高考理科历年数学真题及答案
全国高考理科数学试卷真题(江苏)参考答案解析
全国高考试卷真题(江苏) 数学理科参考答案1.5【解析】{123}{245}{12345}5AB ==,,,,,,,,,个元素.2.6【解析】平均数为46587666.322|||34|5||5||z i z z =+=⇒=⇒=.4.7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7S =. 5.56【解析】从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56.6.-3【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 7.(1,2)【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2)-. 8.3【解析】12tan()tan 7tan tan()321tan()tan 17αβαβαβααβα++-=+-===++-. 922221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒10.22(1)2x y 【解析】因为直线210()mx y m m R 恒过点(2,1),所以当点(2,1)为切点时,半径最大,此时半径2r ,故所求圆的标准方程为22(1)2x y .11.2011【解析】由题意得:112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)1212n n n n +=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++.122(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -==13.4【解析】当01x ≤时,()ln f x x ,()0g x ,此时方程|()()|1f x g x 即为ln 1x 或ln 1x,故x e 或1xe ,此时1x e符合题意,方程有一个实根. 当12x时,()ln f x x ,22()422g x x x ,方程|()()|1f x g x 即为2ln 21x x 或2ln 21x x ,即2ln 10x x 或2ln 30x x ,令2ln 1y x x ,则120yx x,函数2ln 1y x x 在(1,2)x 上单调递减,且1x 时0y,所以当12x 时,方程2ln 10x x 无解;令2ln 3yx x ,则120yx x,函数2ln 3y x x 在(1,2)x 上单调递减,且1x 时20y ,2x 时ln 210y ,所以当12x 时,方程2ln 30x x 有一个实根.当2x ≥时,()ln f x x ,2()6g x x ,方程|()()|1f x g x 即为2ln 61x x 或2ln 61x x,即2ln 70x x 或2ln 50x x ,令2y ln 7x x ,则120yx x,函数2y ln 7x x 在[2,)x 上单调递增,且2x 时ln 230y ,3x 时ln320y ,所以当2x ≥时方程2ln 70x x 有1个实根;同理2ln 50x x 在[2,)x 有1个实根.故方程1|)()(|=+x g x f 实根的个数为4个.14.1(1)(1)(1)(cos,sin cos )(cos ,sin cos )666666k k k k k k k k a a ππππππ++++⋅=+⋅+2(1)21(21)cossincos cos sin cos6666626k k k k k ππππππππ++++=++=++因此11103312k k k a a +=⋅==∑ 15.【解析】(1)由余弦定理知,2221C C 2C cos 4922372B =AB+A -AB⋅A ⋅A =+-⨯⨯⨯=,所以BC =(2)由正弦定理知,C sin C sin AB B =A ,所以21sin C sin C 7AB =⋅A==B .因为C AB <B,所以C 为锐角,则cosC 7===.因此212743sin 2C 2sin C cos C 2=⋅=⨯⨯=. 16.【证明】(1)由题意知,E 为1B C 的中点, 又D 为1AB 的中点,因此D //C E A .又因为D E ⊄平面11C C AA ,C A ⊂平面11C C AA , 所以D //E 平面11C C AA .(2)因为棱柱111C C AB -A B 是直三棱柱, 所以1CC ⊥平面C AB .因为C A ⊂平面C AB ,所以1C CC A ⊥.又因为C C A ⊥B ,1CC ⊂平面11CC B B ,C B ⊂平面11CC B B ,1C CC C B =,所以C A ⊥平面11CC B B .又因为1C B ⊂平面11CC B B ,所以1C C B ⊥A .因为1C CC B =,所以矩形11CC B B 是正方形,因此11C C B ⊥B . 因为C A ,1C B ⊂平面1C B A ,1CC C A B =,所以1C B ⊥平面1C B A .又因为1AB ⊂平面1C B A ,所以11C B ⊥AB .17.【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得10000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫ ⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈. ②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =, 此时()min f t =答:当t =l的长度最短,最短长度为千米.18.【解析】(1)由题意,得2c a =且23a c c +=,解得a =1c =,则1b =,所以椭圆的标准方程为222x y .(2)当x AB ⊥轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则1,2x=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k k+AB ===+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()22231C 12k k k +P =+. 因为2PC AB=,所以(())222223111212k k kk k++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+.19.【解析】:(1)()232f x x ax '=+,令()0f x '=,解得10x =,223ax =-. 当0a =时,因为()230f x x '=>(0x ≠),所以函数()f x 在(),-∞+∞上单调递增; 当0a >时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,2,03a x ⎛⎫∈-⎪⎝⎭时,()0f x '<, 所以函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.(2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而34027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩.又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<.设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值范围恰好是()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥ ⎪⎝⎭,因此1c =.此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根,所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠, 解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.综上1c =. 20.【解析】(1)证明:因为112222n n n na a a d a ++-==(1n =,2,3)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠).假设存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列, 则()()34a a d a d =-+,且()()6422a d a a d +=+. 令d t a =,则()()3111t t =-+,且()()64112t t +=+(112t -<<,0t ≠), 化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,()()21212313410t t t t t t t t +++-=+=++=+=,则14t =-.显然14t =-不是上面方程得解,矛盾,所以假设不成立, 因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列. (3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k na a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦,且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++. 令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++, 则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦.令()()1t t ϕϕ'=,则()()()()163ln 134ln 12ln 1t t t t ϕ'=+-+++⎡⎤⎣⎦.令()()21t t ϕϕ'=,则()()()()212011213t t t t ϕ'=>+++.由()()()()1200000g ϕϕϕ====,()20t ϕ'>, 知()2t ϕ,()1t ϕ,()t ϕ,()g t 在1,03⎛⎫- ⎪⎝⎭和()0,+∞上均单调. 故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.数学Ⅱ(附加题)21.A .【证明】 因为AC AB =,所以ABD C ∠=∠.又因为C E ∠=∠,所以ABD E ∠=∠, 又BAE ∠为公共角,可知ABD ∆∽AEB ∆.B .B 【解析】 由已知,得2ααA =-,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦, 则122x y -=-⎧⎨=⎩,即12x y =-⎧⎨=⎩,所以矩阵1120-⎡⎤A =⎢⎥⎣⎦.从而矩阵A 的特征多项式()()()21fλλλ=+-,所以矩阵A 的另一个特征值为1.C .【解析】 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2cos 4022ρθθ⎛⎫+--= ⎪⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=, 即()()22116x y -++=,所以圆C.D .【解析】:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-. 综上,原不等式的解集是153x x x 或⎧⎫≤-≥-⎨⎬⎩⎭.22.【解析】 以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系xyz A -,则各点的坐标为()1,0,0B ,()1,1,0C ,()0,2,0D ,()0,0,2P .A(第21——A 题)(1)因为AD ⊥平面PAB ,所以AD 是平面PAB 的一个法向量,()0,2,0AD =. 因为()1,1,2PC =-,()0,2,2PD =-.设平面PCD 的法向量为(),,m x y z =,则C 0m ⋅P =,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩.令1y =,解得1z =,1x =.所以()1,1,1m =是平面PCD 的一个法向量. 从而D 3cos D,D m m mA ⋅A ==A ,所以平面PAB 与平面PCD 所成二面角的余弦值 (2)因为()1,0,2BP =-,设(),0,2BQ BP λλλ==-(01λ≤≤), 又()0,1,0CB =-,则(),1,2CQ CB BQ λλ=+=--,又()0,2,2DP =-, 从而cos ,10CQ DP CQ DP CQ DP⋅<>==.设12t λ+=,[]1,3t ∈,则2222229cos ,5109101520999t CQ DP t t t <>==-+⎛⎫-+⎪⎝⎭≤.当且仅当95t=,即25λ=时,cos CQ,D P 的最大值为10. 因为cos y x =在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==255BQ BP ==. 23.【解析】(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).下面用数学归纳法证明: ①当6n =时,()666621323f =+++=,结论成立; ②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,()2,1k +,()3,1k +中产生,分以下情形讨论: 1)若16k t +=,则()615k t =-+,此时有()()12132323k k f k f k k --+=+=++++ ()111223k k k ++=++++,结论成立; 2)若161k t +=+,则6k t =,此时有()()112123k kf k f k k +=+=++++ ()()()11111223k k k +-+-=++++,结论成立;3)若162k t +=+,则61k t =+,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立; 4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 5)若164k t +=+,则63k t =+,此时有 ()()1122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有 ()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立. 综上所述,结论对满足6n ≥的自然数n 均成立.。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
2023年青海省高考理科数学真题及参考答案
2023年青海省理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。
2024全国卷理科数学高考真题
2024年一般高等学校招生全国统一考试理科数学留意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=:—+2i,则|z|=1+1A.0B.—C.1D.、/22.已知集合A=(x|x2-x-2>0},贝=A.(x|-l<x<2}B.(x|-l<x<2}C.(x|x<-l}.(x|x>2}D.(x|x<-l}_(x|x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入改变状况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入削减B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入及第三产业收入的总和超过了经济收入的一半4.记&为等差数列{%}的前〃项和.若3S.=S2+S4,%=2,贝胞=A.—12B.-10C・10D.125.设函数了⑴=r+(o_1K+"若/*3)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为A.y=-2x B・y= C.y=2xD."x6.在AABC中,AD为BC边上的中线,E为AD的中点,则E8=311331 A.—AB—AC B.—AB—AC C.—AB h—AC44444413一D.-AB+-AC447.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为8,则在此圆柱侧面上,从肱到N的路径中,最短路径的长度为A.2面「B.2^5C.3D.28.设抛物线Q jMx的焦点为R过点(-2,0)且斜率为甘的直线及。
全国统一高考数学试卷理科参考答案与试题解析
全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,110每小题4分,1115每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6B.﹣3C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan ()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan ()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.解答:解:令tan ()=0,解得x=kπ+,可知函数y=tan ()与x 轴的一个交点不是,排除C,D∵y=tan ()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin ()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin ()+cos2x=cos2x ﹣sin2x+cos2x=(+1)cos2x ﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2B.0C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时ymin=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f (b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.分析:先根据等比数列的通项公式分别求出an和bn,再根据等比数列的求和公式,分别求得Sn和Sn﹣1的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y(元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P(a,b),圆P截X轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考理科考试题及答案
高考理科考试题及答案一、数学1. 已知函数 $f(x)=2x^2-3x+1$,求 $f(2)$ 的值。
解答:将 $x=2$ 代入函数 $f(x)$ 中得到 $f(2)=2(2)^2-3(2)+1=9$。
2. 若 $\tan A=3$,求 $\sin A$ 的值。
解答:由三角函数关系式 $\tan A=\frac{\sin A}{\cos A}$,代入已知条件可得 $\frac{\sin A}{\cos A}=3$。
根据勾股定理可知$\sin^2A+\cos^2A=1$,将此式改写为 $\cos^2A=1-\sin^2A$。
代入前述等式可得 $\frac{\sin A}{\sqrt{1-\sin^2A}}=3$,解得 $\sinA=\frac{3}{\sqrt{10}}$。
二、物理1. 一物体自由落体从高度为 $h$ 的位置下落,求自由落体过程中速度随时间变化的关系式。
解答:根据物体自由落体运动的规律,物体竖直向下的加速度记作$g$,根据牛顿第二定律可得 $F=mg$,即物体所受合外力等于质量乘以重力加速度。
由于自由落体的过程无任何合外力作用在物体上,所以合外力为零,即 $F=0$。
根据牛顿第二定律可得 $F=ma$,代入前述等式得 $ma=mg$,即 $a=g$。
速度的变化率即为加速度,所以速度随时间变化的关系式为 $v=gt$,其中 $v$ 表示速度,$t$ 表示时间。
2. 如图所示,一电流为 $I$ 的长直导线垂直于纸面,通过导线的方向指向纸面内。
在坐标原点上放置一个电荷为 $Q$ 的正点电荷。
设正点电荷到导线的距离为 $r$,求正点电荷所受的洛伦兹力的大小。
解答:由电磁感应定律可知,一个通过导线的电流会在其周围产生磁场。
而正点电荷在磁场中会受到洛伦兹力的作用,洛伦兹力的大小可以用洛伦兹力公式 $F=|B| \times |I| \times |l|$ 计算,其中 $B$ 表示磁感应强度,$I$ 表示电流,$l$ 表示导线长度。
高考理科数学真题分类汇编附答案
目录三角函数与解三角形 (2)数列 (7)立体几何 (11)解析几何 (20)概率统计 (26)函数与导数 (34)选考题 (42)坐标系与参数方程 (43)不等式选讲 (49)三角函数与解三角形1.(2012新课标)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +sin 0C b c --=.(Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c . 2.(2015山东)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角△ABC 中,角,,A B C ,的对边分别为,,a b c ,若()02Af =,1a =,求△ABC 面积的最大值.3.(2011山东)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知cos 2cos 2cos A C c aB b --=. (I )求sin sin CA的值;(II )若1cos 4B =,2b =,ABC ∆的面积S .4.(2015湖南)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,tan a b A =,且B 为钝角.(1)证明:2B A π-=;(2)求sin sin A C +的取值范围.5.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.6.(2017新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长.参考答案与解析1.【解析】(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C C A A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=,解得:2b c ==.2.【解析】(Ⅰ)由题意1cos(2)12()sin 222x f x x π++=-x x 2sin 21212sin 21+-= 212sin -=x .由ππππk x k 22222+≤≤+-(Z k ∈),可得ππππk x k +≤≤+-44(Z k ∈);由ππππk x k 223222+≤≤+(Z k ∈),得ππππk x k +≤≤+434(Z k ∈); 所以)(x f 的单调递增区间是]4,4[ππππk k ++-(Z k ∈);单调递减区间是]43,4[ππππk k ++(Z k ∈).(Ⅱ)1()sin 022A f A =-=Q ,1sin 2A ∴=,由题意A 是锐角,所以cos 2A =. 由余弦定理:A bc c b a cos 2222-+=,可得2212b c bc +=+≥32321+=-≤∴bc ,且当c b =时成立.sin bc A ∴≤.ABC ∆∴面积最大值为432+. 3.【解析】(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B---==所以cos 2cos 2sin sin .cos sin A C C AB B--=即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+又A B C π++=, 所以sin 2sin C A =,因此sin 2.sin CA= (II )由sin 2sin CA=得2.c a = 由余弦定理222222112cos cos ,2,44.44b ac ac B B b a a a =+-==+-⨯及得4= 解得a =1.因此c =2.又因为1cos ,0.4B B π=<<且所以sin B =因此11sin 122244S ac B ==⨯⨯⨯= 4.【解析】(1)由tan a b A =及正弦定理,得sin sin cos cos A b BA a B==, 所以sin cos B A =,即sin sin()2B A π=+.又B 为钝角,因此2π+A ∈(2π,π),故B =2π+A ,即B A -=2π; (2)由(1)知,C =π-(A +B )=π-(2A +2π)=2π-2A >0,所以A 0,4π⎛⎫∈ ⎪⎝⎭, 于是sin sin sin sin(2)2A C A A π+=+-=sin cos2A A +=22sin sin 1A A -++=2192(sin )48A --+,因为0<A <4π,所以0<sin A <2,因此2<-22199sin 488A ≤⎛⎫-+ ⎪⎝⎭.由此可知sin sin A C +的取值范围是(2,98]. 5.【解析】(1)在ABC △中,由正弦定理sin sin a b A B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 6.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得121cos()cos cos sin sin 632B C B C B C +=-=-=- 所以2π3B C +=,故π3A =.由题设得21sin 23sin a bc A A =,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为37.(2016年四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【解析】(I )证明:由正弦定理sin sin sin a b cA B C==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+== ∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-=原式得证。
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)含部分答案
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)一、选择题1.若,则( )5i z =+i()z z +=A. B. C.10D.-210i2i2.已知集合,,则( ){1,2,3,4,5,9}A={}B A =()A A B = ðA. B. C. D.{1,4,9}{3,4,9}{1,2,3}{2,3,5}3.若实数x ,y 满足约束条件,则的最小值为( )4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩5z x y =-724.记等差数列的前n 项和,若,,则( )n S {}n a 510S S =51a =1a =7115.已知双曲线的两个焦点分别为,,点在该双曲线上,则该双曲线的离心率(0,4)(0,4)-(6,4)-为( )6.设函数在点处的切线与两坐标轴所围成的三角形的()f x =()y f x =(0,1)面积为( )7.函数在区间的大致图像为( )()2e e sin xx y x x -=-+-[ 2.8,2.8]-A. B.C. D.( )=π4α⎛⎫+= ⎪⎝⎭A. B.19.已知向量,,则( )(1,)x x =+a (,2)x =b A.是的必要条件 B.是的必要条件3x =-⊥a b 3x =-//a bC.是的充分条件D.是的充分条件0x =⊥a b 1x =-+//a b 10.设,为两个平面,m ,n 为两条直线,且.下述四个命题:αβm αβ= ①若,则或//m n //n α//n β②若,则或m n ⊥n α⊥n β⊥③若且,则//n α//n β//m n④若n 与,所成的角相等,则.αβm n ⊥其中所有真命题的编号是( )A.①③B.②④C.①②③D.①③④11.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,,则ABC △60B =︒294b ac =( )sin sin A C +=12.已知b 是a ,c 的等差中项,直线与圆交于A ,B 两点,则0ax by c ++=22410x y y ++-=A.1B.2C.4D.二、填空题13.的展开式中,各项系数中的最大值为_________.1013x ⎛⎫+ ⎪⎝⎭14.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,1r 2r ()212r r -,则圆台甲与乙的体积之比为_________.()213r r -15.已知_________.a >1log 4a -==16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的三、解答题17.某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p =p >+)12.247≈附:2K =(1)求的通项公式;{}n a(2)设,求数列的前n 项和.1(1)n n n b na -=-{}n b n T 19.如图,已知,//AB CD,,,//CD EF 2AB DE EF CF ====4CD =AD BC ==AE =点.(1)证明:平面BCF ;//EM (2)求二面角的正弦值.A EM B --20.已知函数.()(1)ln(1)f x ax x x =-+-(1)若,求的极值;2a =-()f x (2)当时,,求a 的取值范围.0x ≥()0f x ≥21.设椭圆的右焦点为F ,点在C 上,且轴.2222:1(0)x y C a b a b +=>>31,2M ⎛⎫⎪⎝⎭MF x ⊥(1)求C 的方程;(2)过点的直线交C 于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q .证(4,0)P 明:轴.AO y ⊥22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.cos 1ρρθ=+(1)写出C 的直角坐标方程;(2)设直线l :(t 为参数),若C 与l 相交于A ,B 两点,且,求a .,x t y t a=⎧⎨=+⎩||2AB =23.[选修4-5:不等式选讲]已知实数a ,b 满足.3a b +≥(1)证明:;2222a b a b +>++-≥b b a226答案1.答案:A解析:因为,所以,故选A.5i z =+i()10i z z +=2.答案:D解析:因为,,所以,{1,2,3,4,5,9}A ={}{1,4,9,16,25,81}B A ==(){2,3,5}A A B = ð故选D.3.答案:D解析:将约束条件两两联立可得3个交点:,和,经检验都符合约束条件.代(0,1)-3,12⎛⎫ ⎪⎝⎭13,2⎛⎫⎪⎝⎭入目标函数可得:min z =4.答案:B解析:因为,所以,,又因为,所以公差510S S =718S S =80a =51a =d =187a a d =-=5.答案:C 解析:,故选C.12212F F c e a PF PF ===-6.答案:A解析:因为,所以,,563y x '=+3k =31y x =-11123S =⨯⨯=7.答案:B 解析:8.答案:B,故选=1α=πtan 1141tan ααα+⎛⎫+== ⎪-⎝⎭B.9.答案:C解析:,则,解得:或-3,故选C.⊥a b (1)20x x x ++=0x =10.答案:A 解析:11.答案:C解析:因为,所以B =294ac =24sin sin sin 9A C B ==,即:,22294b a c ac ac =+-=22134a c ac +=22sin sin A C +=222(sin sin )sin sin 2sin sin A C A C A C+=++=sin A +12.答案:C解析:因为a ,b ,c 成等差数列,所以,直线恒过.当20a b c -+=0ax by c ++=(1,2)P -,,故选C.PC ⊥|1PC =||4AB =13.答案:5解析:展开式中系数最大的项一定在下面的5项:、、、、55101C 3⎛⎫ ⎪⎝⎭46101C 3⎛⎫ ⎪⎝⎭37101C 3⎛⎫ ⎪⎝⎭28101C 3⎛⎫ ⎪⎝⎭,计算可得:系数的最大值为.19101C 3⎛⎫ ⎪⎝⎭28101C 53⎛⎫= ⎪⎝⎭h h ===15.答案:64,所以,而,221315log log 4log 22a a a -=-=-()()22log 1log 60a a +-=1a >故,.2log 6a =64a =解析:记前三个球的号码分别为a 、b 、c ,则共有种可能.令36A 120=可得:,根据对称性:或6时,2||0.5236a b a b c a b cm n ++++-=≤-=-|2|3a b c +-≤1c =均有2种可能;或5时,均有10种可能;或4时,均有16种可能;故满足条件的共有2c =3c =56种可能,56120P ==17.答案:(1)没有的把握99%(2)有优化提升解析:(1),没有的把握;22150(70242630) 6.635965450100x ⨯-⨯=<⨯⨯⨯99%p >+18.答案:(1)14(3)n n a -=⋅-(2)(21)31n n T n =-+解析:(1)因为,所以,434n n S a =+11434n n S a ++=+两式相减可得:,即:,11433n n n a a a ++=-13n n a a +=-又因为,所以,11434S a =+14a =故数列是首项为4,公比为-3的等比数列,;{}n a 14(3)n n a -=⋅-(2)解法1:,11(1)43n n n n b na n --=-=⋅所以,.()012141323333n n T n -=⋅+⋅+⋅++⋅ 12334(1323)333n n T n =⋅+⋅+⋅++⋅ 两式相减可得:,()12113241333343(24)3213n n nn n n T n n n -⎛⎫--=++++-⋅=-⋅=-- ⎪-⎝⎭.(21)31n n T n =-+解法2:,所以,11(1)43n n n n b na n --=-=⋅1143n n n T T n --=+⋅两边同时减去可得:,(21)3nn -11(21)3(23)3n n n n T n T n ----=--故为常数列,即:,.{}(21)3n n T n --(21)31n n T n --=(21)31n n T n =-+19.答案:(1)证明见解析解析:(1)由题意:,,//EF CM EF CM =而平面,平面ADO ,CF ÜADO EM Ú所以平面BCF ;//EM(2)取DM 的中点O ,连结OA ,OE ,则,,,,OA DM ⊥OE DM⊥3OA =OE =AE =故.OA OE ⊥以O 为坐标原点建立如图所示的空间直角坐标系,则,,,,,,(0,0,3)A E (0,1,0)M (0,2,3)B 3)AE =- (EM =,(0,1,3)MB =设平面AEM 的法向量为,(,,)n x y z =由可得:,00n AE n EM ⎧⋅=⎪⎨⋅=⎪⎩300z y -=+=⎪⎩令,则,1z =,1)3n =同理:取平面BEM 的法向量为,1)m =-则cos ,||||m n m n m n ⋅〈〉==,m n 〈〉= 故二面角A EM B --20.答案:(1)极小值为,无极大值(0)0f =(2)1,2⎛⎤-∞- ⎥⎝⎦解析:(1)当时,,.2a =-()(12)ln(1)f x x x x =++-1x >-时,,当时,,()2ln(1)f x x =+0>()0f x >10x -<<()0f x <所以在上递增,()f x (-)+∞故的极小值为,无极大值;()f x (0)0f =(2),()(1)ln(1)f x ax x x =-+-()ln(1)f x a x =-+-令,则.()()g x f x =21()1(1)a a g x x x +'=--++因为当时,,且,,0x ≥()0f x ≥(0)0f =(0)0f '=所以,(0)120g a '=--≥a ≤当,在上递增,a ≤2211()02(1)2(1)2(1)x g x x x x '≥-=≥+++()g x [0,)+∞,()()(0)0g x f x g =≥=故在上递增,恒成立,即a 的取值范围为.()f x [0,)+∞()(0)0f x f ≥=1,2⎛⎤-∞- ⎥⎝⎦213y =(2)证明见解析解析:(1)设椭圆C 的左焦点为,.F 23||2MF =因为,MF ⊥1MF =1||4a MF MF =+=解得:,,24a =2213b a =-=;213y =(2)解法1:设,,,()11,A x y ()22,B x y ,AP PB λ=则,即.12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩212144x x y y λλ=+-⎧⎨=-⎩又由可得,()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-结合上式可得.25230x λλ-+=,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫⎪⎝⎭222122335252Q y y y y y x x λλλ===-=--AQ y ⊥解法2:设,,()11,A x y (22,B x y =()1221214y x y y y -=-所以()()2222122112211221x y x y x y x y x y x y -+=-,()()()()22221221212121122144444433y y y y y y y y y y x y x y ⎛⎫⎛⎫=+-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭即:,.122121x y x y y y +=+2112253x y y y =-,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫ ⎪⎝⎭21212112335252Q y y y y y x y y x ===--AQ y ⊥22.答案:(1)221y x =+(2)34a =解析:(1)因为,所以,cos 1ρρθ=+22(cos 1)ρρθ=+故C 的直角坐标方程为:,即:;222(1)x y x +=+221y x =+(2)将代入可得:,x t y t a=⎧⎨=+⎩221y x =+222(1)10t a ta +-+-=,解得.2||2AB t ===34a =23.答案:(1)证明见解析(2)证明见解析解析:(1)因为,所以;3a b +≥22222()a b a b a b +≥+>+222222222222()b b a a b b a a b a b +-≥-+-=+-+.22222()()()()(1)6a b a b a b a b a b a b =+-+≥+-+=++-≥。
历年真题:陕西高考理科数学试题含答案(Word版)
陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D 【答案】 B【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====5.已知底面边长为1则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x =(B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′= 第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】10【解析】.1010,21lg 12a ∴,lg ,224212aa========x a x a x 所以,12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y 设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【答案】 21【解析】.21t a n θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即 14.猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【答案】 (1) 省略 (2)21【解析】(1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角 的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,,,(1)=><==<∴=======∴n AB n AB n FG n FE n z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A (2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+= 19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B,其中1C 的离心率为2. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x yc b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 (2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,, (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f(3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xxx x h nnnn g g g g nn n n g x x x g。
历年真题:重庆高考理科数学试题含答案(Word版)
重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限.C 第三象限 .D 第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =-.29.5C y x =-+ .0.3 4.4C y x =-+4.已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A - .0B C.3 D. 1525.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。
A .12s > B.1224abc ≤≤ 35s > C. 710s > D.45s > 6.已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72 8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.39.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A.72B.120C.144D.310.已知A B C ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。
高考理科数学试题(带答案解析)
高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。
历年全国理科数学高考试题立体几何部分精选(含答案)
1。
在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2。
已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23AB BC==,则棱锥-的体积为。
O ABCD3。
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A—PB-C的余弦值。
1.D2.833。
解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P .(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m,则m 0,m 0,{PB BC ⋅=⋅=可取m=(0,—1,3-) 427cos ,727m n -==- 故二面角A-PB-C 的余弦值为 277-1。
正方体ABCD —1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A ) 42-+ (B)32-+ (C ) 422-+ (D )322-+3。
已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A )233 (B)433 (C ) 23 (D) 8334. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A —DE —C 的大小 .1. D 2。
高考理科数学真题及答案
理科高考数学真题及答案一、选择题(共18小题,每小题3分,满分54分)1.(3分)的值是()A.B.1C.D.22.(3分)如果函数y=sin(ωx)cos(ωx)的最小正周期是4π,那么常数ω为()A.4B.2C.D.3.(3分)极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是()A.2B.C.1D.4.(3分)方程sin4xcos5x=﹣cos4xsin5x的一个解是()A.10°B.20°C.50°D.70°5.(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A.6:5B.5:4C.4:3D.3:26.(3分)图中曲线是幂函数y=x n在第一象限的图象.已知n取±2,±四个值,则相应于曲线c1、c2、c3、c4的n依次为()A.﹣2,﹣,,2B.2,,﹣,﹣2C.﹣,﹣2,2,D.2,,﹣2,﹣7.(3分)若log a 2<logb2<0,则()A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>18.(3分)直线(t 为参数)的倾斜角是()A.20°B.70°C.45°D.135°9.(3分)在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个10.(3分)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是()A.x 2+y 2﹣x﹣2y﹣=0B.x 2+y 2+x﹣2y+1=0C.x 2+y 2﹣x﹣2y+1=0D.x 2+y 2﹣x ﹣2y+=011.(3分)在(x 2+3x+2)5的展开式中x 的系数为()A.160B.240C.360D.80012.(3分)若0<a<1,在[0,2π]上满足sinx≥a 的x 的范围是()A.[0,arcsina]B.[arcsina,π﹣arcsina]C.[π﹣arcsina,π]D.[arcsina,+arcsina]13.(3分)已知直线l 1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为()A.bx+ay+c=0B.ax﹣by+c=0C.bx+ay﹣c=0D.bx﹣ay+c=014.(3分)在棱长为1的正方体ABCD﹣A 1B1C1D1中,M 和N 分别为A1B1和BB1的中点,那么直线AM 与CN 所成角的余弦值是()A.B.C.D.15.(3分)已知复数z 的模为2,则|z﹣i|的最大值为()A.1B.2C.D.316.(3分)函数y=的反函数()A.是奇函数,它在(0,+∞)上是减函数B.是偶函数,它在(0,+∞)上是减函数C.是奇函数,它在(0,+∞)上是增函数D.是偶函数,它在(0,+∞)上是增函数17.(3分)如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2﹣t),那么()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)18.(3分)长方体的全面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为()A.B.C.5D.6二、填空题(共5小题,每小题3分,满分15分)19.(3分)方程的解是.20.(3分)sin15°sin75°的值是.21.(3分)设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为_________.22.(3分)焦点为F(﹣2,0)和F2(6,0),离心率为2的双曲线的方程是.1}的公差d≠0,且a1,a3,a9成等比数列,则的值23.(3分)已知等差数列{an是.三、解答题(共5小题,满分51分)24.(10分)已知z∈C,解方程z﹣3i=1+3i.25.(10分)已知,cos(α﹣β)=,sin(α+β)=.求sin2α的值.的长度为d.在26.(10分)已知:两条异面直线a、b所成的角为θ,它们的公垂线段AA1直线a、b上分别取点E、F,设A1E=m,AF=n.求证:EF=.}的前n项和为Sn.已知a3=12,S12>0,S13<0.27.(10分)设等差数列{an(1)求公差d的取值范围.(2)指出S,S2,…,S12中哪一个值最大,并说明理由.128.(11分)已知椭圆(a>b>0),A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明.参考答案一、选择题(共18小题,每小题3分,满分54分)1.(3分)的值是()A.B.1C.D.2考点:对数的运算性质.分析:根据,从而得到答案.解答:解:.故选A.点评:本题考查对数的运算性质.2.(3分)如果函数y=sin(ωx)cos(ωx)的最小正周期是4π,那么常数ω为()A.4B.2C.D.考点:二倍角的正弦.分析:逆用二倍角正弦公式,得到y=Asin(ωx+φ)+b的形式,再利用正弦周期公式和周期是求出ω的解答:解:∵y=sin(ωx)cos(ωx)=sin(2ωx),∴T=2π÷2ω=4π∴ω=,故选D点评:二倍角公式是高考中常考到的知识点,特别是余弦角的二倍角公式,对它们正用、逆用、变形用都题还考的周期的公式求法,记住公式,是解题的关键,注意ω的正负,要加绝对值.3.(3分)极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是()A.2B.C.1D.考点:简单曲线的极坐标方程.专题:计算题.分析:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程为ρ=sinθ化成直角坐标方程,最后利用直角坐标方程的形式,结合两点间的距离公式求解即得.解答:解:由ρ=cosθ,化为直角坐标方程为x2+y2﹣x=0,其圆心是A(,0),由ρ=sinθ,化为直角坐标方程为x2+y2﹣y=0,其圆心是B(0,),由两点间的距离公式,得AB=,故选D.点评:本小题主要考查圆的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心距等基们要给予重视.4.(3分)方程sin4xcos5x=﹣cos4xsin5x的一个解是()A.10°B.20°C.50°D.70°考点:两角和与差的正弦函数.分析:把原式移项整理,逆用两角和的正弦公式,解一个正弦值为零的三角函数方程对应的解,写出所有一个合适的,因为是选择题,也可以代入选项验证.解答:解:∵sin4xcos5x=﹣cos4xsin5x,∴sin4xcos5x+cos4xsin5x=0,∴sin(4x+5x)=0,∴sin9x=0,∴9x=kπ,k∈Z,∴x=20°故选B.点评:抓住公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结想到相应的公式,从而找到解题的切入点,对公式的逆用公式,变形式也要熟悉.5.(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A.6:5B.5:4C.4:3D.3:2考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:设圆柱的底面半径,求出圆柱的全面积以及球的表面积,即可推出结果.解答:解:设圆柱的底面半径为r,则圆柱的全面积是:2πr2+2rπ×2r=6πr2球的全面积是:4πr2,所以圆柱的全面积与球的表面积的比:3:2故选D.点评:本题考查旋转体的表面积,是基础题.6.(3分)图中曲线是幂函数y=x n在第一象限的图象.已知n 取±2,±四个值,则相应于曲线c1、c2、c3、c4的n 依次为()A.﹣2,﹣,,2B.2,,﹣,﹣2C.﹣,﹣2,2,D.2,,﹣2,﹣考点:幂函数的图像.专题:阅读型.分析:由题中条件:“n 取±2,±四个值”,依据幂函数y=x n的性质,在第一象限内的图象特征可得.解答:解:根据幂函数y=x n的性质,在第一象限内的图象,n 越大,递增速度越快,故曲线c 1的n=﹣2,曲线c2的n=,c3的n=,曲线c 4的n=2,故依次填﹣2,﹣,,2.故选A.点评:幂函数是重要的基本初等函数模型之一.学习幂函数重点是掌握幂函数的图形特征,即图象语言数的图象、性质,把握幂函数的关键点(1,1)和利用直线y=x 来刻画其它幂函数在第一象限的凸7.(3分)若log a 2<logb2<0,则()A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1考点:对数函数图象与性质的综合应用.专题:计算题.分析:利用对数的换底公式,将题中条件:“log a 2<logb2<0,”转化成同底数对数进行比较即可.解答:解:∵log2<logb2<0,a由对数换底公式得:∴a>log2b∴0>log2∴根据对数的性质得:∴0<b<a<1.故选B.点评:本题主要考查对数函数的性质,对数函数是许多知识的交汇点,是历年高考的必考内容,在高考中定义域、值域、图象、对数方程、对数不等式、对数函数的主要性质(单调性等)及这些知识的8.(3分)直线(t为参数)的倾斜角是()A.20°B.70°C.45°D.135°考点:直线的参数方程.专题:计算题.分析:已知直线(t为参数)再将直线先化为一般方程坐标,然后再计算直线l的倾解答:解:∵直线(t为参数)∴x﹣3=tsin20°,y=﹣tsin20°,∴x+y﹣3=0,∴直线倾斜角是135°,故选D.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程这也是每年高考必考的热点问题.9.(3分)在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个考点:棱锥的结构特征.专题:作图题.分析:借助长方体的一个顶点画出图形,不难解答本题.解答:解:如图底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形.故选D.点评:本题考查棱锥的结构特征,考查空间想象能力,要求学生心中有图,是基础题.10.(3分)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是()A.x 2+y 2﹣x﹣2y﹣=0B.x 2+y 2+x﹣2y+1=0C.x 2+y 2﹣x﹣2y+1=0D.x 2+y 2﹣x ﹣2y+=0考点:圆的一般方程.分析:所求圆圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切,不难由抛物线的定义知道,圆得结果.解答:解:圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程,以及抛物线的定所求圆的圆心的横坐标x=,即圆心(,1),半径是1,所以排除A、B、C.故选D.点评:本题考查圆的方程,抛物线的定义,考查数形结合、转化的数学思想,是中档题.11.(3分)在(x 2+3x+2)5的展开式中x 的系数为()A.160B.240C.360D.800考点:二项式定理的应用.专题:计算题.分析:利用分步乘法原理:展开式中的项是由5个多项式各出一个乘起来的积,展开式中x 的系数是5一个多项式出3x,其它4个都出2组成.解答:解:(x 2+3x+2)5展开式的含x 的项是由5个多项式在按多项式乘法展开时仅一个多项式出3x,出2∴展开式中x 的系数为C 51•3•24=240故选项为B点评:本题考查二项式定理的推导依据:分步乘法计数原理,也是求展开式有关问题的方法.12.(3分)若0<a<1,在[0,2π]上满足sinx≥a的x的范围是()A.[0,arcsina]B.[arcsina,π﹣arcsina]C.[π﹣arcsina,π]D.[arcsina,+arcsina]考点:正弦函数的图象;反三角函数的运用.分析:在同一坐标系中画出y=sinx、y=a,根据sinx≥a即可得到答案.解答:解:由题可知,如图示,当sinx≥a时,arcsina≤x≤π﹣arcsina故选B.点评:本题主要考查三角函数的图象问题.三角函数的图象和性质是高考热点问题,要给予重视.13.(3分)已知直线l1和l2的夹角平分线为y=x,如果l1的方程是ax+by+c=0,那么直线l2的方程为()A.bx+ay+c=0B.ax﹣by+c=0C.bx+ay﹣c=0D.bx﹣ay+c=0考点:与直线关于点、直线对称的直线方程.专题:计算题.分析:因为由题意知,直线l1和l2关于直线y=x对称,故把l1的方程中的x和y交换位置即得直线l解答:解:因为夹角平分线为y=x,所以直线l1和l2关于直线y=x对称,故l2的方程为bx+ay+c=0.故选A.点评:本题考查求对称直线的方程的方法,当两直线关于直线y=x对称时,把其中一个方程中的x和即得另一条直线的方程.14.(3分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:先通过平移将两条异面直线平移到同一个起点B 1,得到的锐角或直角就是异面直线所成的角,在利用余弦定理求出此角即可.解答:解:如图,将AM 平移到B 1E,NC 平移到B1F,则∠EB1F 为直线AM 与CN 所成角设边长为2,则B 1E=B1F=,EF=,∴cos∠EB 1F=,故选D.点评:本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.15.(3分)已知复数z 的模为2,则|z﹣i|的最大值为()A.1B.2C.D.3考点:复数的代数表示法及其几何意义.分析:根据复数的几何意义,知|z|=2对应的轨迹是圆心在原点半径为2的圆,|z﹣i|表示的是圆上一点的距离,其最大值为圆上点(0,﹣2)到点(0,1)的距离.解答:解:∵|z|=2,则复数z 对应的轨迹是以圆心在原点,半径为2的圆,而|z﹣i|表示的是圆上一点到点(0,1)的距离,∴其最大值为圆上点(0,﹣2)到点(0,1)的距离,最大的距离为3.故选D.点评:本题考查了复数及复数模的几何意义,数形结合可简化解答.16.(3分)函数y=的反函数()A.是奇函数,它在(0,+∞)上是减函数B.是偶函数,它在(0,+∞)上是减函数C.是奇函数,它在(0,+∞)上是增函数D.是偶函数,它在(0,+∞)上是增函数考点:反函数;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;综合题.分析:先求函数的反函数,注意函数的定义域,然后判定反函数的奇偶性,单调性,即可得到选项.解答:解:设e x=t(t>0),则2y=t﹣,t 2﹣2yt﹣1=0,解方程得t=y+负跟已舍去,e x=y+,对换X,Y 同取对数得函数y=的反函数:g(x)=由于g(﹣x)===﹣g(x),所以它是奇函数,并且它在(0,+∞)上是增函数.故选C.点评:本题考查反函数的求法,函数的奇偶性,单调性的判定,是基础题.17.(3分)如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2﹣t),那么()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)考点:二次函数的图象;二次函数的性质.专题:压轴题;数形结合.分析:先从条件“对任意实数t 都有f (2+t)=f (2﹣t)”得到对称轴,然后结合图象判定函数值的可.解答:解:∵对任意实数t都有f(2+t)=f(2﹣t)∴f(x)的对称轴为x=2,而f(x)是开口向上的二次函数故可画图观察可得f(2)<f(1)<f(4),故选A.点评:本题考查了二次函数的图象,通过图象比较函数值的大小,数形结合有助于我们的解题,形象直观18.(3分)长方体的全面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为()A.B.C.5D.6考点:棱柱的结构特征.专题:计算题;压轴题.分析:设出长方体的长、宽、高,表示出长方体的全面积为11,十二条棱长度之和为24,然后整理可得度.解答:解:设长方体的长、宽、高分别为a,b,c,由题意可知,4(a+b+c)=24…①,2ab+2bc+2ac=11…②,由①的平方减去②可得a2+b2+c2=25,这个长方体的一条对角线长为:5,故选C.点评:本题考查长方体的有关知识,是基础题.二、填空题(共5小题,每小题3分,满分15分)19.(3分)方程的解是x=﹣1.考点:有理数指数幂的化简求值.分析:将方程两边乘以1+3x,令t=3x,然后移项、合并同类项,从而解出x.解答:解:∵,∴1+3﹣x=3(1+3x),令t=3x,则1+=3+3t,解得t=,∴x=﹣1,故答案为:x=﹣1.点评:此题考查有理数指数幂的化简,利用换元法求解方程的根,是一道不错的题.20.(3分)sin15°sin75°的值是.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:计算题.分析:注意角之间的关系,先将原式化成sin15°cos15°,再反用二倍角求解即得.解答:解:∵sin15°sin75°=sin15°cos15°=sin30°=.∴sin15°sin75°的值是.故填:.点评:本题主要考查三角函数中二倍角公式,求三角函数的值,通常借助于三角恒等变换,有时须逆向公式.21.(3分)设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为.考点:子集与真子集.专题:计算题;压轴题.分析:先根据子集的定义,求集合的子集及其个数,子集即是指属于集合的部分或所有元素组成的集合,解答:解:∵含有10个元素的集合的全部子集数为210=1024,3=120.又∵其中由3个元素组成的子集数为C10∴则的值为=.故填:.点评:本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的个.22.(3分)焦点为F(﹣2,0)和F2(6,0),离心率为2的双曲线的方程是1.考点:双曲线的标准方程;双曲线的简单性质.专题:计算题;压轴题.分析:先由已知条件求出a,b,c的值,然后根据函数的平移求出双曲线的方程.(﹣2,0)和F2(6,0),离心率为2,解答:解:∵双曲线的焦点为F1∴2c=6﹣(﹣2)=8,c=4,,b2=16﹣4=12,∴双曲线的方程是.故答案为:.点评:本题考查双曲线方程的求法,解题时要注意函数的平移变换,合理地选取公式.}的公差d≠0,且a1,a3,a9成等比数列,则的值23.(3分)已知等差数列{an是.考点:等差数列的性质.专题:压轴题.分析:,a3,a9成等比数列求得a1与d的关系,再代入即可.由a1解答:解:∵a,a3,a9成等比数列,1∴(a+2d)2=a1•(a1+8d),1∴a=d,1∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.三、解答题(共5小题,满分51分)24.(10分)已知z∈C,解方程z﹣3i=1+3i.考点:复数代数形式的混合运算.专题:计算题.分析:设出复数z将其和它的共轭复数代入复数方程,利用复数相等,求出复数z即可.解答:解:设z=x+yi(x,y∈R).将z=x+yi代入原方程,得(x+yi)(x﹣yi)﹣3i(x﹣yi)=1+3i,整理得x2+y2﹣3y﹣3xi=1+3i.根据复数相等的定义,得由①得x=﹣1.将x=﹣1代入②式解得y=0,y=3.=﹣1,z2=﹣1+3i.∴z1点评:本小题考查复数相等的条件及解方程的知识,考查计算能力,是基础题.25.(10分)已知,cos(α﹣β)=,sin(α+β)=.求sin2α的值.考点:两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:计算题.分析:本题主要知识是角的变换,要求的角2α变化为(α+β)+(α﹣β),利用两个角的范围,得到范围,用两角和的正弦公式,代入数据,得到结果.解答:解:由题设知α﹣β为第一象限的角,∴sin(α﹣β)==.由题设知α+β为第三象限的角,∴cos(α+β)==,∴sin2α=sin[(α﹣β)+(α+β)],=sin(α﹣β)cos(α+β)+cos(α﹣β)sin(α+β)=.点评:本小题主要考查三角函数和角公式等基础知识及运算能力.已知一个角的某一个三角函数值,便关系式求出其它三角函数值.角的变换是解题的关键.的长度为d.在26.(10分)已知:两条异面直线a、b所成的角为θ,它们的公垂线段AA1直线a、b上分别取点E、F,设A1E=m,AF=n.求证:EF=.考点:空间中直线与平面之间的位置关系;平面与平面垂直的判定.专题:证明题.分析:由题意作辅助面,作出两条异面直线a、b所成的角,再由垂直关系通过作辅助线把EF放在直角解.的平面为β,α∩β=c,则c∥a.答:解:设经过b与a平行的平面为α,经过a和AA1因而b,c所成的角等于θ,且AA⊥c.1⊥b,∴AA1⊥α.∵AA1根据两个平面垂直的判定定理,β⊥α..在平面β内作EG⊥c,垂足为G,则EG=AA1根据两个平面垂直的性质定理,EG⊥α.连接FG,则EG⊥FG.在Rt△EFG中,EF2=EG2+FG2.∵AG=m,∴在△AFG中,FG2=m2+n2﹣2mncosθ.∵EG2=d2,∴EF2=d2+m2+n2﹣2mncosθ.)的另一侧,则如果点F(或E)在点A(或A1EF2=d2+m2+n2+2mncosθ.因此,EF=.点评:本题利用条件作出辅助面和辅助线,结合线面、面面垂直的定理,在直角三角形中求公垂线的长图形的线面关系,空间想象能力和逻辑思维能力.}的前n项和为Sn.已知a3=12,S12>0,S13<0.27.(10分)设等差数列{an(1)求公差d的取值范围.(2)指出S,S2,…,S12中哪一个值最大,并说明理由.1考点:等差数列的前n项和;数列的函数特性.专题:计算题;压轴题.分析:(1)由S>0,S13<0,利用等差数列的前n项和的公式化简分别得到①和②,然后利用等差数列12化简a3得到首项与公差的关系式,解出首项分别代入到①和②中得到关于d的不等式组,求出不集即可得到d的范围;(2)根据(1)中d的范围可知d小于0,所以此数列为递减数列,在n取1到12中的正整数中一项大于0,它的后一项小于0,则这项与之前的各项相加就最大,根据S>0,S13<0,利用等差12及前n项和的公式化简可得S1,S2,…,S12中最大的项.解答:解:(1)依题意,有,即=12,得a1=12﹣2d③,由a3将③式分别代①、②式,得∴<d<﹣3.>a2>a3>…>a12>a13.(2)由d<0可知a1因此,若在1≤n≤12中存在自然数n,使得a>0,an+1<0,n就是S1,S2,…,S12中的最大值.则Sn⇒,∴a>0,a7<0,6,S2,…,S12中S6的值最大.故在S1点评:本小题考查数列、不等式及综合运用有关知识解决问题的能力,是一道中档题.28.(11分)已知椭圆(a>b>0),A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明.考点:椭圆的简单性质.专题:证明题;压轴题.,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB不平行分析:设A、B的坐标分别为(x1x1≠x2.又交点为P(x0,0),故|PA|=|PB|.把点P坐标代入,同时把A、B代入椭圆方程,最后可得到x0关于x1和x2的关系式,最后根据x1和x2的范围确定x0的范围.,y1)和(x2,y2).因线段AB的垂直平分线与x轴相交,故AB 解答:证明:设A、B的坐标分别为(x1轴,即x1≠x2.又交点为P(x0,0),故|PA|=|PB|,即﹣x0)2+y12=(x2﹣x0)2+y22①(x1∵A、B在椭圆上,∴,.将上式代入①,得﹣x1)x0=②2(x2≠x2,可得.③∵x1≤a,﹣a≤x2≤a,且x1≠x2,∵﹣a≤x1+x2<2a,∴﹣2a<x1∴.点评:本小题考查椭圆性质、直线方程等知识,以及综合分析能力.。
2024 年高考全国甲卷数学(理科)真题卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。
高中理科数学试题及答案
高中理科数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3,求f(1)的值。
A. 0B. 1C. -2D. 2答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A3. 函数y = sin(x)的周期是:A. 2πB. πC. 4πD. 6π答案:A4. 直线l:y = 2x + 3与x轴的交点坐标为:A. (3/2, 0)B. (-3/2, 0)C. (0, 3)D. (0, -3)答案:B5. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,下列哪个条件能判断三角形ABC是直角三角形?A. a = bB. b = cC. c = 2aD. a = 2b答案:C6. 函数y = ln(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)答案:A7. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 4答案:B8. 函数y = x^3 - 3x^2 + 2的导数是:A. 3x^2 - 6x + 2B. 3x^2 - 6xC. x^3 - 3x^2D. 3x^2 - 6x + 1答案:A9. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=1,则该双曲线的离心率e为:A. √2B. √3C. √5D. 2答案:B10. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。
A. 1B. 3C. -1D. 5答案:C二、填空题(每题4分,共20分)11. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
答案:512. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求该圆的半径。
2023年高考真题及答案解析《数学理》(全国甲卷)
甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。
高考理科数学试卷及答案解析(文字版)
普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。
经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】
【解析】
三、解答题:本答题共6小题,共75分。
(16)(本小题满分12分)
设f(x)= 2(x+ ).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)在锐角◁ABC中,角A,B,C,的对边分别为a,b,c,若f( )=0,a=1,求▷ABC面积的最大值。
考点:直线与平面的位置关系;充分、必要条件的判断.
【答案】B
考点:平面向量的数量积
考点:函数求导,注意本题实质上是检验函数图像上是否存在两点的导数值乘积等于-1.
第Ⅱ卷(共100分)
二、填空题:本大题共5小题,每小题5分,共25分.
(11)执行右边的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.
(Ⅰ)证明:a+b=2c;
(Ⅱ)求cosC的最小值
【答案】(Ⅰ)见解析;(Ⅱ)1/2
考点:两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式.
(17)(本小题满分12分)
在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O 的直径,FB是圆台的一条母线.
(Ⅱ)设椭圆 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
(i)求 的值;
(ii)求△ 面积的最大值.
【答案】
【解析】
(21)(本小题满分14分)
设函数 ,其中 。
(Ⅰ)讨论函数 极值点的个数,并说明理由;
(Ⅱ)若 >0, 成立,求 的取值范围。
菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实,累累北雁南飞,满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中,午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流,水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂,机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错,落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无,阻花花红柳绿,花色,迷人花香醉人花,枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,标准答案一、填空题。(每空1分,,,,共,22分)1、4120500000 41.205 2092 2、3、12 4、14 32 7:7、1080cm2 8、, 6 9、2a2 10、3 11、3:2 12、558 810 13、20 14、18 ,二、判断题。(对的打“√”,错的打“×”),(共5分)15、×, 16、√17、√18、×19、√,三、选择(将正确答案的字母填入括号里)。(5份)20、A 21、B 22、B 23、C 24、B四、计算。(30分,)28、3、3 6、2 6、6第(1)题画图正确计2分,数对表示正确计2分29、表面积:8×8×6+4×4×4+2×2×4体积:8×8×8+4×4×4+2×2×2 30、d=16.56÷(1+3.14)=4dm r=2dm容积:3.14×22×4=六、解决问题。(21分)一、指导思想,《义务教育课程标准实验教科书语文四年级上册》是《中共中央国务院关于深化教育改革,全面推进素质教育的决定》的精神为指导准(实,验稿)为依据编,写的。本册教科书进一步加大改革,力度,,从选文到练习设计,从编排结构到呈现方式,有不少新的突破。,,二、教材分析本册共有课文27篇,其中精读课文20篇,略读课文7篇。每组教材包括导语、
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图:
A.5B.6C.7D.8
10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC。△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为 ,则()
17(12分)
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
设数列 的前n项和为 .已知2 = +3.
(I)求 的通项公式;
(II)若数列 满足 ,求 的前n项和 .
【答案】
【解析】
(19)(本小题满分12分)
若 是一个三位正整数,且 的个位数字大于十位数字,十位数字大于百位数字,则称 为“三位递增数”(如137,359,567等).
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得 分;若能被10整除,得1分.
(A)1-i(B)1+i(C)-1-i(D)-1+i
【答案】A
【解析】高三网
(3)要得到函数y=sin(4x- )的图像,只需要将函数y=sin4x的图像()
(A)向左平移 个单位 (B)向右平移 个单位
(C)向左平移 个单位 (D)向右平移 个单位
【答案】B
【解析】
(4)已知ABCD的边长为a,∠ABC=60o,则 · =
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
参考公式:
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).
第Ⅰ卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一
项是符合题目要求的
【答案】
【解析】
(17)(本小题满分12分)
如图,在三棱台DEF-ABC中,
AB=2DE,G,H分别为AC,BC的中点。
(Ⅰ)求证:BC//平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC= ,求平面FGH与平面ACFD所成的角(锐角)的大小.
【答案】
【解析】
(18)(本小题满分12分)
2019年普通高等学校招生全国统一考试(山东卷)
理科数学
2019年高考理科数学试卷(山东卷)
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.
注意事项:
1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是()
新农村建设后,种植收入减少
新农村建设后,其他收入增加了一倍以上
新农村建设后,养殖收入增加一倍
新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
7某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()
(A)- (B)- (C) (D)
【答案】D
【解析】
(5)不等式|X-1|-|X-5|<2的解集是
(A)(- ,4) (B)(- ,1) (C)(1,4) (D)(1,5)
【答案】A
【解析】
(6)已知x,y满足约束条件 ,若z=ax+y的最大值为4,则a=
(A)3 (B)2 (C)-2 (D)-3
【答案】B
(附:若随机变量ξ服从正态分布N(μ,σ²)),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)
(A)4.56%(B)13.59%(C)27.18%(D)31.74%
【答案】B
【解析】
(9)一条光纤从点(-2,-3)射出,经y轴反射后与圆 相切,则反射光线所在直线的斜率为()
【答案】3
【解析】
试题分析:第一次循环:a=1,b=8;第二次循环:a=3,b=6;第三次循环:a=6,b=3;满足条件,结束循环,此时,i=3.
考点:循环结构的程序框图
E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.
【答案】2
考点:双曲线的几何性质,把涉及到的两个线段的长度表示出来是做题的关键.
绝密★启用前
2019年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效
2019年山东高考理科数学答案解析