七年级数学试卷及答案

合集下载

七年级数学全册试卷及答案

七年级数学全册试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 3, 6, 9D. 4, 5, 6, 74. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 45. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若等腰三角形底边长为8,腰长为6,则该三角形的面积是()A. 24B. 28C. 32D. 367. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001D. √-19. 若x + y = 5,x - y = 1,则x的值是()A. 3B. 2C. 1D. 010. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 4二、填空题(每题3分,共30分)11. 若a > b,则a - b > _______。

12. 0.25 + 0.25 + 0.25 + 0.25 = _______。

13. 在直角坐标系中,点B(-3,4)关于原点的对称点是 _______。

14. 等腰三角形底边长为10,腰长为8,则该三角形的周长是 _______。

15. 若等边三角形的边长为a,则该三角形的面积是 _______。

16. 下列各数中,绝对值最小的是 _______。

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。

11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。

新版七年级数学试卷及答案

新版七年级数学试卷及答案

#### 一、选择题(每题4分,共20分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -5/22. 下列各数中,绝对值最小的是()A. -2B. 2C. -3D. 33. 若a > b,那么下列不等式中一定成立的是()A. a + 2 > b + 2B. a - 2 > b - 2C. 2a > 2bD. a - 2 < b - 24. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (2, -3)D. (-2, 3)5. 一个长方形的长是8厘米,宽是5厘米,那么它的周长是()A. 18厘米B. 23厘米C. 30厘米D. 40厘米#### 二、填空题(每题5分,共20分)6. 如果a = 5,b = -3,那么a + b的值是______。

7. 下列各数中,-5的倒数是______。

8. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么这个三角形的周长是______厘米。

9. 若x = 2,那么方程2x - 3 = 5的解是______。

10. 在数轴上,点A表示的数是-4,点B表示的数是2,那么点A和点B之间的距离是______。

#### 三、解答题(每题10分,共30分)11. (解答题)计算下列各式的值:(1) 3a - 2b + 4a - b(2) (2x + 3y) - (x - 2y)12. (解答题)解下列方程:(1) 5x - 2 = 3x + 7(2) 2(x - 3) = 4x + 113. (解答题)已知一个等边三角形的边长为10厘米,求这个三角形的周长。

#### 四、应用题(每题10分,共20分)14. (应用题)小明家离学校500米,他每天上学和放学的路程相同。

如果他以每分钟80米的速度走,求小明从家到学校需要多少时间?15. (应用题)一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求这个长方体的体积。

人教版七年级期末数学试卷【含答案】

人教版七年级期末数学试卷【含答案】

人教版七年级期末数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 492. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?()A. 7厘米B. 23厘米C. 17厘米D. 24厘米3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 三角形4. 下列哪个数是偶数?()A. 101B. 102C. 103D. 1045. 下列哪个数是立方数?()A. 27B. 28C. 29D. 30二、判断题1. 任何两个奇数相加的和都是偶数。

()2. 三角形的内角和等于180度。

()3. 任何两个偶数相乘的积都是偶数。

()4. 1是质数。

()5. 矩形的对角线相等。

()三、填空题1. 2的平方根是______。

2. 三角形的内角和等于______度。

3. 两个质数相乘的积是______数。

4. 6的立方是______。

5. 矩形的对边相等且______。

四、简答题1. 请简述质数的定义。

2. 请简述三角形内角和的性质。

3. 请简述偶数的性质。

4. 请简述立方数的性质。

5. 请简述矩形的性质。

五、应用题1. 已知一个三角形的两边分别是10厘米和15厘米,求第三边的长度。

2. 一个正方形的边长是8厘米,求它的面积。

3. 一个长方形的长是10厘米,宽是6厘米,求它的面积。

4. 求25的平方根。

5. 求8的立方。

六、分析题1. 分析并证明三角形的内角和等于180度。

2. 分析并证明矩形的对角线相等。

七、实践操作题1. 画出一个边长为5厘米的正方形,并标出它的对角线。

2. 画出一个长为8厘米,宽为6厘米的长方形,并标出它的对角线。

八、专业设计题1. 设计一个三角形,其中两个内角的度数分别是60度和70度,并计算第三个内角的度数。

2. 设计一个长方形,其中长是10厘米,宽是5厘米,并计算它的面积。

3. 设计一个正方形,其中边长是8厘米,并计算它的对角线长度。

七年级上册数学试卷题【含答案】

七年级上册数学试卷题【含答案】

七年级上册数学试卷题【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 24厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

()2. 所有的等边三角形都是等腰三角形。

()3. 一个数的因数一定比这个数小。

()4. 一个数的倍数一定比这个数大。

()5. 所有的偶数都是2的倍数。

()三、填空题(每题1分,共5分)1. 5的倍数有:______、______、______、______、______。

2. 2的因数有:______、______。

3. 一个长方体的长是8厘米,宽是6厘米,高是4厘米,它的体积是______立方厘米。

4. 如果一个等腰三角形的周长是20厘米,腰长是8厘米,那么底边长是______厘米。

5. 0.25化成分数是______。

四、简答题(每题2分,共10分)1. 请列举出5个合数。

2. 请解释什么是等腰三角形。

3. 请说明什么是因数和倍数。

4. 请解释什么是质数。

5. 请说明什么是长方体的表面积。

五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。

2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。

3. 请找出25以内的所有质数。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

河北省保定市唐县2023-2024学年七年级上学期期末数学试题(含答案)

2023-2024学年第一学期学业质量检测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟。

2.答题前,考生务必将姓名、准考证号填写在答题卡的相应位置。

3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效。

答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。

4.答选择题时,用2B 铅笔将答题卡上对应题目的标准答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题一、选择题(本大题有16小题,共42分。

1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合要求的)1.把写成省略括号的代数和的形式,正确的是( )A .B .C .D .2.“力箭一号”()运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了( )A .点动成线B .线动成面C .面动成体D .面面相交成线3.武老师在实验室里检测了A 、B 、C 、D 四个湿敏电阻器的质量(单位:克),超过标准质量的记为正数,不足标准质量的记为负数,结果如图所示,其中最接近标准质量的是()A .B .C .D .4.算式的值最小时,中填入的运算符号是()A .B .C .D .5.对于下列各数:,0,,,,8,其中说法错误的是( )A .,0,8都是整数B .分数有,,C .正数有,,8D .是负有理数,但不是分数6.“多少事,从来急;天地转,光阴迫.一万年太久,只争朝夕.”伟人毛泽东通过这首《满江红·和郭沫若同志》告诉我们青年学生:要珍惜每分每秒,努力工作,努力学习.一天时间为86400秒,用科学记数法表示这一数字是( )A .B .C .D .7.下列四个图中,能用、、三种方法表示同一个角的是()()()345---+-345--345---345-+345--+ZK 1A -21-□□+-⨯÷5-920.2-10%5-920.2-10%9210%0.2-286410⨯58.6410⨯48.6410⨯50.86410⨯1∠AOB ∠O ∠A .B .C .D .8.下列说法正确的是()A .与是同类项B .单项式的系数是5C .一个两位数,十位上的数字是,个位上的数字是,则这个两位数是D .用四舍五入法把25.395精确到0.01的近似数是25.49.为加快唐县城市更新改造,全面推进全县基础设施建设,提升城市档次和品位,2023年10月起,唐尧路开始封闭施工工程.其中某条地下管线如果由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天,现计划由乙工程队先从一端铺设5天,然后增加甲工程队从另一端和乙工程队同时铺设.设甲乙工程队共同铺设x 天后,恰好完成这条地下管线的铺设,则下列方程正确的是( )A.B .C .D .10.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“学”字相对的字是()A .考B .试C .加D .油11.下列各式中不能表示图中阴影部分面积的是()A .B .C .D .12.随着科技的发展,在公共区域内安装“智能全景摄像头”成为保护人民生命财产安全的有效手段.如图1所示,这是某仓库的平面图,点Q 是图形内任意一点,点是图形内的点,连接,若线段总是在图形内或图形上,则称是“完美观测点”,此处便可安装摄像头,而不是“完美观测点”.233x y 32x y -5ab -a b 10a b +512030x+=513020x +=51202030x x ++=51302030x x ++=()232x x++25x x+()()322x x x ++-()36x x ++360︒1P 1PQ 1PQ 1P 2P图1 图2如图2,以下各点是完美观测点的是( )A .B .C .D .13.在数轴上,点在原点O 的同侧,分别表示数a ,1,将点向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( )A .3B .2C .D .014.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方-九宫格,把1-9这9个数填入方格中,使每一横行,每一竖列以及两条斜对角线上的数之和都相等.如图是一个未完成的“幻方”,则其中x 的值是()14题图A .3B .4C .5D .615.为全力推进农村公路快速发展,解决农村出行难问题,现将三村连通的公路进行硬化改造,如图,铺设成水泥路面.已知B 村在A 村的北偏东方向上,.则村在村的( )方向上.15题图A .北偏东B .北偏西C .西偏东D .南偏西16.已知三条射线,若其中一条射线平分另两条射线所组成的角时,我们称组成的图形为“角分图形”.如图(1),当平分时,图(1)为角分图形.1M 2M 3M 4M ,A B A 1-33⨯A B C 、、65︒100ABC ∠=︒C B 15︒15︒45︒15︒OA OB OC 、、OA OB OC 、、OB AOC ∠如图(2),点O 是直线MN 上一点,,射线OM 绕点O 以每秒的速度顺时针旋转至,设时间为,当为何值时,图中存在角分图形.小明认为,小亮认为.你认为正确的答案为()图(1) 图(2)A .小明B .小亮C .两人合在一起才正确D .两人合在一起也不正确二、填空题(本大题共3小题,17~18题每空2分,第19题3分,共11分.)17.(1)如图,O 是直线上一点,,则的度数等于______.(2)一件工艺品按成本价提高后,以108元售出,则这件工艺品的成本是______元.18.“这么近,那么美,周末到河北。

七年级数学全部试卷及答案

七年级数学全部试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. -3.2C. 0D. 1.2答案:D2. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 梯形答案:B3. 下列代数式中,同类项是()A. 3x^2yB. 2xyC. 4x^2D. 5y^2答案:B4. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm^2B. 32cm^2C. 48cm^2D. 64cm^2答案:A5. 如果a=3,b=-2,那么2a-b的值是()A. 1B. 5C. -1D. -5答案:B6. 下列各数中,能被3整除的是()A. 16B. 27C. 34D. 49答案:B7. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形答案:B8. 一个长方形的长是10cm,宽是5cm,那么它的周长是()A. 25cmB. 30cmC. 35cmD. 40cm答案:B9. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 1答案:A10. 下列方程中,解为x=3的是()A. 2x+1=7B. 3x-2=5C. 4x+3=11D. 5x-1=13答案:A二、填空题(每题3分,共30分)11. 有理数-3的相反数是__________。

答案:312. 下列各数中,负数是__________。

答案:-213. 下列图形中,有3条对称轴的是__________。

答案:正方形14. 下列各数中,绝对值最小的是__________。

答案:015. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________。

答案:22cm16. 如果a=2,b=3,那么a^2+b^2的值是__________。

答案:1317. 下列各数中,能被5整除的是__________。

答案:2518. 下列图形中,中心对称图形是__________。

数学七年级上试卷及答案

数学七年级上试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. √4C. √-1D. π2. 下列各数中,无理数是()A. 0.5B. 1/2C. √2D. -23. 下列各数中,既是正数又是整数的是()A. -3B. 0C. 3.5D. -2/34. 若a、b为相反数,则a+b等于()A. 0B. aC. bD. ab5. 下列各数中,负数是()A. 0.01B. -0.01C. 1.01D. 0.0016. 若a、b、c成等差数列,且a+b+c=0,则b等于()A. 0B. aC. cD. ab7. 下列各式中,正确的是()A. a² = aB. (a+b)² = a² + b²C. (a-b)² = a² - b²D. (a+b)² = a² + 2ab + b²8. 若x²=4,则x的值为()A. ±2B. ±4C. ±1D. ±39. 下列各式中,分式有意义的是()A. 1/(x-1)B. 1/(x²-x)C. 1/(x²+1)D. 1/(x²-x+1)10. 若x²=9,则|x|等于()A. 3B. -3C. ±3D. 0二、填空题(每题3分,共30分)11. 若a=2,则a²+2a+1等于______。

12. 若x=5,则x²-3x+2等于______。

13. 若a+b=0,则a²+b²等于______。

14. 若a、b、c成等差数列,且a+b+c=0,则b等于______。

15. 若x²=16,则x等于______。

16. 若x²=25,则|x|等于______。

17. 若x²-5x+6=0,则x等于______。

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。

()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。

9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。

七年级数学上册期末试卷(附答案)

七年级数学上册期末试卷(附答案)

七年级数学上册期末试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 将▱ABCD沿对角线AC折叠, 使点B落在B′处, 若∠1=∠2=44°, 则∠B为()A. 66°B. 104°C. 114°D. 124°3.如图, ∠1=68°, 直线a平移后得到直线b, 则∠2﹣∠3的度数为()A. 78°B. 132°C. 118°D. 112°4. 下列说法正确的是()A.一个数前面加上“-”号, 这个数就是负数B. 零既是正数也是负数C.若是正数, 则不一定是负数D. 零既不是正数也不是负数5.点A在数轴上, 点A所对应的数用表示, 且点A到原点的距离等于3, 则a的值为()A. 或1B. 或2C.D. 16.下列二次根式中, 最简二次根式的是()A. B. C. D.7.明月从家里骑车去游乐场, 若速度为每小时10km, 则可早到8分钟, 若速度为每小时8km, 则就会迟到5分钟, 设她家到游乐场的路程为xkm, 根据题意可列出方程为()A. B.C. D.8. 6的相反数为A. -6B. 6C.D.9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 下列判断正确的是()A. 任意掷一枚质地均匀的硬币10次, 一定有5次正面向上B. 天气预报说“明天的降水概率为40%”, 表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次, 投中”为随机事件D. “a是实数, |a|≥0”是不可能事件二、填空题(本大题共6小题, 每小题3分, 共18分)1.已知, 则=________.2. 如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3. 在关于x、y的方程组中, 未知数满足x≥0, y>0, 那么m的取值范围是_________________.4.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.5. 2的相反数是________.6. 如果, 那么代数式的值是________.三、解答题(本大题共6小题, 共72分)1. 求满足不等式组的所有整数解.2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 如图, 在平面直角坐标系中, 已知点A(0, 4), B(8, 0), C(8, 6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m, 1), 且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4. 如图, 已知A.O、B三点共线, ∠AOD=42°, ∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD, 求∠COE的度数.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作, 无人化是自动驾驶的终极目标. 某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场. 今年每辆无人驾驶出租车的改装费用是50万元, 预计明年每辆无人驾驶出租车的改装费用可下降.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、D4、D5、A6、C7、C8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002.90°3.-2≤m<34.53°5、﹣2.6、5三、解答题(本大题共6小题, 共72分)1、不等式组的解集:-1≤x<2, 整数解为:-1, 0, 1.2.(1)3a2-ab+7;(2)12.3.(1)24;(2)P(﹣16, 1)4.(1)∠BOD =138°;(2)∠COE=21°.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。

七年级数学期末考试试卷(含答案)

七年级数学期末考试试卷(含答案)

七年级数学期末考试试卷(含答案)第一部分:选择题(每小题2分,共40分)1.在下列各组数中,只有一个数是奇数的是()A. 15 ,10 ,14B. 28 ,65 ,75C. 105 ,77 ,49D.72 ,39 ,172.已知正方形边长为a,它的面积是()A. a*aB. 2aC. a^2/2D. a^23.简化下列代数式:3(x + 2y) - 2(4x - y)的结果是()A. -6x + 7yB. 6x - 7yC. -6x - 7yD. 6x + 7y4.下列哪一个数字是一个质数()A. 6B. 10C. 14D. 195.已知取得了一个300分的精简,这个数在什么范围内()A. (200, 300]B. (100, 300]C. (100, 200]D. (200, 400)...(省略部分)第二部分:填空题(每小题3分,共30分)11.请用约简的形式填写下列小数:= 0.5 × 0.4 × 0.812.已知数a = 12 - 3 × 4,求a的值。

13.求下列方程的解:(2/3)x + 5 = 914.请用算术平方根填写下列空白:121 = ()^215.已知正方形的面积是49平方米,求它的边长。

...(省略部分)第三部分:应用题(共30分)21.运动会比赛开始的第一天,白队赢了4场,数目还是蓝队多。

接下来的每一天都有比赛,白队每天赢蓝队1场,第5天比赛结束时,两队有相同数目的胜利。

求第一天开始的时候,白队和蓝队各自赢了多少场比赛?22.某商店水果销售统计,根据收入金额和销售数量绘制了下图,其中横轴表示销售数量(x),纵轴表示收入金额(y)。

请根据图中的数据回答以下问题:![](chart.png)a) 当销售数量为5时,收入金额是多少?b) 黄线代表苹果的销售情况,当销售数量为2时,收入金额是多少?c) 根据图中的数据,苹果的单价是多少?...(省略部分)答案第一部分:选择题1. C2. D3. C4. D5. B...第二部分:填空题11. 0.1612. 013. x = 614. 1115. 7...第三部分:应用题21. 白队赢了6场,蓝队赢了2场22.a) 150b) 35c) 15请按照上述格式设置试卷内容,试卷答案可以根据实际情况修改或增加。

2023-2024学年河北省石家庄市桥西区七年级上学期期末数学试卷及参考答案

2023-2024学年河北省石家庄市桥西区七年级上学期期末数学试卷及参考答案

石家庄市桥西区2023~2024学年度第一学期期末质量监测七年级数学注意事项:本试卷共6页,总分100分,考试时间90分钟.一、选择题(本大题共16个小题,共32分,每小题2分.在每个小题给出的四个选项中只有一项是符合要求的.)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若收入100元记作+100元,则支出37元记作( ) A.+137元 B.0元 C.+37元 D.-37元2.如果1x =是关于x 的方程325x m -=的解,则m 的值是( ) A.-1B.1C.2D.-23.代数式2x -的意义可以是( )A.-2与x 的和B.-2与x 的差C.-2与x 的积D.-2与x 的商4.要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是( ) A.过一点有无数条直线 B.线段中点的定义 C.两点之间线段最短 D.两点确定一条直线5.下列说法正确的是( ) A.22x -的系数是2B.32xy+是单项式 C.8既是单项式,也是整式 D.x 的次数是0 6.已知2018A ∠=︒',若A ∠与B ∠互余,则B ∠=( )A.69°82′B.69°42′C.159°82′D.159°42′7.已知有理数a ,b 在数轴上的位置如图所示,下列结论正确的是( )A.a b >B.0ab <C.0b a ->D.0a b +>8.如图,用尺规作NCB AOC ∠=∠,作图痕迹中弧FG 是( )A.以点C 为圆心,OD 为半径的弧B.以点C 为圆心,DM 为半径的弧C.以点E 为圆心,OD 为半径的弧D.以点E 为圆心,DM 为半径的弧9.下图为小亮某次测试的答卷,每小题20分,他的得分应是( )A.100分B.80分C.60分D.40分10.如图,将ABC △绕点A 顺时针旋转90°到ADE △,若50BAC ∠=︒,则CAD ∠=( )A.90°B.50°C.40°D.30°11.若代数式22y y -的值为3,则代数式2635y y -+的值等于 A.14B.9C.8D.-412.如图是一个计算程序图,若输入x 的值为6,则输出的结果是( )A.-18B.18C.-66D.66 13.某文具店店庆促销,单价为100元的书包,打x 折后,每个再减10元,降价后售价为70元.则x 的值为( ) A.六 B.七 C.八 D.九14.按如图的方法折纸,下列说法不正确...的是( )A.1∠与3∠互余B.290∠=︒C.1∠与AEC ∠互补D.AE 平分BEF ∠15.正方形ABCD 的边长2AB =,其顶点A 在数轴上且表示的数为-1,若点E 也在数轴上且AB AE =,则点E 所表示的数为( ) A.-3B.3C.-3或1D.-3或316.射线OC 在AOB ∠的内部,图中共有3个角:AOB ∠,AOC ∠和BOC ∠,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB ∠的“巧分线”.关于“巧分线”有下列4种说法: ①一个角的平分线是这个角的“巧分线” ②一个角的“巧分线”只有角平分线这一条③40AOC ∠=︒,20BOC ∠=︒,则射线OC 是AOB ∠的“巧分线”④若60AOB ∠=︒,且射线OC 是AOB ∠的“巧分线”,则20BOC ∠=︒或30°其中正确的有( ) A.1.个B.2个C.3个D.4个二、填空题(本大题有3个小题,共10分.17、18题每题3分,19题每空2分)17.比较大小:-7__________-9(用“>,<”或“=”号填空);18.定义一种新运算:2*3a b a b =-,如22*12311=-⨯=,则()*(1)2--的结果为__________;19.如图,在直角三角形ABC 中,90A ∠=︒,10cm AB =,5cm AC =,点P 从点A 开始以2cm /s 的速度向点B 移动,点Q 从点C 开始以3cm /s 的速度沿C →A →B 的方向移动.如果点P ,Q 同时出发,P 点到达B 点时,P ,Q 两点都停止运动,移动时间用t (s )表示.(1)当点Q 在AC 上运动时,AQ =___________(用含t 的代数式表示); (2)当QA AP =时,t =___________.三、解答题(本大题共7个小题,共58分.20~24题每题8分,25题、26题每题9分.解答应写出文字说明、证明过程或演算步骤)20.计算(本小题满分8分) (1)()75---;(2)1171631224⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 21.解方程(本小题满分8分) (1)()3224x x -+=; (2)123132x x ---=. 22.(本小题满分8分)如图,线段8AB =,点D 是线段AB 上一点,且2BD =,点C 是线段AD 的中点.(1)求线段BC 的长;(2)若E 是线段AB 上一点,且满足CE DB =,求AE 的长.23.(本小题满分8分)先化简,再求值:()()22222322a b ab a b ab a b --+-,其中21303a b ⎛⎫++-= ⎪⎝⎭.24.(本小题满分8分)现有甲、乙、丙三种正方形和长方形卡片各若干张,如图1所示(1a >).小明分别用6张卡片拼出了如图2和图3的两个长方形(不重叠无缝隙),其面积分别为1S ,2S .(1)请用含a 的式子分别表示1S ,2S ; (2)当3a =时,通过计算比较1S 与2S 的大小. 25.(本小题满分9分)某班举行了演讲活动,班长安排淇淇去购买奖品,下图是淇淇与班长的对话:淇淇 班长 请根据淇淇与班长的对话,解答下列问题:(1)若找回55元钱,则淇淇买了两种笔记本各多少本?(2)可能找回68元钱吗?若能,求出此时买了两种笔记本各多少本;若不能,说明理由. 26.(本小题满分9分)如图1,将一副直角三角板摆放在直线AD 上(直角三角板OBC 和直角三角板MON ),OBC MON ∠=∠90=︒,45BOC ∠=︒,30MNO ∠=︒,保持三角板OBC 不动,将三角板MON 绕点O 以每秒10°的速度顺时针旋转(如图2),旋转时间为t (09t <<)秒.计算 当OM 平分BOC ∠时,求t 的值;判断 判断MOC ∠与NOD ∠的数量关系,并说明理由;操作 若在三角板MON 开始旋转的同时,另一个三角板OBC 也绕点O 以每秒5°的速度顺时针旋转,当三角板MON 停止时,三角板OBC 也停止,直接写出在旋转过程中,MOC ∠与NOD ∠的数量关系.2023~2024学年度第一学期期末质量监测七年级数学试题参考答案一、选择题(本大题共16个小题,共32分,每小题2分.在每个小题给出的四个选项中,只有一项是符合要求的.二、填空题(本大题有3个小题,共10分.17、18题每题3分,19题每空2分)17.> 18.7 19.(1)53t - (2)1或5三、解答题(本大题共7个小题,共58分.20~24题每题8分,25题、26题每题9分.解答应写出文字说明、证明过程或演算步骤)20.计算(本小题满分8分)解:(1)()75752---=-+=- ······························································································ 4分 (2)()1171117246312246312⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1172424246312=⨯-⨯+⨯ ······································································································ 6分 481410=-+= ···················································································································· 8分 21.解方程(本小题满分8分) (1)()3224x x -+=3624x x -+=······················································································································ 2分 2x = ·································································································································· 4分 (2)123132x x ---= ()()213236x x ---= ·········································································································· 6分 22696x x --+=14x =·································································································································· 8分 22.(本小题满分8分)解:(1)∵8AB =,2BD =,∴826AD AB BD =-=-=.∵点C 是线段AD 的中点,∴132CD AC AD ===. ∴235BC BD CD =+=+=. ·································································································· 4分 (2)∵2BD =,CE BD =,∴2CE =. ··················································································· 6分 当E 在C 的左边时,321AE AC CE =-=-=; ········································································ 7分 当E 在C 的右边时,325AE AC CE =+=+=. ········································································· 8分 ∴AE 的长为1或5. 23.(本小题满分8分)解:()()22222222222322342a b ab a b ab a b a b ab a b ab a b ab --+-=-++-=. ······························· 4分∵21|3|03a b ⎛⎫++-= ⎪⎝⎭,∴3a =-,13b =. ·············································································· 6分∴原式211133393⎛⎫=-⨯=-⨯=- ⎪⎝⎭. ···························································································· 8分24.(本小题满分8分)解:(1)2132S a a =++,251S a =+. ····················································································· 4分 (2)当3a =时,21333220S =+⨯+=,253116S =⨯+=. ························································ 6分 ∵2016>,∴12S S >. ············································································································ 8分 25.(本小题满分9分)解:(1)设买x 本5元的笔记本,则买()40x -本8元的笔记本,根据依题意,得()584030055x x +-=-, ················································································ 2分 解得25x =, ························································································································ 4分 则4015x -=(本). ·············································································································· 5分 答:淇淇买了5元的笔记本25本,8元的笔记本15本. (2)不能设买y 本5元的笔记本,则买()40y -本8元的笔记本,根据题意,得()584030068y y +-=-, ·················································································· 7分 解得883y =, ······················································································································· 8分 ∵883不是整数,∴不能找回68元. ···························································································· 9分26.(本小题满分9分)解:计算∵45BOC ∠=︒,OM 平分BOC ∠ ∴122.52BOM BOC ︒∠=∠= ∵三角板MON 绕点O 以每秒10°的速度顺时针旋转,∴22.510 2.25︒÷︒=.∴t 的值为2.25. ························································································· 4分 判断当0 4.5t <≤时,如图1图1据题意,得10BOM t ∠=︒∴4510MOC BOC BOM t ∠=∠-∠=︒-︒ ∵90MON ∠=︒∴1809010NOD MON BOM t ∠=︒-∠-∠=︒-︒∴45NOD MOC ∠-∠=︒ ······································································································· 6分 当4.59t <<时,如图2图2 据题意,得10BOM t ∠=︒∴1045MOC BOM BOC t ∠=∠-∠=︒-︒ ∵90MON ∠=︒∴1809010NOD MON BOM t ∠=︒-∠-∠=︒-︒∴45NOD MOC ∠+∠=︒; ···································································································· 8分 操作12MOC NOD ∠=∠. ········································································································ 9分。

报纸试卷七年级数学答案

报纸试卷七年级数学答案

1. 答案:C解析:根据题意,2的平方是4,4的平方是16,所以2的平方根是4的平方根,即2。

2. 答案:A解析:正比例函数的图像是一条直线,且过原点。

3. 答案:D解析:等腰三角形的两腰相等,所以底边上的高也是等腰三角形的中线,同时也是底边上的中点。

4. 答案:B解析:根据勾股定理,直角三角形的两条直角边长分别为3和4,斜边长为5。

5. 答案:C解析:平面直角坐标系中,点到原点的距离就是该点的坐标的平方和的平方根。

二、填空题6. 答案:-2解析:根据题意,2的相反数是-2。

7. 答案:8解析:3的平方是9,9减去1等于8。

8. 答案:5解析:根据题意,5的平方根是±5。

9. 答案:2解析:2的平方是4,4的平方根是2。

10. 答案:15解析:根据题意,15的平方根是±15。

11. 解答:设甲的速度为x千米/小时,则乙的速度为2x千米/小时。

根据题意,甲乙两人相遇的时间相同,即:甲行驶的距离 = 乙行驶的距离2x t = x t + 30解得:x = 30所以甲的速度是30千米/小时,乙的速度是60千米/小时。

12. 解答:设这个数的个位数字为x,则十位数字为x+1。

根据题意,这个数是两位数,且十位数字是2倍个位数字,即: 10(x+1) + x = 2x + 2解得:x = 2所以这个数是22。

13. 解答:根据题意,三角形的底边长为10厘米,高为5厘米。

根据三角形的面积公式,面积S = 底边长高 / 2代入数值计算得:S = 10 5 / 2 = 25平方厘米。

14. 解答:设这个数为x,则根据题意,x + 2 = 3x - 4解得:x = 3所以这个数是3。

15. 解答:根据题意,甲乙两人相距5米,甲的速度为2米/秒,乙的速度为3米/秒。

根据追及问题的公式,追及时间 = 追及距离 / 速度差代入数值计算得:追及时间 = 5 / (3 - 2) = 5秒。

以上是本次报纸试卷七年级数学的答案及解析,希望对同学们有所帮助。

七年级数学试卷人教版【含答案】

七年级数学试卷人教版【含答案】

七年级数学试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 任何一个偶数都能被2整除。

()2. 1是质数。

()3. 三角形的内角和等于180度。

()4. 两个负数相乘的结果是正数。

()5. 1千克等于1000克。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个正方形的周长是24厘米,那么它的边长是______厘米。

3. 如果x=5,那么3x-2的值是______。

4. 1千米等于______米。

5. 5的立方是______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 什么是质数?请举例说明。

3. 如何计算长方体的体积?4. 请解释最简分数的概念。

5. 请说明如何解一元一次方程。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。

2. 如果一个数加上8后等于15,那么这个数是多少?3. 一个正方形的边长是6厘米,请计算它的周长。

4. 请计算1/2、1/3和1/4的和。

5. 如果x=4,那么2x+3的值是多少?六、分析题(每题5分,共10分)1. 请分析并解释为什么三角形内角和等于180度。

2. 请分析并解释为什么两个负数相乘的结果是正数。

七、实践操作题(每题5分,共10分)1. 请画出一个边长为5厘米的正方形,并计算它的面积。

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.我国的长城始建于西周时期,被国务院确定为全国重点文物保护单位.长城总长约6700000米.数据6700000用科学记数法表示应为()A. B. C. D.3.若数在数轴上表示的点的位置如图所示,则下列结论正确的是()A. B. C. D.4.下列说法中正确的是()A.是单项式B.的系数是C.是二次二项式D.与是同类项5.下列选项中,计算错误的是.()A. B.C. D.6.若是关于x的方程的解,则m的任是.()A. B. C. D.87.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为.()A. B. C. D.8.如图,OA 的方向是北偏东,OB 的方向是西北方向,若,则OC 的方向是.()A.北偏东B.北偏东C.北偏东D.北偏东9.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是.()A. B. C. D.10.某商店在甲批发市场以每包m 元的价格进了60包茶叶,又在乙批发市场以每包n 元的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店的盈亏情况为.()A.盈利元B.亏损元C.盈利元D.没盛利也没亏损二、填空题:本题共8小题,每小题2分,共16分。

11.一个单项式含有字母x 和y ,系数是2,次数是3,这个单项式可以是__________.12.比较大小:__________,__________填“>”“=”或“<”号13.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房,求该店有客房多少间?设该店有客房x 间,则可列方程为__________.14.如图,O 是直线AB 上一点,若,则__________.15.如图,C 为线段AD 上一点,点B 为CD 的中点,且,则__________16.已知点是数轴上的两个点,点A到原点的距离等于3,点B在点A左侧,并且距离A点2个单位长度,则点B表示的数是__________.17.已知a,b是常数,若的项不含二次项,则__________.18.对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到,则称为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为例如523为325的“倒序数”,__________;对于任意三位数满足:的值是__________.三、计算题:本大题共2小题,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(满分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入答题纸中表格相应的空格 ) 1.下列各数是无理数的是( ▲ ) A .-2 B .227C .0.010010001D . π 2.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高( ▲ ) A.-3℃ B. 7℃ C. 3℃ D.-7℃3.下列运算中,正确的是( ▲ )A .b a b a b a 2222=+- B .22=-a a C .422523a a a =+ D .ab b a 22=+4.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四 位同学补画,其中正确的是 ( ▲ )A.B.C.D.5.把方程20.3120.30.7x x +--=的分母化为整数,结果应为( ▲ ) A. 231237x x +--= B. 10203102037x x +--=C. 1020310237x x +--=D. 2312037x x +--=6.如图,AD ⊥BC ,ED ⊥AB ,表示点D 到直线AB 距离的是( ▲ ) A .线段AD 的长度B .线段AE 的长度C .线段BE 的长度AED .线段DE 的长度7.下列说法中:①棱柱的上、下底面的形状相同;②若AB =BC ,则点B 为线段AC 的中点; ③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线 上各点连接的所有线段中,垂线段最短。

正确的有( ▲ )A .1个B .2个C .3个D .4个8.如图,由白色小正方形和黑色小正方形组成的图形.则第6个图形中白色小正方形和黑 色小正方形的个数总和等于( ▲ )A.60B.58C.45D.40二、填空题(每题3分,计30分,请把你的正确答案填入答题纸中相应的横线上) 9.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是 吨. 10.单项式34a b π-的次数是 次.11.如果A 2618'∠=︒,那么A ∠的余角为 °(结果化成度).12.已知3x y -=,则()()12+-+-x y y x 的值为___________ .13.用边长为1的正方形,做了一套七巧板,拼成如图(1)所示的图形,则图②中阴影部 分的面积为 .14.取一长方形纸片,按图(2)中所示的方法折叠一角,得到折痕EF ,如果∠DFE =36°, 则∠DFA = °. 15.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%; 乙超市连续两次降价15%;丙超市一次降价30%。

那么顾客到_____________家超市购买这种商品更合算.16.某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转90°,则2图()图(1)①②结果指针的指向是 .(指向用方位角表示)17. 在同一平面已知∠AOB =80°,∠BOC =20°,OM 、ON 分别是∠AOB 和∠BOC 的平分线,则∠MON 的度数是 .18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→ 4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2014次“移位”后,他到达编号为 的点. 三、简答题(本大题共10题,满分96分) 19.计算(本题满分10分)(1) 18(14)(18)13-+---- (2)4211(1)33(3)2---÷⨯--20.解下列方程(本题满分10分)(1)5(2)1x x --= (2) 1615312=--+x x21.(本题满分8分)有这样一道题:求2222211(231)3()(53)93x xy x xy x -----+-,其中2,3x y =-=.有位同学把2x =-错抄成2x =,但他的计算结果也是正确的,试通过计算说明其中的道理. 22.(本题满分8分)已知AB =10cm ,点C 在直线AB 上,如果 BC =4cm ,点D 是线段AC 的中点, 求线段BD 的长度 .下面是马小虎同学解题过程 解:根据题意可画出右图AC=AB+BC=10+4=14 cm∵点D 是线段AC 的中点172DC AC cm ∴== =3cm BD DC BC =-∴12345若你是老师,会判马小虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.23.(本题满分8分)利用直尺..画图(1)利用图1中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3) 如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.24.(本题满分10分)如图,是由一些棱长为单位.....1.的相同的小正方体组合成的简单几何体.(1)图中有块小正方体;(2)请在下面方格纸中分别画出几何体的主视图、左视图和俯视图.(3)如果在其表面涂漆,则要涂平方单位.(几何体放在地上,底面无法涂上漆)25. (本题满分10分)图(1)图(2)(1)根据表中所给,a b 的值,计算2()a b -与222a ab b -+的值,并将计算结果填入表中:a1 2 3 4 b—1 1 —2 6 2()a b -222a ab b -+(2)结合(1)的计算结果,你能够得出的结论为(用含b a ,的式子表示): . (3)请你利用你发现的结论进行简便运算:2212.3456789212.3456789 2.3456789 2.3456789-⨯⨯+26.(本题满分10分)因课外阅读需要,学校图书馆向出版商邮购某系列图书,每本书单价为20元,邮购总费用包括书的价钱和邮费.相关的书价折扣、邮费如下表所示.数量 折扣 邮费(元/次)不超过10本 九折 6元超过10本八折实际总书价的10%(1)若一次邮购8本,共需总费用为 元.若一次邮购12本,共需总费用为 元.(2)已知图书馆需购书的总数是10的整数倍,且超过10本.①若分次邮购、分别汇款,每次邮购10本,总费用为930元时,共邮购了多少本书? ②如果图书馆需购书的总数为60本,若你是图书馆负责人,从节约的角度出发,在 “每次邮购10本”与“一次性邮购”这两种方式中你会选择哪一种?请说明理由. 27.(本题满分10分) (1) 如图(1),将两块直角三角尺的直角顶点C 叠放在一起,猜想 ①∠ACE 与∠DCB 的大小有何数量关系,并说明理由; ②∠ACB 与∠DCE 的大小有何数量关系,并说明理由; (2) 如图(2),若是将两个直角三角尺60°角和90°角的顶点A 叠放在一起,将三角板ADE 绕点A 旋转,旋转过程中三角板ADE 的边AD 始终在∠BAC 的部,试探索:在旋转过程中,∠CAE 与∠BAD 的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化围.. .. .28.(本题满分12分)如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B 的速度是点A 的速度的3倍. (速度单位:单位长度/秒)(1)求出点A 、B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动2秒时的位置;(2)若A 、B 两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A 、B 之间相距4个单位长度?(3)若表示数0的点记为O ,A 、B 两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB =2OA .BCED A(2)七年级第一学期期末试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分 )二、填空题(每题3分,计30分)9. 68.510⨯; 10.4; 11.63.7°; 12. 7; 13.38; 14. 108 ;15. 丙; 16. 南偏东40°; 17. 50°或30°(只答对一个给1分); 18. 1 ; 三、简答题(本大题共10题,满分96分) 19.计算(1):(1)原式=-18-14+18-13=-14-13 …… 3分 =-27 …… 5分(2)4211(1)33(3)2---÷⨯-- 解:原式=113392--÷⨯-=111623--⨯⨯…………………………3分=11--=2-………………………………………5分20.解方程:(1)5(2)1x x --=解:521x x -+= …… 2分512x x +=+63x = ……4分12x =……5分 (2)解: 2(21)(51)6x x +--= 42516x x +-+= ……2分 45621x x -=--3x -= ……4分3x =- ……5分21. 解:原式=4x 2﹣4; ................................................6分 因为计算结果中只含有x 2项,(±2)2=4,把x=﹣2抄成x=2,x 2的值不变, 所以结果是正确的 ................................................8分 22. 解:不会判马小虎同学满分. ....................................2分 13.. (62)7...............4104 6 .m .c 8..............D AC DC AC cm BD DC B AC C c B B m A C ===+==-=-=⋯⋯⋯∴∴本题要分两种情况讨论(1)第一种情况同马小虎同学的解题过点程,可求得BD=3cm 分(2)第二种情况根据题意可画出图为线段的中点分分23.图略(1) 每个作图各2分,………………………4分(2)三角形 ………………………6分 (3)3.5 ………………………8分24. (1)图中有 11 块小正方体; ……………………2分 (2)……………………8分(每个视图2分)(3)如果在其表面涂漆,则要涂 28 平方米……………………10分 25.(1)上一行:4、1、25、4 下一行4、1、25、4 ………………4分 (2)222()2a b a ab b -=-+或2222()a ab b a b -+=- ………6分 (3)原式=2(12.3456789 2.3456789)-=210=100 ………………10分 26.(1)若一次邮购8本,共需总费用为 150 元. …………………1分若一次邮购12本,共需总费用为 211.2 元.……………1分 (2)① 法一:设一共邮购了x 本书,分10x次 18693010xx +⋅= ∴50x = 答:共邮购了50本书. 法二:设邮购了y 次,(18⨯10+6)•y=930 ∴ y=5所以一共邮购书共5⨯10=50本 ……………………7分 ②“每次邮购10本”总费用为(18106)618661116⨯+⨯=⨯=元一次性邮购总书价和邮费为16110%17.6601056⨯+⨯=⨯=()60元,……………9分 ∴从节约的角度出发应选一次性邮购的方式. ……………………10分27.(1) ①∠ACE 与∠DCB 相等理由略. ………3分 ②∠ACB+ ∠DCE=180° ∠ACB+ ∠DCE=∠ACE+ ∠DCE+∠DCB+∠DCE=∠ACD+ ∠BCE=90°+90°=180°……6分(2)∠CAE-∠DAB 的差不变 ………7分 ∠CAE-∠DAB=∠DAE-∠BAC= 90°-60°=30° ……10分 28.解:(1)设点A 的速度为每秒t 个单位长度,则点B 的速度为每秒3t 个单位长度.依题意有:2t+2×3t=16,解得t=2∴点A 的速度为每秒2个单位长度, 点B 的速度为每秒6个单位长度. 画图 ………4分A B(2)设x 秒时,点A 、B 之间相距4个单位长度. ①根据题意,得6x-2x=16-4解之得 x=3 ………6分 ②根据题意,得6x-2x=16+4解之得 x=5 ………8分 即运动3或5秒时,点A 、B 之间相距4个单位长度.(3)设运动y 秒时OB=2OA①根据题意,得12-6y =2(4+2y ),解之得 y=52……10分 ②根据题意,得6y-12 =2(4+2y ), 解之得 y=10 (3) 运动52s 或10s 秒时OB=2OA ……12分。

相关文档
最新文档