导数公式证明大全(更新版)
导数公式大全
导数公式大全导数是微积分中的重要概念之一,它反映了函数在某一点的变化率。
在实际应用中,导数公式的掌握对于求解函数的极值、曲线的切线以及解决实际问题具有重要的作用。
本文将介绍一些常见的导数公式,帮助读者更好地理解和应用导数。
一、基本导数公式1. 常数函数导数公式:若y = c(c为常数),则dy/dx = 0。
2. 幂函数导数公式:若y = x^n(n为常数),则dy/dx = nx^(n-1)。
3. 指数函数导数公式:若y = a^x(a为常数),则dy/dx = a^x * ln(a)。
4. 对数函数导数公式:若y = log_a(x)(a为常数),则dy/dx = 1 / (x * ln(a))。
5. 三角函数导数公式:若y = sin(x),则dy/dx = cos(x);若y = cos(x),则dy/dx = -sin(x);若y = tan(x),则dy/dx = sec^2(x)。
6. 反三角函数导数公式:若y = arcsin(x),则dy/dx = 1 / √(1 - x^2);若y = arccos(x),则dy/dx = -1 / √(1 - x^2);若y = arctan(x),则dy/dx = 1 / (1 + x^2)。
二、基本运算法则1. 和差法则:若u(x)和v(x)是可导函数,c为常数,则有: (u ± v)' = u' ± v';(cf)' = cf'。
2. 积法则:若u(x)和v(x)是可导函数,则有:(uv)' = u'v + uv'。
3. 商法则:若u(x)和v(x)是可导函数,则有:(u/v)' = (u'v - uv') / v^2。
4. 复合函数法则:若y = f(g(x)),其中u = g(x),则有:dy/dx = f'(u) * u'。
高等数学导数公式大全
高等数学导数公式大全1.基本导数公式:-若f(x)=c(c为常数),则f'(x)=0;- 若f(x) = x^n(n为正整数),则f'(x) = nx^(n-1);- 若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;2.三角函数与反三角函数的导数公式:- 若f(x) = sin(x),则f'(x) = cos(x);- 若f(x) = cos(x),则f'(x) = -sin(x);- 若f(x) = tan(x),则f'(x) = sec^2(x);- 若f(x) = cot(x),则f'(x) = -csc^2(x);- 若f(x) = sec(x),则f'(x) = sec(x) * tan(x);- 若f(x) = csc(x),则f'(x) = -csc(x) * cot(x);- 若f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2);- 若f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2);- 若f(x) = arctan(x),则f'(x) = 1 / (1 + x^2);- 若f(x) = arccot(x),则f'(x) = -1 / (1 + x^2);- 若f(x) = arcsec(x),则f'(x) = 1 / (x * sqrt(x^2 - 1));- 若f(x) = arccsc(x),则f'(x) = -1 / (x * sqrt(x^2 - 1));3.对数函数与指数函数的导数公式:- 若f(x) = log_a(x),则f'(x) = 1 / (x * ln(a));- 若f(x) = ln(x),则f'(x) = 1 / x;- 若f(x) = ln,u(x),则f'(x) = u'(x) / u(x);- 若f(x) = a^x(a>0且a ≠ 1),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;4.复合函数的导数公式:-若g(x)可导,f(x)可导,则(f(g(x)))'=f'(g(x))*g'(x);-若f(x)可导,f^-1(x)可导,则(f^-1(x))'=1/f'(f^-1(x));5.乘积与商的导数公式:-若f(x)与g(x)都可导,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x);-若f(x)与g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)6.反函数的导数:-若f(x)在x_0处可导,且f'(x_0)≠0,则f^(-1)(x)在f(x_0)处可导,且(f^(-1))'(f(x_0))=1/f'(x_0);7.链式法则:- 若y = f(u)且u = g(x)都可导,则y = f(g(x))也可导,且dy/dx = f'(u) * g'(x) = f'(g(x)) * g'(x);8.泰勒展开式:-若f(x)在x_0处有n阶导数,则它在x_0处的泰勒展开式为:f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)^2f''(x_0)/2! + ... + (x - x_0)^nf^n(x_0)/n!;这只是高等数学导数公式的部分内容,实际上导数公式非常多且多样化,可以根据需要不断学习和掌握。
16个基本导数公式推导过程
16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。
证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。
所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。
2.幂函数:f(x)=x^n,其中n为正整数。
求导结果:f'(x) = nx^(n-1)。
证明过程:利用定义求导。
计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。
利用二项式展开,可以得出f'(x) = nx^(n-1)。
3.指数函数:f(x)=e^x。
求导结果:f'(x)=e^x。
证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。
因此,可以据此推导出f'(x) = e^x。
4. 对数函数:f(x) = ln(x)。
求导结果:f'(x)=1/x。
证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。
利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。
5. 正弦函数:f(x) = sin(x)。
求导结果:f'(x) = cos(x)。
证明过程:利用极限定义求导。
计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。
应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。
6. 余弦函数:f(x) = cos(x)。
求导结果:f'(x) = -sin(x)。
证明过程:同样应用极限定义。
计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。
导数公式大全
导数公式大全1.如果一个函数y是一个常数c,那么它的导数y'就是0.2.如果一个函数y是x的n次方,那么它的导数y'就是nx 的XXX。
3.如果一个函数y是正切函数tanx,那么它的导数y'就是1除以余弦函数cosx的平方。
4.如果一个函数y是余切函数cotx,那么它的导数y'就是-1除以正弦函数sinx的平方。
5.如果一个函数y是正弦函数sinx,那么它的导数y'就是余弦函数cosx。
6.如果一个函数y是余弦函数cosx,那么它的导数y'就是负的正弦函数-sinx。
7.如果一个函数y是以a为底的指数函数a^x,那么它的导数y'就是a的x次方乘以自然对数的底数lna。
8.如果一个函数y是以自然对数的底数e为底的指数函数e^x,那么它的导数y'就是e的x次方。
9.如果一个函数y是以a为底的对数函数logax,那么它的导数y'就是自然对数的底数lna除以x。
10.如果一个函数y是自然对数函数lnx,那么它的导数y'就是1除以x。
此外,导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在某一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
10.推导arccos x的导数公式为y'=-1/√1-x^2.这个公式可以通过求导的方式得到,也可以通过反三角函数的定义来推导。
因为arccos x是cos y=x的反函数,所以有cos(arccos x)=x,即y=arccos x时,cos y=x。
对两边求导可得-y'sin y=x',即y'=-sin y/x。
因为cos y=x,所以sin y=√1-x^2,代入可得y'=-1/√1-x^2.11.推导arctan x的导数公式为y'=1/1+x^2.同样地,可以通过求导或者反三角函数的定义来推导。
求导公式大全
求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。
2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。
导数公式证明大全
导数公式证明大全导数的定义是函数变化率的极限。
下面将给出导数的一些重要公式的证明。
1.常数函数的导数:设常数函数$f(x)=c$,其中$c$为常数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{c-c}{h} \\ &= \lim_{h\to 0}0 \\ &= 0\end{aligned}\]因此,常数函数的导数为0。
2.幂函数的导数:设幂函数$f(x)=x^n$,其中$n$为正整数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \end{aligned}\]将$(x+h)^n$展开为二项式,有:\[(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \ldots + \binom{n}{n-1}xh^{n-1} + h^n\]代入上式,消去$x^n$,并除以$h$,得:\[\begin{aligned} f'(x) &= \lim_{h\to0}\left(\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \ldots +\binom{n}{n-1}xh^{n-2} + h^{n-1}\right) \\ &= \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}\cdot 0 + \ldots + \binom{n}{n-1}x\cdot 0 + 0^{n-1} \\ &= n\cdot x^{n-1} \end{aligned}\]因此,幂函数的导数为$n$倍的$x$的$n-1$次方。
24个基本求导公式
24个基本求导公式求导公式:1、f(x)=a的导数,f'(x)=0,a为常数。
即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
2、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数。
求导公式1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]。
即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。
其它所有基本求导公式都是由这个公式引出来的。
包括幂函数、指数函数、对数函数、三角函数和反三角函数。
2、f(x)=a的导数,f'(x)=0,a为常数。
即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数。
即系数为1的单项式的导数,以指数为系数,指数减1为指数。
这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数,f'(x)=ax^(a-1),a为实数。
即幂函数的导数,以指数为系数,指数减1为指数。
5、f(x)=a^x的导数,f'(x)=a^xlna,a>0且a不等于1。
即指数函数的导数等于原函数与底数的自然对数的积。
6、f(x)=e^x的导数,f'(x)=e^x。
即以e为底数的指数函数的导数等于原函数。
7、f(x)=log_ax的导数,f'(x)=1/(xlna),a>0且a不等于1。
即对数函数的导数等于1/x与底数的自然对数的倒数的积。
8、f(x)=lnx的导数,f'(x)=1/x,即自然对数函数的导数等于1/x。
9、(sinx)'=cosx,即正弦的导数是余弦。
10、(cosx)'=-sinx,即余弦的导数是正弦的相反数。
11、(tanx)'=(secx)^2,即正切的导数是正割的平方。
导数公式大全
导数公式大全导数公式是微积分中非常重要的一部分,它可以用来计算函数在其中一点处的斜率。
以下是一些常见的导数公式:1.基本导数公式:- 总幂法则:如果 $f(x) = x^n$,其中 $n$ 是任意实数,则 $f'(x) = nx^{n-1}$- 幂函数常数因子法则:如果 $f(x) = cx^n$,其中 $c$ 是常数,$n$ 是任意实数,则 $f'(x) = cnx^{n-1}$-和差法则:如果$f(x)=u(x)+v(x)$,其中$u(x)$和$v(x)$可导,则$f'(x)=u'(x)+v'(x)$- 积法则:如果 $f(x) = u(x) \cdot v(x)$,其中 $u(x)$ 和$v(x)$ 可导,则 $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ - 商法则:如果 $f(x) = \frac{u(x)}{v(x)}$,其中 $u(x)$ 和$v(x)$ 可导,且 $v(x) \neq 0$,则 $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$2.指数函数与对数函数的导数:- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,则$f'(x) = a^x \ln(a)$-自然指数函数:如果$f(x)=e^x$,则$f'(x)=e^x$- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$,则 $f'(x) = \frac{1}{x \ln(a)}$- 自然对数函数:如果 $f(x) = \ln(x)$,则 $f'(x) =\frac{1}{x}$3.三角函数的导数:- 正弦函数:如果 $f(x) = \sin(x)$,则 $f'(x) = \cos(x)$- 余弦函数:如果 $f(x) = \cos(x)$,则 $f'(x) = -\sin(x)$- 正切函数:如果 $f(x) = \tan(x)$,则 $f'(x) = \sec^2(x)$- 反正弦函数:如果 $f(x) = \arcsin(x)$,则 $f'(x) =\frac{1}{\sqrt{1-x^2}}$- 反余弦函数:如果 $f(x) = \arccos(x)$,则 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$- 反正切函数:如果 $f(x) = \arctan(x)$,则 $f'(x) =\frac{1}{1+x^2}$4.常用函数的导数:-常数函数:如果$f(x)=c$,其中$c$是常数,则$f'(x)=0$- 反函数:如果 $f(x)$ 的反函数为 $f^{-1}(x)$,则 $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$-绝对值函数:如果$f(x)=,x,$,则$f'(x)$可以分为两段来计算,当$x>0$时,$f'(x)=1$;当$x<0$时,$f'(x)=-1$这里列出的只是一些常见的导数公式,实际上导数还可以通过链式法则、隐函数求导法则以及高阶导数等方法计算。
所有导数公式大全
以下是一些常见的导数公式:1. 常数函数的导数:(c)' = 0,其中c为常数。
2. 幂函数的导数:(x^n)' = nx^(n-1),其中n为实数。
3. 指数函数的导数:(e^x)' = e^x。
4. 对数函数的导数:(ln(x))' = 1/x。
5. 三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)- (cot(x))' = -csc^2(x)- (sec(x))' = sec(x)tan(x)- (csc(x))' = -csc(x)cot(x)6. 反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)- (arccot(x))' = -1/(1+x^2)- (arcsec(x))' = 1/(|x|√(x^2-1))- (arccsc(x))' = -1/(|x|√(x^2-1))7. 求和规则:(f(x) + g(x))' = f'(x) + g'(x),其中f(x)和g(x)是可导函数。
8. 乘积规则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x),其中f(x)和g(x)是可导函数。
9. 商规则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2,其中f(x)和g(x)是可导函数且g(x)≠0。
10. 链式法则:如果y = f(g(x)),则dy/dx = f'(g(x))g'(x),其中f(u)和g(x)是可导函数。
16个基本导数公式
16个基本导数公式
1、恒等公式:若y=f(x),则`dy/dx=f'(x)=1`
2、变量链法:若y=f(u),u=g(x),则
`dy/dx=dy/du*du/dx=f'(u)*g'(x)`
3、复合函数:若y=f(g(x)),则
`dy/dx=f'(g(x))*g'(x)`
4、指数函数:若y=a^x,a>0,a!= 1,则`dy/dx=a^x ln a`
5、对数函数:若y=ln x,则`dy/dx=1/x`
6、三角函数:若y=sinx,则`dy/dx=cosx`
7、反三角函数:若y=arcsinx,则`dy/dx=1/sqrt(1-x^2)`
8、双曲函数:若y=sinhx,则`dy/dx=coshx`
9、反双曲函数:若y=arccoshx,则
`dy/dx=1/sqrt(x^2-1)`
10、椭圆函数:若y=coshx,则`dy/dx=sinhx`
11、反椭圆函数:若y=arctanhx,则`dy/dx=1/(1-
x^2)`
12、幂函数:若y=x^n,n不等于 0,则
`dy/dx=nx^(n-1)`
13、指数型函数:若y=k(x-a)^n,n不等于 0,则`dy/dx=nk(x-a)^(n-1)`
14、指数形式函数:若y=ae^(bx+c),则
`dy/dx=abe^(bx+c)`
15、对数型函数:若y=k(lnx+a)^n,n不等于 0,则`dy/dx=nk(lnx+a)^(n-1)/x`
16、对数形式函数:若y=ae^(bx)lnx+c,则
`dy/dx=ae^(bx)(b+1/x)`。
导数公式证明大全
导数的定义::(x)=lim △ y/A x△ x—0 (下面就不再标明A x—0 了)用定义求导数公式1)f(x)=x A n证法一:n为自然数)f'(x)=lim [(x+A x)An-xAn]/A x=lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)]=xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 )=nxA(n-1)证法二:n为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAn f'(x)=nxA(n -1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/A x=lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x=lim cosxsin A x/A x=cosx(3)f(x)=cosxf'(x)=lim (cos(x+A x)-cosx)/A x=lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x=lim -sinxsin A x/A x=-sinx4)f(x)=a A xf'(x) =lim (aA(x+A x)-aAx)/A x=lim a A x*(a A△ x-1)/A x设"Ax-仁m,贝U A x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim aAx*m/[ln(m+1)/lna]=lim aAx*lna*m/ln(m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna若a=e,原函数f(x)=eAx 贝f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)=lim (logaA(x+A x)-logaAx)/A x=lim logaA[(x+A x)/x]/A x=lim logaA(1+A x/x)/A x=lim ln(1+A x/x)/(lna* A x) =lim x*ln(1+ A x/x)/(x*lna* A x) =lim (x/A x)*ln(1+ △ x/x)/(x*Ina)=lim ln[(1+ A x/x)A(x/ A x)]/(x*Ina)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=Inx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+A x)-tanx)/A x=lim (sin(x+A x)/cos(x+ A x)-sinx/cosx)/A x=lim (sin(x+A x)cosx-sinxcos(x+A x)/(A xcosxcos(x+A x))=lim (sinxcos A xcosx+sin A xcosxcosx-sinxcosxcos A x+sinxsinxsin A x)/(A xcosxcos(x+A x))=lim sin A x/(A xcosxcos(x+A x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A2(7)f(x)=cotx f'(x)=lim (cot(x+ △ x)- cotx)/ △ x=lim (cos(x+A x)/sin(x+ △ x) -cosx/sinx)/A x=lim (cos(x+A x)sinx-cosxsin(x+A x))/( A xsinxsin(x+ A x)) =lim (cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x- cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(s in x)A2= -cscx/si nx=-(secxF2二1-(cotxF28)f(x)=secx f'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=sinx/(cosx)A2=tanx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x=lim (1/sin(x+ A x)-1/sinx)/A x=lim (sinx-sin(x+A x))/(A xsinxsin(x+A x))=lim (sinx-sinxcos A x-sin A xcosx)/(A xsinxsin(x+A x)) =lim -sin A xcosx/(A xsinxsin(x+A x))=-cosx/(s in x)A2=-cotx*cscx10)f(x)=x A x lnf(x)=xlnx (lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x) f'(x)=(lnx+1)*xAx(12)h(x)=f(x)g(x)h'(x)=lim (f(x+ A x)g(x+ A x)-f(x)g(x))/ A x =lim [(f(x+ A x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ A x=lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+ △ x)-g(x))*f(x)+f(x)*g(x+ △ x)-f(x)*g(x+ △ x)]/ A x=lim (f(x+ A x)-f(x))*g(x+ A x)/ A x+(g(x+ A x)-g(x))*f(x)/ A x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+ A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x)+f(x))*g(x) -(g(x+ A x) -g(x)+g(x))*f(x)]/( A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x))*g(x) -(g(x+ A x)-g(x))*f(x)+f(x)g(x) -f(x)g(x)]/(A xg(x)g(x+A x))=lim (f(x+ A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/( A xg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x)) -f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+ A x))-f(g(x))]/ A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u, g(x+A x)-g(x)= △ u)=lim (f(u+ A u)-f(u))/ A x=lim (f(u+ A u)-f(u))* A u/(A x*A u)=lim f'(u)* A u/A x=lim f'(u)*(g(x+ A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)总结一下(A n )'=nx^( n-1)(sinx) '=cosx(cosx) '=-sinx(aAx) '=aAxlna(eAx) '=eAx(logaAx) '=1/(xlna)(lnx)'=1/x(tanx)'=(secx)A2=1+(tanx)A2(cotx)'=-(cscx)A2=-1-(cotx)A2(secx)'=tanx*secx(cscx)'=-cotx*cscx(xAx)'=(lnx+1)*xAx [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)/g(x)]'=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)。
高等数学导数公式大全
高等数学导数公式大全一、基本导数公式1. 设常数a为导数常数,则有:(1)导数为零:d(ax)/dx = 0(2)导数为常数:d(ax)/dx = a2. 幂函数导数:(1)常数的幂函数导数:d(x^n)/dx = nx^(n-1),其中n为正整数(2)自然指数函数的导数:d(e^x)/dx = e^x(3)指数函数的导数:d(a^x)/dx = ln(a)*a^x,其中a>0且a≠1(4)对数函数的导数:d(logₐx)/dx = 1/(xlna),其中a>0且a≠1 3. 三角函数导数:(1)正弦函数的导数:d(sin x)/dx = cos x(2)余弦函数的导数:d(cos x)/dx = -sin x(3)正切函数的导数:d(tan x)/dx = sec^2 x(4)余切函数的导数:d(cot x)/dx = -csc^2 x(5)正割函数的导数:d(sec x)/dx = sec x * tan x(6)余割函数的导数:d(csc x)/dx = -csc x * cot x4. 反三角函数导数:(1)反正弦函数的导数:d(arcsin x)/dx = 1/√(1-x²),(-1≤x≤1)(2)反余弦函数的导数:d(arccos x)/dx = -1/√(1-x²),(-1≤x≤1)(3)反正切函数的导数:d(arctan x)/dx = 1/(1+x²)(4)反余切函数的导数:d(arccot x)/dx = -1/(1+x²)(5)反正割函数的导数:d(arcsec x)/dx = 1/(x√(x²-1)),(x>1或x<-1)(6)反余割函数的导数:d(arccsc x)/dx = -1/(x√(x²-1)),(x>1或x<-1)二、导数运算法则1. 基本导数运算法则:(1)和差法则:d(u±v)/dx = du/dx ± dv/dx(2)常数倍法则:d(cu)/dx = c * du/dx,其中c为常数(3)乘积法则:d(uv)/dx = u * dv/dx + v * du/dx(4)商法则:d(u/v)/dx = (v * du/dx - u * dv/dx) / v²,其中v≠02. 复合函数的导数:若y=f(u)和u=g(x)是可导函数,则有:d(f(g(x)))/dx = d(f(u))/du * d(g(x))/dx3. 反函数的导数:若y=f(x)的反函数为x=g(y),则有:d(g(y))/dy = 1 / d(f(x))/dx,其中d(f(x))/dx≠0三、高级导数公式1. 高阶导数:(1)二阶导数:d²y/dx² = d(dy/dx)/dx(2)三阶导数:d³y/dx³ = d(d²y/dx²)/dx = d²(dy/dx)/dx²2. 高阶导数公式:(1)幂函数的n阶导数:d^n(x^m)/dx^n = (m)(m-1)(m-2)...(m-n+1)x^(m-n)(2)指数函数的n阶导数:d^n(e^x)/dx^n = e^x(3)对数函数的n阶导数:d^n(logₐx)/dx^n = (-1)^(n-1)(n-1)!/x^n四、隐函数求导公式设x和y是关于变量t的函数,则有:dy/dx = dy/dt / dx/dt例如,对于方程x^2 + y^2 = R^2,其中R为常数,可得:dy/dx = -x/y以上是高等数学导数公式的大全,涵盖了基本导数公式、导数运算法则、高级导数公式和隐函数求导公式。
导数公式大全
导数公式大全1、原函数:y=c(c为常数)导数:y'=02、原函数:y=x^n导数:y'=nx^(n-1)3、原函数:y=tanx导数:y'=1/cos^2x4、原函数:y=cotx导数:y'=-1/sin^2x5、原函数:y=sinx导数:y'=cosx6、原函数:y=cosx导数:y'=-sinx7、原函数:y=a^x导数:y'=a^xlna8、原函数:y=e^x导数:y'=e^x9、原函数:y=logax导数:y'=logae/x10、原函数:y=lnx导数:y'=1/xy=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1+x^2)导数(Derivative)是微积分中的重要基础概念。
当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
常用的求导公式有哪些(大全)
常用的求导公式有哪些(大全)常用的求导公式有哪些1、f(x)=lim(h-0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。
其它所有基本求导公式都是由这个公式引出来的。
包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数, f(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数, f(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数,指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数, f(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数, f(x)=a^xlna, a0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数, f(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数, f(x)=1/(xlna), a0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数, f(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)=cosx. 即正弦的导数是余弦.10、(cosx)=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)=(secx)^2. 即正切的导数是正割的平方.12、(cotx)=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)=1/根号(1-x^2).16、(arccosx)=-1/根号(1-x^2).17、(arctanx)=1/(1+x^2).18、(arccotx)=-1/(1+x^2).19、(f+g)=f+g. 即和的导数等于导数的和。
导数公式的证明最全版
导数公式的证明最全版导数的定义是函数在特定点处的变化率,即斜率。
要证明导数的定义,需要使用极限的概念和微分的概念。
假设函数f(x)在点x=a处有导数,记为f'(a)。
我们可以通过极限定义来证明导数的公式。
1.导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗2.应用极限的性质:根据极限的性质,我们可以将上述公式改写为:f'(a) = lim┬(h→0)〖f(a+h)-f(a))/lim┬(h→0)h〗3.差商:我们可以将差商(f(a+h)-f(a))/h理解为两点(x,y)间的斜率。
根据微积分的思想,我们可以通过使用两点间的切线来近似表示曲线的斜率。
4.切线近似:在点(x,y)处,我们可以使用切线来近似表示曲线的斜率,该切线与曲线相切于点(x,y)处,并且与曲线在该点的切线斜率相同。
5.切线方程:曲线在点x=a处的切线方程为:y=f(a)+f'(a)(x-a)其中,f'(a)表示导数,(x-a)表示函数的自变量变化量。
6.近似函数:对于足够小的自变量变化量h,我们可以使用切线方程近似表示函数f(x)在点x=a+h处的函数值:f(a+h)≈f(a)+f'(a)h7.导数公式推导:根据近似函数的表示,我们可以将差商(f(a+h)-f(a))/h表示为:(f(a)+f'(a)h-f(a))/h化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h8.推导细节:进一步化简上述式子,得到:f'(a) = lim┬(h→0)(f(a+h)/h - f(a)/h)根据极限的性质,推出:f'(a) = lim┬(h→0)(f(a+h)/h) - lim┬(h→0)(f(a)/h)化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a)/h)这与导数的定义一致,因此我们证明了导数的定义公式。
导数公式的证明(最全版)
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx=lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx)) =lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsin Δxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx =f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx)) =lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx)) =lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(f(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。