1)如答图所示(2)R短路 (3)0.4 (4)右电压(5)①0.4 ②反第3题答图第十五章电流和电路摩擦起电:摩擦过的物体具有吸引轻小物体的现象——带电体==本质:电荷的转移正电荷:被丝绸摩擦过的玻璃棒带的电荷种类电荷负电荷:被毛皮摩擦过的橡胶棒带的电荷性质:同种电荷互相排斥,异种电荷互相排斥检验:验电器——原理:同种电荷互相排斥电量:q 单位:库伦简称:库符号:CC元电荷:最小电荷:e=1.6×1019组成:电源、开关、导线、用电器电源:提供电能开关:控制电路通断作用用电器:消耗电能导线:传输电能的路径导体:金属、人体、食盐水两种材料绝缘体:橡胶、玻璃、塑料电流产生条件①电路闭合②保持通路定义:正电荷移动的方向电路电流的方向在电源中电源的正极→用电器→电源的负极1617单位:A −→−310mA −→−310A μ 工具:电流表 ○A测量 使用方法 ①电流表必须和被测的用电器串联 电流的大小(I ) ②看清量程、分度值,不准超过电流表的量程 ③必须正入负出④任何情况下都不能直接连到电源的两极 电路的连接:先串后并,就近连线,弄清首尾 通路:接通的电路 三种状态 断路:断开的电路短路:电流不经过用电器直接回到电源的负极 两种类型:一、电荷1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体具有吸引轻小物体的性质。
(完整版)八年级数学上知识点+习题+答案
(一)三角形部分一、知识点汇总1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。
三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b 表示,顶点A所对的边BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD是△ABC的BC上的中线. 2、BD=DC=0.5BC。
3、AD是ABC的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD是△ABC的∠BAC的平分线.2、∠1=∠2=0。
5∠BAC。
3、AD平分BAC,交BC于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD是△ABC的BC上的高。
2、AD⊥BC于D。
3、∠ADB=∠ADC=90°.4、AD是△ABC的高.注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线.②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外;三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
(完整版)人教版八年级数学上册知识点总结
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。
二、全等三角形注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(2)“能够完全重合”是指在一定的叠放下,能够完全重合。
△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。
注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。
(2)对应角夹的边是对应边,对应边的夹角是对应角。
(3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。
全等三角形的对应边相等,对应角相等。
(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。
(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。
(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。
(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。
注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。
找夹角——SAS(1)已知两边都是直角三角形——HL找另一边——SSS找边的对角——AAS(2)已知一边一角找夹角的另一边——SAS找夹边的另一角——ASA(3)已知两角找夹边——ASA找其他任意一边——AAS一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。
三、角平分线的性质定理及逆定理1、性质定理:角平分线上的点到角的两边距离相等。
注意:(1)定理作用:a.证明线段相等;b.为证明三角形全等准备条件。
(2)点到直线的距离,即点到直线的垂线段的长度。
2、逆定理:在角的内部,到角的两边距离相等的点在角平分线上。
3、三角形的内心利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。
说明:(1)三角形三条角平分线交于一点,这个点到三边的距离相等。
(2)三角形两个外角的角平分线也交于一点,这个点到三边所在的直线的距离相等。
(3)三角形外角角平分线的交点共有3个,所以到三角形三边所在的直线的距离相等的点共有4个。
基础训练一.判断(1)边长相等的正方形都是全等图形;( )(2) 同一面中华人民共和国国旗上,4个小五角星都是全等图形. ( ) (3) 面积相等的两个三角形是全等三角形. ( ) (4) 两个全等三角形的面积相等. ( ) (5) 半径相等的两个圆是全等图形. ( ) 二、选择题:1、在ΔABC 中,∠A=50°,BO 、CO 分别是∠B 、∠C 的平分线,交点是O ,则∠BOC 的度数是( ) A. 600 B. 1000 C. 1150 D. 13002、下列所说的三角形中,必定全等的是( ) A. 各有一个角是45°的两个等腰三角形 B. 两个等边三角形C. 各有一个角是45°,腰长都是3cm 的两个等腰三角形D. 腰和顶角对应相等的两个等腰三角形3、在ABC ∆和C B A '''∆中,B A AB ''=,A A '∠=∠,若证C B A ABC '''∆≅∆还要从下列条件中补选一个,错误的选法是( )AB C D E 1234A D B CE132AB CDA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等10. 如图△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.ΔABD ≌ΔACD B.∠B=∠CC. AD 是∠A 的平分线D. ΔABC 是等边三角形三. 解答题:1、已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB2、 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .3. 已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .4、如图点A 、B 、C 、D 在同一直线上,AD AE ⊥,AD FD ⊥,垂足分别为A 、D ,AE=DF ,AC=BD ,求证:BE=CF 。
5、如图ABD ∆和ACE ∆均为等边三角形,求证:DC=BE 。
6、如图,已知∠1=∠2,∠3=∠4,EC=AD ,求证:AB=BE 。
7、已知:如图 , AB=CD , AD=BC ,O 为BD 中点 , 过O 作直线分别与DA 、BC 的延长线交于E 、F .求证:OE=OF第十二章轴对称一、知识整理1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.对称点的坐标规律(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. (4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.基础训练1.等腰三角形的一边等于5,一边等于12,则它的周长为( )A.22B.29C.22或29D.17 2.如图14-110所示,图中不是轴对称图形的是( )3.在△ABC 中,∠A 和∠B 的度数如下,其中能判定△ABC 是等腰三角形的是( )A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60° 4.如图14-111所示,在△ABC 中,AB=AC ,BD 是角平分线, 若∠BDC=69°,则∠A 等于( )A.32°B.36°C.48°D.52°5. 右图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点, BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ) A.8 m B.4 m C.2 m D.6 m6. 等腰三角形有 条对称轴.等边三角形有 条对称轴.7.在△ABC 中,AB=AC ,∠A+∠B=140°,则∠A= .8. 如图,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC=_______ 9、(1)等腰三角形的一个内角等于130°,则其余两个角分别为 ;(2)等腰三角形的一个内角等于70°,则其余两个角分别为 . 10、分别写出下列各点关于x 轴及y 轴对称的点的坐标:(—2,6) (1,—3) (—5,—12) (6,—1) (0,10) (12,0) 关于x 轴对称___________________________________________________________________________ 关于y 轴对称___________________________________________________________________________三、尺规作图11、如图,△ABC 和△A ´B ´C ´成轴对称图形,试作出对称轴12、作出下面图形关于直线l 的轴对称图形。
13、在右图中找出点P ,使它到M ,N 两点的距离相等,并且到OH ,OF 的距离相等。
ABCC ´A ´B ´14、如下图(左),某地由于居民增多,要在直线公路上建一个公共汽车站,A 、B 为居民区,要求汽车站到两个居民区的距离相等,请找出汽车站应该建在哪里?15、在下图(右)直线上找到一点M ,使它到A 、B 两点的距离和最小。
16、如右图,四边形ABCD 的顶点坐标为A (—5,1),B (—1,1), C (—1,6),D (—5,4), 请分别作出四边形ABCD 关于x 轴及y 轴的对称图形,并写出坐标。
17、某班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO ), AO 桌面上摆满了桔子,BO 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位。
请你帮助他设计一条行走路线,使其所走的总路程最短?四、应用提高18、在△ABC ,BC=BA ,点D 在AB 上,且AC=CD=DB ,求△ABC 各角度数。
19、△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△CBD 的周长为24cm , 求△ABC 的周长。