人教版七年级上册 3.3解一元一次方程(二)去分母去括号(第二课时)
人教版七年级上册数学练习课件-第三章 一元一次方程-3.3 第2课时 去分号
9
能力提升
9.将方程2x- 2 1-x-3 1=1 去分母得到方程 6x-3-2x-2=6,其错误的原因是 ( C)
A.分母的最小公倍数找错 B.去分母时,漏乘了分母为 1 的项 C.去分母时,分子部分的多项式未添括号 D.去分母时,分子未乘相应的数
10
10.解方程02.0x3+0.250-.020.1x=0.1 时,把分母化为整数,得
(2)不可以.理由如下:设挑土的有 x 人.由题意,得 x+43-x=20.解得 x=-3. 2
因为人数不能为负数,所以不符合实际问题,所以扁担数不能为 20 根.
17
思维训练
▪ 19.甲组的4名工人3月份完成的总工作量比此月人均定额的 4倍多20件,乙组的5名工人3月份完成的总工作量比此月人 均定额的6倍少20件.
▪ 注意:①去分母时,方程两边应乘所有分母的最小公倍数, 这样可使计算简便;②去分母时,分母与分数线去掉后,把 分子看作一个整体,若是多项式应用括号括起来;③去分母 时,不含有分母的项也要乘最小公倍数,否则等式不成立. 2
▪ 知识点2 解一元一次方程的一般步骤 ▪ 解一元一次方程的一般步骤包括:去分母、去括号、移项、
第三章 一元一次方程
3.3 解一元一次方程(二)——去括号与去分母
第二课时 去分母
名师点睛
▪ 知识点1 去分母
▪ (1)含分数系数的方程两边都乘同一个数(各个分母的最小公 倍数),使方程中的分母化为1,这样的变形过程叫做去分 母.
▪ (2)去分母的依据是等式的性质2,目的是约去分母,使方程 的系数化成整数.
▪ (1)如果两组工人实际完成的此月人均工作量相等,那么此月 人均定额是多少件?
▪ (2)如果甲组工人实际完成的此月人均工作量比乙组的多2件, 则此月人均定额是多少件?
人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
3.3 解一元一次方程(二)-去括号与去分母(第2课时)(七年级数学上册同步备课系列(人教版)
x x x
6 x.
2 4 7
解得
x=56.
答:这个班有56个学生.
课堂练习
3 x 7 x 17
1.把方程 2
去分母,正确的是(
4
5
A.2-(3x-7)=4(x+17)
B.40-15x-35=4x+68
C.40-5(3x-7)=4(x+17)
2. 去分母的依据是等式性质2 ,去分母时不能漏乘
3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.
;
去分母的方法:
方程的两边都乘以“公分母”,使方程中的系数不出现分数,这
样的变形通常称为“去分母”.
注意事项:“去分母”是解一元一次方程的重要一步,此步的依据是方
程的变形法则2,即方程的两边都乘以或除以同一个不为0的数,方程的
(这里是都乘以6),去掉方程中的分母.
解 : 两边都乘以6, 得
x3
2x 1
6
6 1 6
2
3
3( x 3) 2(2 x 1) 6
3x 9 4x 2 6
3x 4x 6 9 2
x 17.
2 x 1 10 x 1 2 x 1
移项,得8x-12x-6x=3+4.
移项,得3x+2x-2x=2+4.
合并同类项,得-10x=7.
合并同类项,得3x=6.
7
系数化为1,得x=- .
10
系数化为1,得x=2.
x
4.已知方程 的解比关于
y的方程2(y-3)+m=11的解小4,
2
解一元一次方程—去括号与去分母课件人教版七年级数学上册3
3.3 解一元一次方程(二)
——去括号与去分母
第2课时
知识回顾
解含有括号的一元一次方程的一般步骤: 去括号
移项
合并同类项
系数化为1
学习目标
1. 进一步熟悉运用去括号法则解带有括号的一元一次 方程. 2.能够明确行程问题中的数量关系,准确列出方程, 体会数学建模思想.
课堂导入 答:水流的速度为3 km/h, A,B两地之间的距离为45 km.
随堂练习
1.一艘轮船在A,B两地之间航行,顺水航行需用3 h, 逆水航行需用5 h.已知该轮船在静水中的速度是12 km/h,求水流的速度及A,B两地之间的距离. 移项、合并同类项,得 8x=24. 系数化为1,得x=3. 所以A,B两地之间的距离为(12+3)×3=45(km). 答:水流的速度为3 km/h, A,B两地之间的距离为45 km.
)
答:两城之间的距离为2 448 km. (3) 若两车同时开出,快车在慢车后面同向而行,则多少小时后两车相距1 200 km?
3 解一元一次方程(二) 由题意,得 60(x+0.
1.相遇问题 甲的行程+乙的行程=甲、乙出发点之间的距离; 若甲、乙同时出发,则甲用的时间=乙用的时间.
2.追及问题 快者走的路程-慢者走的路程=快者出发时两者间的距离; 若同时出发,则快者追上慢者时,快者用的时间=慢者 用的时间.
课堂小结
1.相遇问题 甲的行程+乙的行程=甲、乙出发点之间的距离; 若甲、乙同时出发,则甲用的时间=乙用的时间. 2.追及问题 快者走的路程-慢者走的路程=快者出发时两者间的距离; 若同时出发,则快者追上慢者时,快者用的时间=慢者 用的时间.
3.航行问题 顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度. 顺风速度=无风速度+风速; 逆风速度=无风速度-风速. 往返于A,B两地时,顺流(风)航程=逆流(风)航程.
人教版七年级上3.3 解一元一次方程(二)(2课时)
3x 1 2 3x 2 2x .
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 2(2x 3)
去括号 15x 5 20 3x 2 4x 6
移项
小心漏乘, 记得添括号!
15x 3x 4x 2 6 5 20 合并同类项
16x 7
提示:若一个月用电200度,则这个月应缴纳电费为0.50× 100+0.65×(200-100)=115元.故当缴纳电费为310元时,该 用户9月份用电量超过200度.
解:设他这个月用电x度,根据题意,得
0.50×100+0.65×(200-100)+0.75(x-200)=310, 解得x=460. 答:他这个月用电460度.
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
当堂练习
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的
是
(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
移项及合并同类项,得 0.5x = 13.5.
系数化为1,得
x = 27.
答:船在静水中的平均速度为 27 km/h.
变式训练
一架飞机在两城之间航行,风速为24 km/h,顺风飞 行要2小时50分,逆风飞行要3小时,求两城距离.
解:设飞机在无风时的速度为x km/h,则在顺风中的 速度为(x+24) km/h ,在逆风中的速度为(x-24)km/h.
总结:像上面这样的方程中有些系数是分数, 如果能化去分母,把系数化为整数,则可以使 解方程中的计算更方便些.
2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件
D.x+4 2=3x
易错点 去分母时漏乘无分母的项导致错误.
自我诊断4. 方程x+2 1-1=2-33x的解为 x=97
.
1.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B ) A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
x 2
=3,解为x=2;第2个方程是
x 2
+
x 3
=
5程,是解为1x0x+=1x61;=第213个方,程其是解x3为+
x 4
=7,解为x=12,…,根据规律第10个方
x=110
.
10.解方程:
(1)2x5+3=32x-2x3-7;
(2)x-2 4+0.2x0-.5 0.3=00..0021x.
再 见!
C.12-2(5x+7)=-(x+17)
D.12-10x+14=-(x+17)
去分母解方程的应用
自我诊断3. 小华用x元买学习用品,若全买钢笔,刚好买3支,若全买笔记
本刚好买4本.已知一个笔记本比一支钢笔便宜2元,则下列方程中正确的
是( A )
A.x3=x4+2
B.x4=3x+2
C.x4=x+3 2
解:(1)x=-8; (2)x=-2116.
11.已知关于x的方程4x+m=3x+1的解比3x-
3x-m 2
=1的解小3,求m的
值. 3x-m
解:解方程4x+m=3x+1,得x=1-m,解方程3x- 2 =1,得x=
2-m
2-m
3 ,所以有1-m+3= 3 ,解得m=5.
12.某工厂第一车间人数比第二车间人数的
7.如果方程2-
x+1 3
人教版七年级数学上册《三章 一元一次方程 3.3 解一元一次方程(二)——去括号与去分母》示范课课件_10
自我检验
1.解方程
2
3x 2
1
2x 2
1
去分母和去括号后,得(
D
)
A.4 3x 1 2x 1
B.2 3x 1 2x 1
C.2 3x 1 2x 1
D.4 3x 1 2x 1
2.由 x 3 1 4x 得 x 3 2 8x 的依据是
系数化为母的最小
公倍数,则得到
42 2 x+42 1 x+42 1 x+42x=42 33
3
2
7
28x+21x+6x+42x=1 386
x=1386 97
合并同类项,得 97x=1 386
系数化为1,得 x=1386 97
四、尝试应用 3x+1-2= 3x-2- 2x+3
分析:设这个数为x. 根据题意,得
2 x+ 1 x+ 1 x+x=33 327
1
2
解法一:
2 x+ 1 x+ 1 x+x=33 327
解:合并同类项,得
97 x=33 42
.
系数化为1,得
x=1386 97
2
总
解法二:
2 x+ 1 x+ 1 x+x=33 327
解:方程两边同乘各分母的这最样小做的依
最小公倍数
3、解一元一次方程的一般步骤:
去括号 移项 合并同类项 系数化为1
二、新课引入 数学小史料
英国伦敦博物馆保存着一部极其珍贵的文物—— 纸草书.这是古代埃及人用象形文字写在一种用纸莎草 压制成的草片上的著作,它于公元前1700年左右写成. 这部书中记载了许多有关数学的问题.
问题1.一个数,它的三分之二,它的一半,它的七 分之一,它的全部,加起来总共是33,求这个数.
初一数学上册解一元一次方程(二)去括号与去分母第2课时
第2课时
解下列方程: (1) 10x-4(3-x)-5(2+7x)=15x-9(x-2); (2) 3(2-3x)-3[3(2x-3)+3]=5.
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
解:去括号,得
10x-12+4x-10-35x=15x-9x+18
C : 2x2 2 3x
D:4x 2 3x
例如:方程(3x -2)(x -2)=0正确的解为( D )
A: x 2 3
C : x 2 且x 2 3
B: x 2 D : x 2 或x 2
3
1:已经学习了利用等式性质解一元一次方程 2:解一元一次方程——合并同类项与移项 3:解一元一次方程——去括号与去分母(本节课)
例题1:解方程
3x-7 (x -1) =3-2(x +3)
解:去括号,得 3 x -7 x +7 =3-2 x -6
移项,得 3 x -7 x +2 x =3-6 -7 合并同类项,得 -2 x =-10
系数化为1,得 x =5
英国伦敦博物馆保存着一部极其
珍贵的文物——纸莎草文书。这
是古代埃及人用象形文字写在一
列方程解应用题的关键是找出相等关系.
人生的步伐不在于走得快,而在于走 得稳.
作业 :
1.教科书第98页习题3.3第2、7题.
什么是一元一次方程?
只含有一个未知数(元),未知数的次数都是1, 这样的方程叫一元一次方程。
例如:下列方程为一元一次方程的是( D )
A: 1+2=3
B: 4m+2n=3m
解:设有x名工人生产螺钉,则有__(_2_2_-_x_)名工人生产螺母; 那么螺钉共生产__1_2_0__0_x_个,螺母共生产_2__0_0_0_(_2_2_-_x个) .
人教版七年级数学上册第三章一元一次方程3.3解一元一次方程二_去括号与去分母第2课时用去分母解一元一次方
3.3 解一元一次方程(二)——去括号与去分母第2课时用去分母解一元一次方程置疑导入归纳导入悬念激趣图3-3-5毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?[说明与建议] 说明:用数学小故事引入新知,激发学生的学习兴趣,让学生自然地展开对含有分数系数的一元一次方程的学习.利用列方程解决实际问题,让学生感受方程的优越性,提高学生主动使用方程的意识.建议:由学生独立完成列出方程,教师引导学生观察这个方程同上节课学习的方程有什么不同,是否能用移项、合并同类项的方法解这个方程?教师适时引导是否有办法避免烦琐的通分合并?问题1:去括号时应该注意什么?问题2:等式的性质2是怎样叙述的?问题3:(1)6,3,4的最小公倍数是多少?(2)2,4,5的最小公倍数是多少?(3)3,4,12的最小公倍数是多少?[说明与建议] 说明:通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.建议:这几个问题由学生自主完成,注意易错点.前面我们学过带括号的一元一次方程的解法.比如:4-3(x+2)=1-2(x-1),大家观察下面这个方程:x +6=14()x +72,它与以前解的方程有什么区别?你能求出它的解吗?[说明与建议] 说明:设计此环节有两个目的,既复习了上节课所学带括号方程的解法,又通过两个方程的比较,引出了新课.建议:让学生解这两个方程,然后重点比较第二个方程的解法,探究便捷的方法.教材母题——教材第97页例3 解下列方程:(1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.【模型建立】去分母解一元一次方程的步骤主要有:去分母、去括号、移项、合并同类项、系数化为1.注意以下几点:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.【变式变形】1.方程2x -12-x +13=1去分母,得(B )A .2x -1-x +1=6B .3(2x -1)-2(x +1)=6C .2(2x -1)-3(x +1)=6D .3x -3-2x -2=12.当x =__6__时,3x -28的值是2.3.若x -12+2x +16与x -13+1的值相等,则x =__2__.4.当y =__83__时,y -y +22与3互为倒数.5.解方程:17[15(x +23+4)+6]=1.[答案:x =1]6.解方程:0.1x -0.20.02-2x +10.2=5.[答案:x =-4][命题角度1] 去分母解一元一次方程去分母解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解方程的步骤不一定每次都一样,而且五个步骤也不一定全都用到,应根据具体方程的特点,灵活选用解题步骤.注意:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.例 [模拟中考] 解方程:x -x -16=2-x +23.[答案:x =1][命题角度2] 求解分母是小数的方程求解分母是小数的一元一次方程,通常利用分数的基本性质,分子分母都乘相同的倍数,把分母化成整数,此时将分子作为一个整体,需要补上括号.分子分母同乘的倍数要恰当,需要注意,不含分母的项不能乘这个倍数.例x +10.2-3x -10.4=1.[答案:135] [命题角度3] 利用解方程解决综合问题解决此类题目,首先读懂题意,列出方程,借助一元一次方程的解法,求出涉及的未知数.例 [孜州中考] 设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc.则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为__-10__.P98练习解下列方程: (1)19100x =21100(x -2); (2)x +12-2=x4; (3)5x -14=3x +12-2-x3; (4)3x +22-1=2x -14-2x +15. [答案] (1)x =21;(2)x =6;(3)x =-17; (4)x =-928. P98习题3.3 复习巩固1.解下列方程: (1)5a +(2-4a )=0; (2)25b -(b -5)=29; (3)7x +2(3x -3)=20; (4)8y -3(3y +2)=6.[答案] (1)a =-2;(2)b =1;(3)x =2;(4)y =-12. 2.解下列方程:(1)2(x +8)=3(x -1); (2)8x =-2(x +4); (3)2x -23(x +3)=-x +3; (4)2(10-0.5y )=-(1.5y +2).[答案] (1)x =19;(2)x =-45;(3)x =157;(4)x =-44. 3.解下列方程: (1)3x +52=2x -13; (2)x -3-5=3x +415; (3)3y -14-1=5y -76; (4)5y +43+y -14=2-5y -512. [答案] (1)x =-175;(2)x =56;(3)y =-1;(4)y =47.4.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y . [答案] (1)x =23;(2)y =-45.综合运用5.张华和李明登一座山,张华每分登高10 m ,并且先出发30 min(分),李明每分登高15 m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 的值,由x 的值能求出山高吗?如果能,山高多少米?[答案] 10x ÷15=x -30,x =90.山高900米. 6.两辆汽车从相距84 km 的两地同时出发相向而行,甲车的速度比乙车的速度快20 km/h ,半小时后两车相遇,两车的速度各是多少?[答案] 甲车的速度是94 km/h ,乙车的速度是74 km/h.7.在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3 h .求:(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程.解:(1)无风时这架飞机在这一航线的平均航速为696 km/h. (2)两机场之间的航程为2016 km.8.买两种布料共138 m ,花了540元.其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?[答案] 买蓝布料75米,买黑布料63米. 拓广探索9.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50 m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m 2墙面.每名一级技工比二级技工一天多粉刷10 m 2墙面,求每个房间需要粉刷的墙面面积.[答案] 52 m 2.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km.求A ,B 两地间的路程.[答案] 108 km.11.一列火车匀速行驶,经过一条长300 m 的隧道需要20 s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.(1)设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上述问题中火车的平均速度发生了变化吗? (4)求这列火车的长度.解:(1)从车头经过灯下到车尾经过灯下火车所走的路程为x m .这段时间内火车的平均速度为x 10m/s ;(2)从车头进入隧道到车尾离开隧道火车所走的路程为(x +300)m ,这段时间内火车的平均速度为x +30020m/s ; (3)火车的平均速度没有发生变化; (4)根据题意得x 10=x +30020.x =300.答:火车的长度是300 m.[当堂检测] 1. 下列解方程:312+x - 632-x = 1时,去分母正确的 是( )A .2(2x+1)–2x –3= 1 B. 2(2x+1)–2x –3= 6C. 2(2x+1)–(2x –3)= 6 D .以上都不对2. x=____时,代数式3x 比22-x 的值大1. ( ) A .0 B.5 C. -12 D. 12 3. 小玲做作业时解方程21+x - 332x-=1的步骤如下: ①去分母,得3(x+1)-2(2-3x)=1; ②去括号,得3x+3-4-6x=1; ③移项,得3x-6x=1-3+4;④合并同类项得 -3x=2; ⑤系数化为1,得x=-32.聪明的你知道小玲的解答过程正确吗? 答 _______(填“是”或“否”),如果不正确,第________步(填序号)出现了问题; 4. 一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程___________ . 5. 解方程: (1)3423+=-x x ; (2)1102552=--+x x .参考答案: 1. C 2. A3. 否 ①.②4. 51x+52x+1+1=x 5. (1)x =51(2)x=-34[能力培优]专题一 利用去括号、去分母解方程 1.下列解方程去分母正确的是( )A .由1132x x--=,得2x -1=3-3x . B .由232124x x ---=-,得2(x -2)-3x -2=-4.C .由131236y y y y +-=--,得3y +3=2y -3y +1-6y .D .由44153x y +-=,得12x -15=5y +4. 2. (1)2(4y+3)= 8(1-y); (2)61-x -3)1(2+x = 221x- - 1; (3)341187434x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦; (4) 1461x 51413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-.3. (2011·滨州)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括 号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为352123x x +-=, (___________________) 去分母,得3(3x+5)=2(2x -1), (___________________)去括号,得9x+15=4x -2, (___________________) (_____________),得9x -4x=-15-2, (___________________) 合并同类项,得5x=-17, (合并同类项) (______________),得x=175-. (_______ ________)专题二 利用方程解“总、总”问题4.(2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( ) A.17人 B.21人 C.25人 D.37人5.学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对 题.6.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.求每条船上划桨的人有多少个?专题三 利用方程解行程问题7.小李骑车从A 地到B 地,小明骑车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A 、B 两地间的路程.8.从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地55分钟.他回来时以每小时8•千米的速度通过平路,而以每小时4千米速度上山,回到甲地用了112小时,求甲、•乙两地间的距离.9.著名数学家苏步青教授在国外考察时,•一位法国朋友问了这样一个问题:甲、乙两人从相距5千米的A、B两地相向而行,速度分别为2千米/时和3千米/时,甲带了一只小狗,以5•千米/时的速度跑向乙,碰见乙又立即向甲跑去,这样反复跑,当甲、乙两人相遇时,•小狗跑了多少路程?苏教授很快就知道了答案,你呢?10.一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程.....解决的问题,并写出解答过程.专题四用方程进行说理11.魔术师为大家表演魔术. 他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是1 ,那么他告诉魔术师的结果应该是;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.12.下列图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:(1)第1个图中所贴剪纸“○”的个数为个,第2个图中所贴剪纸“○”的个数为个,第3个图中所贴剪纸“○”的个数为个.(2)第n个图中所贴剪纸“○”的个数为多少个?(3)当n=100时,所贴剪纸“○”的个数多少个?(4)如果所贴剪纸“○”的个数为2018个时,那么它是第几个图?知识要点:1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.解一元一次方程的过程是逐步向着x=a的形式转化.3.解一元一次方程的主要依据是等式的基本性质和运算律.4.总总问题中,通常根据一个等量关系设未知数,根据另一个等量关系列方程.5.行程问题中有三个基本量:路程、速度、时间.可寻找的相等关系有:路程关系、时间关系、速度关系.相遇问题中多以路程做等量关系:对于有时间差的问题常常利用时间做等量关系;航行问题中很多时候用速度做等量关系.温馨提示:1.去括号注意事项:(1)如果括号前的系数是负数,去括号后各项的符号应与原括号内相应各项的符号相反;(2)去括号时,括号外的因数要乘以括号内的每一项,不可漏乘.2.去分母注意事项:(1)去分母时不要漏乘分母是1的项.(2)转化小数分母为整数和去分母是完全不同的两回事,前者利用的是分数的基本性质,相对于其它部分是独立的,将分子、分母同时乘以一个数;后者利用的是等式的基本性质,针对所有整式而言,将方程两边同时乘以同一个数.3.列方程解应用题,若直接设元,较难与题中已知量,未知量建立联系时,可考虑间接设元.方法技巧:1.解一元一次方程时,一要按照步骤,不要跳步;二要每一步都与相应法则对应,法则怎么讲的,易错在哪里,要做到心中有数.2.除了一元一次方程的常规解法外,具体到某些特殊结构的一元一次方程,还可以灵活采用其独有的简便方法.3.行程问题中,常有相遇问题和追击问题.相遇问题中:快者路程+慢者路程=总路程;追击问题中:快者路程—慢者路程=原来相隔的路程.答案:1. C 解析:由1132x x--=,应该得2x-6=3-3x,故A选项错;由232124x x---=-,应该得2(x-2)-(3x-2)=-4,故B选项错;由131236y y yy+-=--,应该得3y+3=2y-3y+1-6y,故C选项正确;由44153x y+-=,应该得12x-15=5(y+4),故D选项错误.2. 解析:(1)去括号,得8y+6=8-8y, 移项,得8y+8y=8-6,合并同类项,得16y=2,系数化为1,得y=18;(2)去分母,得(x-1)-4(x+1)=3(1-2x)-6,去括号,得 x-1-4x-4=3-6x-6, 移项,得x-4x+6x=3-6+1+4,合并同类项,得 3x=2,系数化为1,得23x=;(3)去中括号得1167.4x⎛⎫-+=⎪⎝⎭去小括号得1167.4x-+=移项,得171 6.4x=+-合并同类项,得12.4x=系数化为1,得x=8;(4)两边同乘以2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦,移项,合并同类项得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦,两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭,移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭,两边同乘以4,得110 5x-=,移项得11 5x=,系数化为1,得5x=.3. 解析:原方程可变形为352123x x+-=, (分式的基本性质)去分母,得3(3x+5)=2(2x-1), (等式性质2)去括号,得9x+15=4x-2, (去括号法则或乘法分配律)(移项),得9x-4x=-15-2, (等式性质1)合并同类项,得5x=-17, (合并同类项)(系数化为1),得x=175-.(等式性质2)4. C 解析:设这两种实验都做对的有x人,由题意得(40﹣x )+(31﹣x )+x+4=50.解得x=25,故都做对的有25人.5. 16 解析:设小明答对了x 道题,则他答错或不答的题目有(20﹣x )道.依题意得5x ﹣1(20﹣x )=76,解得:x =16.答:小明答对了16道题.6. 解析:设每条船上划桨的有x 人,则每条船上有x+2人,根据题意,得: 15(x+2)=330.解得x=20.答:每条船上划桨的有20人.7. 解析:设A 、B 两地间的路程为x 千米,根据题意,得 1012363681036-+=--x .解得:x=108.答:A 、B 两地间的路程为108千米.8. 解析:设山路长为x 千米,由题意,得9(1112-12x )=8(32-4x ),解得x=3. 则平路长为9(1112-312)=6(千米), •∴两地距离为3+6=9(千米).答:甲、乙两地距离为9千米.9. 解析:设两人经过x 小时相遇,依题意,得:2x+3x=5.解得:x=1.所以小狗所走路程为5×1=5(千米).答:小狗跑了5千米.10. 本题答案不唯一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高度公路长为2xkm . 根据题意,得260100x x +=2.2.解得:x=60,2x=120. 答:普通公路长为60km ,高速公路长为120km .解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了(2.2-x )h .根据题意,得602100(2.2)x x ⨯=-.解得x=1,2.2-x=1.2.答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .11. 解析:(1)4;(2)88;(3)设观众想的数为a .36753a a -+=+. 因此,魔术师只要将最终结果减去5,就能得到观众想的数了.12. 解析:(1)第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花.(2)第n个图案所贴窗花数为(3n+2)个.(3)当n=100时,3n+2=302个.(4)由题意得 3n+2=2018,解得n=672.答:如果所贴剪纸“○”的个数为2018个时,它是第672个图.口诀法解一元一次方程解一元一次方程的一般步骤:去分母,去括号,移项,合并,系数化为1.解方程,很重要,字母求值常用到;如何解,有说道,方法步骤有四条;看特征,选方法,方法选准很重要;第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳,等号两边各一项;未知系数化为1,用乘用除讲技巧.口诀告诉我们:解一元一次方程十分重要,它是字母求值的重要方法和工具.接下来对一元一次方程的解法进行细致的剖析.“第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;”的意思:如果方程中含有分数,应先去分母,把各项中的分数化为整数,实现这种转化的做法是方程两边同乘以各分母的最小公倍数,同时提醒大家不要漏乘方程中的任何一项,而且在约去分母时,养成加括号的习惯,因为分数线除了表示除法的意义外,还具有括号的功能,当把分数线去掉时自觉加上括号.如:解方程2111 36x x+--=.解:两边乘以6 (这里的6取自原方程的分母3和6的最小公倍数),得6×21166136x x+--⨯=⨯.(原方程共有3项,特别注意1这一项也要乘以6)约去分母,得2(2x+1)-(1-x)=6.(如果没有养成自觉加括号的习惯,很容易把方程错误变形为4x+2-1-x=6)“第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;”的意思是:去掉分母后,接下来要做的是去括号,而去括号时要分清括号前面是正号还是负号,如果是正号,则去括号时不需要变号,只须把括号前的系数与括号内的每一项相乘就可以;如果是负号,则不仅要考虑系数的分配,同时还要考虑变号.如上述方程去分母后,接下来就是去括号,得4x+2-1+x=6.(如果得到4x+1-1-x=6,错在哪里?)“分母括号全没了,第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳;”的意思是:如果方程中没有了分母和括号,那进行第三个步骤:移项.移项的一般方法是含未知数的项移到左边,常数移到右边,不论是左边移到右边,还是右边移到左边,这些项都需要变号, 移项后,等号两边分别合并,合并时一定要认真细致,否则前面付出的艰辛就白费了,就如同旧社会的杨白劳.这里还应注意一点:在没有移项之前,如果两边有可以合并的先合并,再移项,再合并,这样可以省去许多麻烦.如上述方程去分母、去括号后,接下来可以先合并,得5x+1=6.移项,得5x=6-1.再合并,得5x=5.“未知系数化为1,用乘用除讲技巧.”这是解一元一次方程最后一个步骤,如果未知数的系数是整数,则一般用除法;如果是分数,则乘以它的倒数.如5x=5,两边除以5,得x=1.而像23x=-6,要把x的系数化为1,两边乘以23的倒数32,得x=-6×32=-9.。
3.3 解一元一次方程(二) 第2课时 利用“去分母”解一元一次方程
解:(1)去分母,得 6(x+15)=15-10(x-7). 去括号,得 6x+90=15-10x+70. 移项及合并同类项,得 16x=-5. 系数化为 1,得 x=-156. (2)去分母,得 4(2x-1)-2(10x+1)=3(2x+1)-12. 去括号,得 8x-4-20x-2=6x+3-12. 移项,得 8x-20x-6x=3-12+4+2. 合并同类项,得-18x=-3. 系数化为 1,得 x=16.
解下列方程: x2-5x+6 11=1+2x- 3 4. 解:去分母,得 3x-5x+11=1+4x-8.……① 移项,得 3x-5x-4x=1-8-11.……② 合并同类项,得-6x=-18.……③ 系数化为 1,得 x=3.……④
以上解答过程从第___①_____步开始出现错误,指出错误原因, 并给出正确的解答过程.
解:错误原因:去分母时,方程左边第二项分子“5x+11”没有添加括号,方程 两边同时乘 6 时,右边第一项“1”没有乘 6. 正解:去分母,得 3x-(5x+11)=6+2(2x-4). 去括号,得 3x-5x-11=6+4x-8. 移项,得 3x-5x-4x=6-8+11. 合并同类项,得-6x=9. 系数化为 1,得 x=-32.
第三章 一元一次方程
3.3 解一元一次方程(二)—— 去括号与去分母
第三章 一元一次方程
第2课时 利用“去分母”解 一元一次方程
目标突破 总结反思
目标突破
目标一 会解含有分母的一元一次方程
例 1 教材例 3 针对训练 解方程:
(1)15(x+15)=12-13(x-7); (2)2x- 3 1-10x6+1=2x+ 4 1-1.
3.3 第2课时 用去分母解一元一次方程
本;每个同学8本,又差了3本,问共有多少本笔记本?
x- 9 解:设共有笔记本 x 本,则同学人数既可表示为 人,也 6 x+ 3 可表示为 人, 8 x- 9 x+ 3 于是可列方程 = . 6 8 解得 x=45.
答:共有45本笔记本.
3.3 解一元一次方程(二)——去括号与去分母
[归纳总结] 当同一个量能用两个不同的式子表示时,则
2
3.3 解一元一次方程(二)——去括号与去分母
(5)解此方程,得 x=______ 52 .
2 52 (6)答:每个房间需要粉刷______m 的墙面.
变式 1
122 2 根据以上解答可知, 每名一级技工一天粉刷______m
112 2 的墙面. 的墙面,每名二级技工一天粉刷______m
3.3 解一元一次方程(二)——去括号与去分母
3.3 解一元一次方程(二)——去括号与去分母
解:设做上衣需要 x 米,则做裤子需要(750-x)米,做上衣的 x 750-x 件数为 ×2 件,做裤子的条数为 ×3 条,根据题意,得 3 3 2x 3(750-x) = , 3 3 解这个方程,得 x=450, 所以 750-x=750-450=300. 450 ×2=300(套). 3 答:用450米布料生产上衣和300米布料生产裤子才能恰好
2 (10x+40) 技工一天粉刷____________m 墙面,于是一名二级技工一天 10x+40 2 粉刷____________m 墙面. 5
(4)根据“每名一级技工比二级技工一天多粉刷 10 m 墙面”, 8x-50 10x+40 - 3 5 可列如下方程:________________ .
数 学
新课标(RJ) 七年级上册
人教版七年级数学上册3.3解一元一次方程去括号与去分母(第二课时)说课稿
(1)提问:在讲解过程中,我会适时提问,引导学生思考,检查学生对知识点的掌握情况。
(2)示例:通过现场演示解题过程,让学生跟随我的思路,理解解题方法。
(3)反馈:及时给予学生反馈,鼓励学生提问,解答学生的疑惑。
2.生生互动:
(1)分组讨论:将学生分成小组,针对某一问题进行讨论,培养学生的合作意识。
在学习习惯方面,学生之间存在较大差异。部分学生有良好的学习习惯,如认真听讲、主动提问、及时复习等;而另一部分学生可能缺乏自律,学习依赖性强,需要教师不断引导和督促。
(二)学习障碍
在学习本节课之前,学生应具备以下前置知识或技能:1.一元一次方程的基本概念;2.简单的代数运算;3.方程的移项和合并同类项。
(3)能够运用所学知识解决简单的实际问题。
2.过程与方法目标:
(1)通过自主探究、合作交流,培养学生解决问题的能力和合作意识;
(2)通过例题讲解和练习,让学生掌握解题方法和步骤,提高解题能力;
(3)通过对比分析,让学生理解去括号与去分母之间的联系和区别。
3.情感态度与价值观目标:
(1)激发学生学习数学的兴趣,培养其勇于挑战困难的品质;
2.让学生自我评价在本节课中的表现,分享学习心得和困惑。
3.我会针对学生的总结和评价,给予肯定和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.完成教材中的相关习题,巩固去括号与去分母的知识。
2.设计一道实际问题,运用所学知识解决问题,并撰写解题过程。
3.预习下一节课的内容,为学习更复杂的方程打下基础。
可能存在的学习障碍有:1.对去括号和去分母的概念理解不透彻;2.运算过程中容易出错,如符号错误、漏项等;3.在解决实际问题中,难以将问题转化为方程模型。
七年级数学上册第三章一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版
七年级 上册
第三章 一元一次方程
知识点一 解一元一次方程——去括号
定义 去括号 按照去括号法则,把方程中的括号去掉,这个 过程叫做去括号 去括号 法则 将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外 的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数, 依据 乘法对加法的分配律
1 =-4- 1 =- 15 . a- a 4 4
点拨 本题第2个方程中含有一个字母常数,除用上述方法解题,也可把 字母常数看作已知数,在求得两方程的相同解后可得到关于这个字母常 数的方程,即可求得该字母常数的值.
题型三 选择适当的方法解一元一次方程 例3 用适当的方法解下列方程:
x 0.17 0.2 x =1; 0.7 0.03 1 1 2( x 1) x ( x 1) (2)x- = . 2 3 2
1 2 5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
1 a 1 a x4 3 x2 2
解析 解方程 -8=- ,
x4 3
x2 2
去分母,得2(x-4)-48=-3(x+2),
去括号,得2x-8-48=-3x-6, 移项、合并同类项,得5x=50, 系数化为1,得x=10. 把x=10代入方程4x-(3a+1)=6x+2a-1, 得4×10-(3a+1)=6×10+2a-1, 解得a=-4. 当a=-4时,
人教版七年级数学上册利用去分母解一元一次方程课件(第二课时14张)
——去括号与去分母 第2课时 利用去分母解一元一次方程
解下列方程 : (1) 7x=6x-4 (2) 8=7-2y
解一元一次 方程有哪些 基本程序呢?
(3) 5x+2=7x-8
(4) 8-2(x-7)=x-(x-4)
去括号 移项
合并同类项
两边同除以未知数的系数
解方程: 5x 7 2x 1 1
2
4
解方程: 5x 7 2x 1 1
2
4
解:去分母(方程两边同乘4),得 2(5x-7) - (2x-1) = 4
去括号,得
10x – 14 - 2x+1= 4 移项,得
10x- 2x= 4+14 - 1 合并同类项,得
8x=17 系数化为1,得
x 17 8
解: 3x 1 2 3x 2 22x+. 3
2
10
55
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 2(2x 3)
去括号 15x 5 20 3x 2 4x 6
移项
谨慎漏乘,记得 添括号!
15x 3x 4x 2 6 5 20
合并同类项
一
般 步
合并同类项 将未知数的系数相加,常数项相加. 根据是乘法分配律
骤
:
系数化为1 在方程的两边除以未知数的系数.
根据是等式性质二.
移项,得 2y y 2 11
合并同类项,得 y 2
课堂小结
变形名称
具体的做法
解 一 元
去分母
乘所有的分母的最小公倍数. 根据是等式性质二
一 次 方
去括号
人教版七年级数学上册3.3.2解一元一次方程—去括号与去分母(第2课时)优秀教学案例
3.定期对学生的学习情况进行评价,关注学生的进步,激发学生学习的积极性。同时,根据学生的实际情况,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.通过回顾上节课的内容,引导学生复习一元一次方程的解法,为新课的学习做好铺垫。
人教版七年级数学上册3.3.2解一元一次方程—去括号与去分母(第2课时)优秀教学案例
一、案例背景
本节课为人教版七年级数学上册3.3.2解一元一次方程—去括号与去分母(第2课时),是在学生已经掌握了方程的概念、一元一次方程的定义及解法的基础上进行的一节实践活动课。通过本节课的学习,学生需要掌握去括号与去分母的方法,进一步解决一元一次方程。
在教学过程中,我以提高学生的数学素养和实际操作能力为目标,注重培养学生的逻辑思维和团队协作能力。针对本节课的内容,我设计了丰富的教学活动,如小组讨论、实践操作、总结分享等,使学生在实践中掌握知识,提高解决问题的能力。同时,我充分运用多媒体教学手段,以生动形象的教学方式激发学生的学习兴趣,提高课堂效果。
5.多样化的教学方法:本节课运用了情景创设、问题导向、小组合作等多种教学方法,使得课堂生动有趣,激发学生的学习兴趣。同时,注重运用多媒体教学手段,以生动形象的方式展示方程的解法过程,提高学生的学习效果。
2.要求学生在作业中运用去括号与去分母的方法,提高学生的实际操作能力。
本章节内容以导入新课、讲授新知、学生小组讨论、总结归纳和作业小结五个部分组成,每个部分都紧密结合学科和课本内容,符合教学实际。在教学过程中,注重培养学生的逻辑思维、团队协作能力和自主学习能力,使学生在实践中掌握知识,提高解决问题的能力。同时,运用人性化的语言,激发学生的学习兴趣,提高课堂效果。
人教版七年级数学上课件《解一元一次方程(二)——去括号与去分母》2
小练习:
1、2(X+8) 2x+16
注意符号
2、-3(3X+4) -9x-12 3、-(7y-5) -7y+5
注意符号
某工厂加强节能措施,去年下半年与上半
年相比,月平均用电量减少2000度,全年 用电15万度,这个工厂去年上半年每月平 均用电多少度?
分析:若设上半年每月平均用电x度,
则下半年每月平均用电(x-2000)度 上半年共用电 6x 度, 下半年共用电 6(x-2000) 度
去括号变形错,有一项 没变号,改正如下:
去括号,得3-0.4x-2=0.2x
移项,得 0.4x 0.2x 3 2
移项,得 -0.4x-0.2x=-3+2
合并同类项,得 0.2x 5
两边同除以-0.2得 x 25
合并同类项,得 -0.6x=-1
∴
x5 3
英国伦敦博物馆保存着一部极其珍贵的文物 纸莎草文书.这是古代埃及人用象形文字写在一种 特殊的草上的著作,至今已有三千七百多年.书中记 载了许多与方程有关的数学问题.其中有如下一道 著名的求未知数的问题:
骤是什么?它们分别运用了那些知识点?
(1)去括号 (去括号法则)
(2)移项
(等式性质1)
(3)合并同类项(合并同类项法则)
(4)系数化成1 (等式性质2)
练习1 解下列方程:
(1)4x + 3(2x – 3)=12 - (x +4)
(2)6(
1 2
x– 4)+ 2 x =7 -(
1 3
x
– 1)
如果关于m的方程2m+b=m-1的解是-4, 则b的值是( A )
⑵括号前是“-”号x,=把13括50号0 和它前面的“-” 号去答掉:这,个括工号厂里去各年项上都半改年变每符月号平均用电13500度.
初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》教学课件
根据火车的速度不变列方程,得
去分母,得 2(500+x)=3(500-x).
解方程,得 x=100.
答:火车的长度为100 m.
500+
30
=
500−
20
,
解一元一次方程的一般步骤如下:
1. 去分母
根据:等式的性质2.
具体做法:方程两边同时乘各分母的最小公倍数.
注意事项:
(1) 不要漏乘不含分母的项;
系数化为1,得 =
11
5
.
2
(
3
− 1).
−3
解方程:
0.15
−
+4
0.2
解:原方程可化为
=
6−0.1
.
0.3
20−60
3
− (5 + 20) =
去分母,得 20x-60-3(5x+20) =60-x.
去括号,得 20x-60-15x-60=60-x.
移项,得 20x-15x+x=60 +60 + 60,
把 x=4 代入上述方程,可得 a=-1,所以原方程为
去分母,得 2(2x-1)+10=5(x-1).
去括号,得 4x-2+10=5x-5.
移项、合并同类项,得 -x=-13.
系数化为1,得 x=13.
2−1
5
+1=
−1
2
,
解一元一次方程的一般步骤:
去分母
去括号
移项
合并同类项
系数化为1
ሶ
我们知道,无限循环小数都可以转化为分数.例如,将0. 3转化为分数时,
3. 移项
根据:等式的性质1.
人教版七年级数学上册《三章 一元一次方程 3.3 解一元一次方程(二)——去括号与去分母》示范课课件_2
x = 37 14
练一练
解下列方程:
(1) 3x - 2 = 7 ;
6
3
x = 16 3
(2) 2x - 1 - 2 = 3x + 4 + 1;
4
5
x = - 81 2
(3) x + 4 - -5x + 2 = 3 + 5x - 1 .
3
4
6
x= 8 3
工程问题
1.工作量、工作时间、工作效率; 2.这三个基本量的关系是: 工作量=工作时间×工作效率 工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 3.工作总量通常看作单位“1”
教学目标
知识与能力
1.掌握解一元一次方程中“去分母”、 “去括号”的方法,并能解此类型的方程.
2.了解一元一次方程解法的一般步骤.
教学目标
过程与方法
1.通过运用算术和列方程两种方法解决 实际问题的过程,体会到列方程解应用题更为 简捷明了;掌握去括号解方程的方法,会用去 分母的方法解一元一次方程.
x 13 5
(2) x 4 x 5 x 3 x 1
3
3
4
解:去分母(方程两边同乘12),得
4(-x+4)-12x+5×12=4(x-3)-3
(x-1)
去括号,得
-4x-16-12x+60=4x-12-3x+3
移项,得
-4x-12x-4x+3x=-12+3+16-60
分析:设王大伯共种了x亩茄子,则他种 西红柿_(__2_5_-__x_)__亩.种茄子每亩用了1700 元.那么种茄子一共用去了__1_7_0_0_x__元; 种 西红柿每亩用了1800元,则他种西红柿共用 去了_1_8_0_0__(__2_5_-__x_)_元.根据王大伯种这两 种蔬菜共用去了44000元,可列方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
A. 6.5 B.7.5
C.8.5
D.9.5
3.某物品标价为130元, 若以9折出售,仍可获利10%, 则该物品进价约是( )
A. 105元 B. 106元 C. 108元 D. 118元
4.一艘轮船从一码头逆流而上,再顺流而 下.如果轮船在静水中的速度为每小时15千米, 水流速度为每小时3千米,那么这艘轮船最多开 出多远然后返回才能保证在 7.5小时内回到原 码头?
:例2 一艘船从甲码头到乙码头顺流 航行,用了2 小时;从乙码头到甲码头逆流航 行,用了2.5小时;已知水流的速度是3千米/小 时,求船在静水中的平均速度是多少千米/小 分时析? :等量关系
甲码头到乙码头的路程=乙码头到甲码头的 路程
也就是:顺航速度_×__顺航时间=逆航速 度__×_逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时?
移项,得
10x+4x-35x-15x+9x=18+12+10
合并同类项,得
-27 x=40
系数化为1,得 x=- 40 . 27
(2)5X-3(3X-5)=11-(X+5) 解:去括号得: 5X-9X+15=11-X-5
移项得:5X-9X+X=11-5-15 合并同类项得:-3X=-9 系数化为1: X=3
求水流速度?
一架飞机在两城之间航行,风速为24 k行要3小时,求两城距离.
zxxk
学科网
解:设飞机在无风时的速度为x km/h, 则在顺风中的速度为(x+24) km/h , 在逆风中的速度为(x-24) km/h.
根据题意,得 17 ( x+24)=3( x-24) 6
顺航速度_×__顺航时间=逆航速度_×__逆航时间
分析:设船在静水中的平均速度是X千 米/小时,则船在顺水中的速度(X是+_3_) ____ 千米/小时,船在逆水中的速度(X是-3)_______ 千米/小时.
2(X+3)=2.5(X-3)
解:设船在静水中的平均速度为x km/h,则顺流 的速度为(x+3) km/h,逆流速度为(x-3) km/h.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2 x+6=2.5 x-7.5
移项及合并同类项,得
0.5x=13.5
若要求出甲、 乙两码头的路 程,又如何解?
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
轮船在两个码头之间航行,顺水航行需要4小时, 逆水航行需要5小时,静水中的速度是18千米/时,
解:设这艘轮船开出x小时后多返回,才能 保证在 7.5小时内回到原码头. 列方程
(15-3)x=(15+3) ×(7.5-x) 解,得: x=4.5 即轮船开出后: (15-3)x=54(千米) 后,返回才能保证在 7.5小时内回到原码头.
常用的关系式
顺流时的速度=静水中的速度+水流的速度 逆流时的速度=静水中的速度-水流的速度
解得
x=840.
两城市的距离: 3 (840-24)=2 448.
答:两城市之间的距离为2 448 km.
巩固练习
1.一个两位数,个位上的数是2,十位上 的数是x,把2和x对调,新两位数的2倍 还比原两位数小18,你能算出x是几吗?
2.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分 装在4个大小相同的小箱子里,装满后还剩余2千 克洗衣粉,则每个小箱子装洗衣粉的千克数为 ()
3.3解一元一次方程(二) —— 去括号与去分母(第二课时)
学习目标:
(1)从复杂的背景中抽象出一元一次方程的模 型; (2)通过解方程使学生进一步熟悉含有括号的 一元一次方程的解法.
活动一:回顾复习
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2)
解:去括号,得
10 zxxk x-12+4x-10-35x=15x-9x+18