利润与折扣问题应用题

合集下载

(完整版)净利润与优惠问题应用题

(完整版)净利润与优惠问题应用题

(完整版)净利润与优惠问题应用题简介本文档为净利润与优惠问题的应用题,旨在帮助读者理解并解决相关问题。

以下是具体的应用题及解答。

问题一某公司营业收入为100,000元,成本费用为60,000元,税金为10,000元,其他费用为5,000元。

请计算该公司的净利润。

解答一净利润可通过以下公式计算:净利润 = 营业收入 - 成本费用 - 税金 - 其他费用将给定数值代入公式,可得:净利润 = 100,000 - 60,000 - 10,000 - 5,000= 25,000元所以该公司的净利润为25,000元。

问题二某公司对某商品给予了优惠折扣,折扣幅度为20%。

原价为1,000元的商品打折后卖出了80个,请计算该商品的销售总收入和利润。

解答二销售总收入可以通过以下公式计算:销售总收入 = 原价 ×数量利润可以通过以下公式计算:利润 = 销售总收入 × (1 - 折扣幅度)将给定数值代入公式,可得:销售总收入 = 1,000 × 80= 80,000元利润 = 80,000 × (1 - 0.2)= 64,000元所以该商品的销售总收入为80,000元,利润为64,000元。

问题三某公司为了推广销售,对某商品给予了优惠折扣,折扣幅度为30%。

原价为600元的商品打折后卖出了120个,请计算该商品的销售总收入和利润。

解答三销售总收入和利润的计算方法与问题二相同,将给定数值代入公式,可得:销售总收入 = 600 × 120= 72,000元利润 = 72,000 × (1 - 0.3)= 50,400元所以该商品的销售总收入为72,000元,利润为50,400元。

总结本文档中提供了净利润与优惠问题的应用题及解答。

通过这些问题的计算,读者可以更好地理解净利润与优惠的概念,并应用相关知识解决实际问题。

请注意,以上计算结果仅为演示用途,具体情况请以实际情况为准。

(完整版)利润与折价问题应用题

(完整版)利润与折价问题应用题

(完整版)利润与折价问题应用题
在商业运作中,利润和折价是重要的财务指标。

通过解决利润
和折价问题的应用题,我们可以更好地掌握如何计算利润和折价以
及如何应用这些概念。

利润问题应用题
利润是企业在销售商品或提供服务后获得的净利润。

下面是一
个利润问题的应用题:
问题:某公司制造一种产品,每个单位成本为120元,售价为180元。

该公司销售了500个单位的产品。

请计算该公司的总利润。

解答:首先,我们可以计算每个单位的利润。

每个单位的利润
等于售价减去成本:180 - 120 = 60元。

然后,我们可以计算总利润。

总利润等于每个单位的利润乘以
销售的单位数量:60元/单位 × 500单位 = 元。

因此,该公司的总利润为元。

折价问题应用题
折价是产品或服务在原价的基础上所降低的价格。

下面是一个折价问题的应用题:
问题:某商店正在进行折价促销活动,原价为200元的商品降价12%。

请计算降价后的价格。

解答:首先,我们需要计算降价的金额。

降价金额等于原价乘以降价百分比:200元 × 12% = 24元。

然后,我们可以计算降价后的价格。

降价后的价格等于原价减去降价金额:200元 - 24元 = 176元。

因此,降价后的价格为176元。

结束语
通过解决利润和折价问题的应用题,我们可以更好地掌握如何计算利润和折价以及如何应用这些概念。

这些问题帮助我们在商业决策和财务规划中做出准确的判断和分析。

希望以上内容对您有所帮助!。

(完整版)利润与折扣问题应用题

(完整版)利润与折扣问题应用题

一、基本数量关系:利润和折扣问题是典型的百分数应用题,其本质还是分数应用题,在解题前要弄清下面几个量之间的关系:1.进价:就是进货时的价格2.利润:销售价﹣进价(成本)如:以每件 30 元的价格购进一批 T 恤,以每件 60 元的价格销售,每销售 1 件的利润 =60-30=30 元3.利润率 =(售价 -成本)÷成本× 100% 利润=进价×利润率上例中每销售 1 件 T 恤的利润率 =(60-30)÷ 30× 100%=100%4. 原价:货物放到货价上的标价也就是售价。

售价 =成本(进价) +利润5.折扣(打折):当打折销售时,售价 =原价×折扣(售价 =成本×( 1+利润率)×折扣)如上例中,这种 T 恤打 8 折销售,打折后的售价就等于 60× 80%=48元,打 8.5 折后,售价等于 60× 85%=51元解答利润和折扣问题的基本思路:最后售价 - 进价=利润二、研究建模例题 1:某商品打 7.5 折后,商家依旧可以获得 25%的利润。

若是该商品的进价是每件16.8 元,那么该商品在货价上的标价是多少?解题思路:已知进价、利润率,可以获得利润,已知折扣率,可以获得最后售价的表达式,利用最后售价 - 进价=利润建立等量关系式设货价上的标价为 X 元,最后售价 =0.75X 利润=16.8 ×列方程以下: 0.75X-16.8=16.8 × 0.25 解得 X=28 元。

例题 2:某商场以 1200 元的价格购进甲种跑步机,按标价 1800 元的 9 折销售;乙种跑步机进价2000 元,按标价 3200 元的 8 折销售。

那种跑步机的利润率更高?利润率 =(售价 -成本)÷成本× 100%即(售价 -进价)× 100% 进价依照已知条件,甲种跑步机的利润率 =乙种跑步机的利润率 =答:三、达标练习1. 某商品进价为 400 元,标价 600 元,商店要求以利润率不低于 5 %的售价打折销售,最低可以打几折销售此商品?2. 某商品进价为 1600 元,按标价的 8 折销售利润率为 10%,该商品的标价是多少?3. 某商品的售价为 780 元,为了促销按售价的 9 折销售并返还 30 元礼券,此时仍可获利 10%。

折扣利润练习题

折扣利润练习题

折扣利润练习题【正文】折扣利润练习题1. 某商店购进一批货物,进价总计为30000元。

商店想以15%的利润率出售这些货物。

这时,商店需要以多少元的售价出售这些货物呢?解析:利润率可以表示为进价与售价之间的比例关系。

假设售价为x元,则利润为x - 30000元。

根据题意可得以下等式:x - 30000 = 0.15x将等号两边的x合并并整理得:0.85x = 30000解方程可得:x = 30000 / 0.85 ≈ 35294.12所以商店需要以35294.12元的售价出售这些货物。

2. 某商店以原价100元出售一种商品,现在打折出售,折扣率为20%。

如果商店希望仍然能够获得15%的利润,那么商店应该以多少元的价格出售这种商品呢?解析:首先需要计算商店需要获得的利润,即原价的15%。

由此可得:100元 × 15% = 15元商店以100元原价出售商品,需要保证售价达到115元。

现在打折率为20%,即商店实际可以收到的售价为:100元 × (1 - 20%) = 100元 × 0.8 = 80元为了保证售价为115元,商店需要以多少折扣价进行出售呢?假设折扣价为x元,则有以下等式:x × 80% = 115元将等式两边的百分号去除并整理得:0.8x = 115解方程可得:x = 115 / 0.8 ≈ 143.75所以商店应该以约143.75元的价格出售这种商品。

3. 某电子产品在不同商店的折扣价如下:商店A折扣15%,商店B 折扣20%,商店C折扣25%。

若该产品原价为2000元,顾客购买时在三家商店中选择购买,哪家商店给的折扣最优惠?解析:需要计算三家商店的折扣价并比较,找出最低的折扣价。

商店A折扣15%,商店B折扣20%,商店C折扣25%。

各家商店实际收到的售价分别为:商店A:2000元 × (1 - 15%) = 2000元 × 0.85 = 1700元商店B:2000元 × (1 - 20%) = 2000元 × 0.8 = 1600元商店C:2000元 × (1 - 25%) = 2000元 × 0.75 = 1500元由此可见,商店C提供的折扣最优惠,售价为1500元。

利润与折扣问题的公式及例题

利润与折扣问题的公式及例题

利润与折扣问题的公式及例题利润与折扣问题,这个话题一听就觉得有点严肃,但咱们轻松点儿聊聊吧。

想象一下,你在商场里逛,看到一件心仪的衣服,标价500元,结果收银员告诉你有个折扣,打八折。

哇,这时候心里可美了,立马觉得捡了个便宜。

可是,真能省下多少钱呢?咱们来算一算,500元乘以0.8,得出400元,咱省了100元,这感觉就像捡了钱一样,爽歪歪的。

那利润又是什么呢?简单来说,利润就是商家卖东西赚的钱。

假设这件衣服的进货价是300元,商家卖400元,净赚100元。

听起来很简单吧?这就是生意的妙处,大家都开心,既能买到心仪的商品,又能让商家赚到钱,真是双赢啊。

当然了,咱们不能只停留在这个简单的例子上,来点儿深入的吧!有些时候,商家为了吸引顾客,可能会进行促销活动,这种时候打折可能让你觉得自己像个大赢家,但背后其实是有成本的哦。

比如说,商家原本就知道这件衣服卖不动,进货价是300元,结果标价500元,最后为了清库存,给你打了个七折。

这时候,400元的售价让你觉得自己赚了,但实际上商家只赚了100元。

而这100元,跟他进货时的300元相比,根本没多少好处。

你看,生意可真是五花八门,盘算起来可复杂了。

说到折扣,很多人觉得只要有折扣就能省钱,其实并非如此。

打折不代表就一定划算。

有些商家会先把价格抬高,再给个大折扣,结果你还觉得自己捡了便宜,这就是所谓的“心理战”。

想象一下,某件商品原价800元,打六折,最后售价480元,你觉得划算吧?但其实你心里得清楚,它的成本也许只有300元,商家照样赚得盆满钵满。

每次买东西的时候,咱们可得睁大眼睛,别让那些小花招给忽悠了。

再来聊聊如何计算利润吧,听起来挺复杂,其实没那么难。

利润=售价成本,明白这个公式,你就能轻松搞定。

想象一下你开了一家小店,买了一批货,进价总共是2000元,你把这些商品卖掉,总共收入了3500元。

那么利润呢?3500元减去2000元,哎呀,得出1500元,这就是你的利润。

六年级利润和折扣的应用题

六年级利润和折扣的应用题

六年级数学折扣练习题1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。

这种商品的进货价是每个多少元?2、租用仓库堆放3吨货物,每月租金7000元。

这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。

问:每千克货物的价格降低了多少元?3、张先生向商店订购了每件定价100元的`某种商品80件。

张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。

”商店经理算了一下,若减价5%,则由于张先生多订购,获得的利润反而比原来多100元。

问:这种商品的成本是多少元?4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。

从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。

如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润率,零售价应是每千克多少元?5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。

新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。

问:小明共买了多少个球?6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。

甲种贷款年利率为12%,乙种贷款年利率为14%。

该厂申请甲、乙两种贷款的金额各是多少?7、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出1 5支的利润相同。

这批钢笔的进货价每支多少元?8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。

妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。

若这10个蜜瓜都在第三天买,则能少花多少钱?9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。

问:这批凉鞋共多少双?10、体育用品商店用3000元购进50个足球和40个篮球。

零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。

(完整版)利润和折扣问题应用题

(完整版)利润和折扣问题应用题

利润和折扣问题应用题利润问题是一种常见的百分数应用题。

商店岀售商品,总是期望获得利润。

一般情况下,商家从厂家购进的价格称为成本(也叫进价),商家在定价的基础上提高价格岀售,所赚的钱称之为利润,利润与成本的比称之为利润率,商品的定价由期望的利润率来确定。

商品减价岀售时,我们通常称之为打折岀售或打折扣岀售,几折就是原来的十分之几。

解答利润和折扣问题的应用题,要注意结合生活实际,理解成本、定价、利润、折扣之间的数量关系。

将此类题转化成分数应用题解答,也可根据数量间的相等关系列方程解答。

解答时要理解与掌握下列数量关系:1. 利润率=(售价—成本)*成本x 100%2. 售价=成本X( 1 +利润率)3. 售价=原价X折扣4. 定价=成本X(1 +期望的利润率)(利润率也称利润百分数,售价也称卖价)典例解析及同步练习典例1某商品按定价的80%出售,仍能获得20%的利润。

定价时期望的利润百分数是多少?解析:求利润的百分数就是求获得的利润占成本的百分之几,因此应该用(卖价一成本)-成本,即:=利润的百分数,要求利润的百分数是多少,必须知道商品原来的成本和实际卖价各是多少。

假设定价为1,因为商品实际按定价的80%出售,因此实际卖价就应该是1X 80%= 0.8。

根据题意,按定价的80%出售后,仍能获得20%的利润,也就是“成本X(1 + 20%)=卖价”,因为实际卖价是0.8,所以用0.8 -( 1 + 20%)就可以求岀成本。

当卖价和成本都求岀后,就可以求岀定价时期望的利润百分数是多少了解:设定价为“ 1”。

商品的实际卖价为:1X 80%= 0.8商品的成本为:0.8 -( 1 + 20%) = 2定价时期望的利润百分数为:(1-)-= 50 % 答:定价时期望的利润百分数是50%。

举一反三训练11. 某种商品的利润是20 %,如果进货价降低20%,售出价保持不变,那么商品的利润是百分之几?2. 某服装店把一批西服按50%的利润定价,当销售75%以后,剩下的打折出售,结果获得的利润是预期利润的70%,剩下的打几折出售?3. 某商品按20%的利润定价,若按八折岀售,每件亏损64元。

小学数学利润与折扣练习题

小学数学利润与折扣练习题

小学数学利润与折扣练习题小学数学利润与折扣练习题例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2、一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。

例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。

结果实际获得的总利润是原来利润的.30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)分析:要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。

解:设第二次降价是按x%的利润定价的。

38%×40%+x%×(1-40%)=30.2%X%=25%(1+25%)÷(1+100%)=62.5%答:第二次降价后的价格是原来价格的62.5%。

利润问题应用题及答案

利润问题应用题及答案

利润问题应用题及答案
题目:某商店购进一批商品,进价为每件100元,标价为每件150元。

为了促销,商店决定进行打折销售,折扣为8折。

在打折后,商店发
现销售量增加了50%,但总利润却减少了20%。

请问商店打折前和打折
后的利润分别是多少?
答案:
步骤1:首先计算打折前的利润。

- 每件商品的进价:100元
- 每件商品的标价:150元
- 每件商品的利润:150元 - 100元 = 50元
步骤2:计算打折前的销售数量。

- 假设打折前销售数量为x件。

步骤3:计算打折后的销售价格。

- 打折后的价格:150元× 0.8 = 120元
步骤4:计算打折后每件商品的利润。

- 打折后每件商品的利润:120元 - 100元 = 20元
步骤5:计算打折后的销售数量。

- 打折后销售数量:x × (1 + 50%) = 1.5x
步骤6:计算打折后总利润。

- 打折后总利润:20元× 1.5x = 30x
步骤7:根据题目信息,打折后总利润减少了20%,计算打折前总利润。

- 打折前总利润:30x ÷ (1 - 20%) = 30x ÷ 0.8 = 37.5x
步骤8:计算打折前和打折后的利润。

- 打折前利润:37.5x
- 打折后利润:30x
结论:商店打折前的利润是37.5x元,打折后的利润是30x元。

(完整版)销售利润与折扣问题应用题

(完整版)销售利润与折扣问题应用题

(完整版)销售利润与折扣问题应用题问题描述某商家的商品定价为100元,并设定了一系列折扣策略。

其中,顾客在购买商品达到一定数量时,将获得相应的折扣。

商家希望通过这些折扣策略来促进销售,并且希望了解每种折扣策略对销售利润的影响。

折扣策略商家设定了以下折扣策略:- 策略1:购买1件商品,无折扣。

- 策略2:购买2件商品,享受10%的折扣。

- 策略3:购买3件商品,享受20%的折扣。

- 策略4:购买4件商品,享受30%的折扣。

- 策略5:购买5件商品,享受40%的折扣。

销售利润计算销售利润计算公式为:销售利润 = 销售收入 - 成本。

假设每件商品的成本为80元,销售收入为商品定价乘以购买件数。

问题要求请计算并比较购买不同件数商品时的销售利润,以及各折扣策略对销售利润的影响。

解决方案首先,我们可以通过使用销售利润公式来计算购买不同件数商品时的销售利润。

对于每种折扣策略,我们可以根据购买件数和折扣比例来计算销售收入。

然后,我们将成本80元从销售收入中减去,得到销售利润。

以购买2件商品为例,计算销售利润的过程如下:- 销售收入 = 商品定价 * 购买件数 = 100元 * 2件 = 200元- 成本 = 80元 * 2件 = 160元- 销售利润 = 销售收入 - 成本 = 200元 - 160元 = 40元同样的方法可以用于计算其他折扣策略下的销售利润。

最后,将各种折扣策略下的销售利润进行比较,分析各折扣策略对销售利润的影响。

结论通过计算和比较不同折扣策略下的销售利润,我们可以得出以下结论:- 购买件数越多,销售利润越高。

- 同样的购买件数下,享受更高折扣的策略会带来更高的销售利润。

商家可以根据这些结论来制定更有效的折扣策略,以促进销售并提高利润。

以上为对销售利润与折扣问题应用题的完整解答。

--------------------------------------------------------------------本文档由助手自动生成,手动编写。

最新利润与折扣问题应用题

最新利润与折扣问题应用题

一、基本数量关系:利润和折扣问题是典型的百分数应用题,其本质还是分数应用题,在解题前要弄清下面几个量之间的关系:1.进价:就是进货时的价格2.利润:销售价﹣进价(成本)如:以每件30元的价格购进一批T 恤,以每件60元的价格销售,每销售1件的利润=60-30=30元3.利润率=(售价-成本)÷成本×100% 利润=进价×利润率上例中每销售1件T 恤的利润率=(60-30)÷30×100%=100%4.原价:货物放到货价上的标价也就是售价。

售价=成本(进价)+利润5.折扣(打折):当打折销售时,售价=原价×折扣 (售价=成本×(1+利润率)×折扣) 如上例中,这种T 恤打8折销售,打折后的售价就等于60×80%=48元 ,打8.5折后,售价等于60×85%=51元解答利润和折扣问题的基本思路:最终售价-进价=利润二、探究建模例题1:某商品打7.5折后,商家仍然可以获得25%的利润。

如果该商品的进价是每件16.8元,那么该商品在货价上的标价是多少?解题思路:已知进价、利润率,可以得到利润,已知折扣率,可以得到最终售价的表达式,利用最终售价-进价=利润建立等量关系式设货价上的标价为X 元,最终售价=0.75X 利润=16.8×0.25列方程如下:0.75X-16.8=16.8×0.25 解得X=28元。

例题2:某商场以1200元的价格购进甲种跑步机,按标价1800元的9折出售;乙种跑步机进价2000元,按标价3200元的8折出售。

那种跑步机的利润率更高?利润率=(售价-成本)÷成本×100%即进价进价)售价-(×100%根据已知条件,甲种跑步机的利润率=乙种跑步机的利润率=答:三、达标练习1.某商品进价为400元,标价600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?2.某商品进价为1600元,按标价的8折出售利润率为10%,该商品的标价是多少?3.某商品的售价为780元,为了促销按售价的9折销售并返还30元礼券,此时仍可获利10%。

折扣和利润应用题训练精品资料

折扣和利润应用题训练精品资料

应用题训练(二)店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?——利润和折扣问题利润和折扣问题是典型的一种百分数应用题,其本质还是分数应用题,在解题前需要弄清下面几个量之间的关系。

1、进价(成本):就是进货时的价格。

2、利润率(利润百分数):就是卖价比成本价多出的那部分占成本价的百分之几3.某种商品进价为1600元,按标价的8折利润率=(售价—成本)÷成本×100%利润=进价×利润率3、、原价(卖价或是售价):就是货物放到货架上的标价(1)当售价一直不作变动时售价=成本+赚取利润=成本×(1+利润率)4.(2)当售价作折扣时售价=原价×折扣=成本×(1+利润率)×折扣解这类题的基本思路是:最终售价—进价=利润(进价×利润率)5.1.某商品打7.5折后,商家仍然可得25%的利润。

如果该商品是以每件16.8元的价格进的,为该商品在货架上的标价是多少?6.2.商品进价为400元,标价为600元,商出售利润率为10%,问它的标价是多少?甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些?一批货物,甲把原价降低10元卖,用售价的10%作资金,乙把原价降低20元,用售价的20%作资金,若两人资金一样多,求原价。

某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?7.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?8.某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?9.某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?10.某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?11.某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?12.市场鸡蛋按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每个0.28元售出,结果获利11.2元,问商贩当初买进多少鸡蛋?13.某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?14.某股民将甲、乙两种股票卖出,甲种股票卖出1500元,获利20%,乙种股票也卖出1500元,但亏损20%,该股民在这次交易中是赢利还是亏损?赢利或亏损多少?15.某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元?16.某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?17.一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元?这套家具售出后可赚多少元?18.某种商品标价为226元,现打七折出售,仍可获利13%,这钟商品的进价是多少?19.个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元?20.某商品按定价的80%出售,仍能获得20%的利润。

(完整版)利润与折扣问题应用题

(完整版)利润与折扣问题应用题

一、基本数量关系:利润和折扣问题是典型的百分数应用题,其本质还是分数应用题,在解题前要弄清下面几个量之间的关系:1.进价:就是进货时的价格2.利润:销售价﹣进价(成本)如:以每件30元的价格购进一批T 恤,以每件60元的价格销售,每销售1件的利润=60-30=30元3.利润率=(售价-成本)÷成本×100% 利润=进价×利润率上例中每销售1件T 恤的利润率=(60-30)÷30×100%=100%4.原价:货物放到货价上的标价也就是售价。

售价=成本(进价)+利润5.折扣(打折):当打折销售时,售价=原价×折扣 (售价=成本×(1+利润率)×折扣) 如上例中,这种T 恤打8折销售,打折后的售价就等于60×80%=48元 ,打8.5折后,售价等于60×85%=51元解答利润和折扣问题的基本思路:最终售价-进价=利润二、探究建模例题1:某商品打7.5折后,商家仍然可以获得25%的利润。

如果该商品的进价是每件16.8元,那么该商品在货价上的标价是多少?解题思路:已知进价、利润率,可以得到利润,已知折扣率,可以得到最终售价的表达式,利用最终售价-进价=利润建立等量关系式设货价上的标价为X 元,最终售价=0.75X 利润=16.8×0.25列方程如下:0.75X-16.8=16.8×0.25 解得X=28元。

例题2:某商场以1200元的价格购进甲种跑步机,按标价1800元的9折出售;乙种跑步机进价2000元,按标价3200元的8折出售。

那种跑步机的利润率更高?利润率=(售价-成本)÷成本×100%即进价进价)售价-(×100%根据已知条件,甲种跑步机的利润率=乙种跑步机的利润率=答:三、达标练习1.某商品进价为400元,标价600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?2.某商品进价为1600元,按标价的8折出售利润率为10%,该商品的标价是多少?3.某商品的售价为780元,为了促销按售价的9折销售并返还30元礼券,此时仍可获利10%。

第12讲 利润与折扣问题

第12讲  利润与折扣问题

第12讲 利润与折扣问题知识要点利润与折扣问题涉及到的内容很多,运用很广,如商业销售、股票涨跌、工厂产值等,要解决这些问题必须掌握以下一些关系式:1、利润=售价-成本;100%=⨯利润利润率成本;利润=成本×利润率。

()=+⨯售价成本利润=成本1+利润率。

2、100%=⨯实际售价折扣原来售价;实际售价=原来售价×折扣。

例题精讲1某商人从韩国进口一批服装,每件成本是160元,如果定价240元销售,每件衣服可获利润多少元?每件衣服的利润率是多少?2某商店搞迎春促销,一款DVD 打出“九折酬宾,外送50元打的费”的广告后,虽然每台比以前少赚了130元,但由于销售火暴,加快了资金周转。

问:这款DVD 原价多少元?3一套服装,如果定价240元,将获利60%。

如果按定价打八折出售,将获利多少元?4某商店到苹果产地去收购苹果,收购价为每千克1.20元。

从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。

如果商店想实现25%的利润率,那么这批苹果的零售价应是每千克多少元?5商店以每双13元的价格购进一批凉鞋,售价为14.8元。

卖到还剩5双时,除去购进这批凉鞋的成本外,还获利88元。

问:这批凉鞋共有多少双?数学家的故事继续讲Landau的故事和Landau讲过的故事ndau是比较自大的那种人,根本看不起物理化学,包括应用数学,他把任何和数学的应用有关的东西贬为“润滑油”。

一次Steinhaus(斯坦豪斯)的博士考试需要一个天文学家的提问。

Landau似乎很关心,就问Steinhaus都被问了什么问题,当他知道是有关三体问题的微分方程的时候,大声的说:“啊,如此说来,他知道这个……”A.Rosenthal曾经和Landau住一个房间。

一天,Landau回到房间向Rosenthal 抱怨老年的Dedekind(戴德金)和他絮叨了一下午的废话,Dedekind狠狠地抱怨当年Guass(高斯)对他不公平,在他的博士学位考试时,问了一些特别难的问题。

利润与折扣问题

利润与折扣问题

利润与折扣问题1、某商人从韩国进口一批服装,每件成本是160元,如果按定价240元销售,每件衣服可获利润多少元?每件衣服的利润率是多少?2、(1)一只茶杯的成本是12元,要想获得25%的利润,这只茶杯的定价应是多少元?(2)一只玩具熊如果定价60元,如果利润率是20%,则这只玩具熊的成本是多少元?3、某商店搞迎春促销,一款DVD打出“九折酬宾,外送50元的士费”的广告后,虽然每台比以前少赚了130元,但由于销售火暴,加快了资金周转。

问:这款DVD原价多少元?4、个别商人为了迎合一些消费者贪便宜的心理,采用“虚降实涨”的方法,以“跳楼大减价,挥泪大甩卖”为幌子欺骗消费者。

例如:某商人有一款很普通的衣服,尽管定价很低,但仍然卖不出去。

于是他将这款衣服标价500元,然后再打“五折”销售,结果销售一空,实际每件还比以前多赚了100元。

问:这件衣服原来的售价是多少元?5、一套服装,如果定价240元,将获利60%。

如果按定价打八折出售,将获利多少元?6、某服装商从服装厂采购了一批羽绒服,每件定价500元。

但恰逢今年暖冬,羽绒服销售困难,所以该服装商将这批羽绒服打七五折销售,结果每件只赚了60元。

问:这批羽绒服的采购价是每件多少元?(不考虑营业税、租金等因素)7、某商店到苹果产地去收购苹果,收购价为每千克1.20元。

从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。

如果商店想实现25%的利润率,那么这批苹果的零售价应是每千克多少元?8、小吴下岗后租房开了一家奶茶店。

她算了一笔帐:每月房租3000元,每月水、电费约350元,雇1名帮手,每月工资800元,每月上缴各种税费150元。

已知1杯奶茶的成本是1元,利润率为150%,问:每月至少卖出多少杯奶茶,小吴才能赚到钱?9、商店以每双13元的价格购进一批凉鞋,售价为14.8元。

卖到还剩5双时,除去购进这批凉鞋的成本外,还获利88元。

问:这批凉鞋共有多少双?10、某小贩从农民手中购进一批黄瓜,加价150%出售。

第二讲 百分数应用题(二)利润和折扣

第二讲 百分数应用题(二)利润和折扣

利润和折扣姓名公式:利润=卖价-成本利润率=利润÷成本×100%定价(卖价)=成本×(1+利润率)成本=定价(卖价)÷(1+利润率)现价=原价×折数例1.某人从日本进口一批服装,每件成本是160元,如果按定价240元出售,每件衣服可获利润多少?利润率是多少?练习题:1.一件茶杯的成本是12元,要想获得25%的利润,这只茶杯的定价是多少元?2.一件玩具熊如果定价是60元,利润率是20%,则这只玩具熊的成本是多少元?例2.一套衣服,如果定价240元,将获利60%,如果按定价打八折出售,将获利多少元?练习题:3.某商人有一件很普通的衣服,尽管定价很低,但任然卖不出去,于是他将这款衣服标价500元,然后在打“五折”出售,结果销售一空,实际每件还比以前多赚了100元。

问:这件衣服的原来售价是多少?4.某服装商从服装厂采购了一批羽绒服,每件定价500元,但恰逢今年暖冬,羽绒服销售困难,所以该服装商将这批羽绒服打七五折出售,结果每件只赚了60元。

问这批羽绒服的采购价是每件多少元?例3.商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。

问:这批凉鞋共多少双?练习题:5.商店以每件65元购进一批服装,出售价是74元。

卖出还剩10件时,除成本还获利430元。

这件衣服共有多少件?6.某小贩农民手中购进一批西瓜,加价150%出售。

当这批西瓜卖出一半时,该小贩已获利60元,如果余下的西瓜售价不变,问这笔西瓜生意能为小贩带来多少元的利润?例4某商品按20%的利润定价,然后打八八折卖出,获得利润84元,这件商品的成本多少元?练习题:7.某商品按20%的利润定价,如果按九折售出,共得利润88元。

这件商品的成本是多少?8.某商品按20%的利润定价,然后又打八折卖出,结果亏本了36元,这种商品的成本多少元?例5.某商店同时卖出两件两件商品,每件各得30元,其中一件赚了20%,而另一件却亏了20%。

百分数的利润和折扣试题

百分数的利润和折扣试题

百分数的利润和折扣试题利润问题:1. 一家商店购进一批商品,进价是200元,商店按照售价的20%计算出售价。

请计算该商品的售价和利润。

解答:商品的进价是200元,按照售价的20%计算,即售价是进价的1.2倍。

所以,售价=200 × 1.2 = 240元。

利润 = 售价 - 进价 = 240 - 200 = 40元。

2. 小明购买了一件衣服,标价是80元。

商店正在进行8折的促销活动,请计算小明购买该衣服时的实际支付金额和节省金额。

解答:标价为80元,打8折即相当于打80%折扣。

所以,小明购买该衣服时实际支付金额 = 80 × 0.8 = 64元。

节省金额 = 标价 - 实际支付金额 = 80 - 64 = 16元。

折扣问题:1. 李芳在商店中购买了一本原价120元的书,她使用了一张打9折的优惠券,请计算李芳购买该书时的实际支付金额。

解答:原价为120元,打9折即相当于打90%折扣。

所以,李芳购买该书时的实际支付金额 = 120 × 0.9 = 108元。

2. 一件商品标价100元,商店正在进行限时活动,打6折出售。

如果小王使用了额外的优惠券,额外抵扣了10元,请计算小王购买该商品时的实际支付金额。

解答:标价为100元,打6折即相当于打60%折扣。

所以,打折后的价格= 100 × 0.6 = 60元。

小王使用了额外的优惠券,额外抵扣了10元,所以实际支付金额 = 打折后的价格 - 优惠券额外抵扣金额 = 60 - 10 = 50元。

这些例子展示了在利润和折扣问题中如何进行计算。

通过理解和掌握百分数的概念,我们可以轻松地解决此类问题。

希望这些例题能帮助你更好地理解和应用百分数的知识。

(完整版)利润和折扣问题应用题

(完整版)利润和折扣问题应用题

利润和折扣问题应用题利润问题是一种常见的百分数应用题。

商店岀售商品,总是期望获得利润。

一般情况下,商家从厂家购进的价格称为成本(也叫进价),商家在定价的基础上提高价格岀售,所赚的钱称之为利润,利润与成本的比称之为利润率,商品的定价由期望的利润率来确定。

商品减价岀售时,我们通常称之为打折岀售或打折扣岀售,几折就是原来的十分之几。

解答利润和折扣问题的应用题,要注意结合生活实际,理解成本、定价、利润、折扣之间的数量关系。

将此类题转化成分数应用题解答,也可根据数量间的相等关系列方程解答。

解答时要理解与掌握下列数量关系:1. 利润率=(售价—成本)*成本x 100%2. 售价=成本X( 1 +利润率)3. 售价=原价X折扣4. 定价=成本X(1 +期望的利润率)(利润率也称利润百分数,售价也称卖价)典例解析及同步练习典例1某商品按定价的80%出售,仍能获得20%的利润。

定价时期望的利润百分数是多少?解析:求利润的百分数就是求获得的利润占成本的百分之几,因此应该用(卖价一成本)-成本,即:=利润的百分数,要求利润的百分数是多少,必须知道商品原来的成本和实际卖价各是多少。

假设定价为1,因为商品实际按定价的80%出售,因此实际卖价就应该是1X 80%= 0.8。

根据题意,按定价的80%出售后,仍能获得20%的利润,也就是“成本X(1 + 20%)=卖价”,因为实际卖价是0.8,所以用0.8 -( 1 + 20%)就可以求岀成本。

当卖价和成本都求岀后,就可以求岀定价时期望的利润百分数是多少了解:设定价为“ 1”。

商品的实际卖价为:1X 80%= 0.8商品的成本为:0.8 -( 1 + 20%) = 2定价时期望的利润百分数为:(1-)-= 50 % 答:定价时期望的利润百分数是50%。

举一反三训练11. 某种商品的利润是20 %,如果进货价降低20%,售出价保持不变,那么商品的利润是百分之几?2. 某服装店把一批西服按50%的利润定价,当销售75%以后,剩下的打折出售,结果获得的利润是预期利润的70%,剩下的打几折出售?3. 某商品按20%的利润定价,若按八折岀售,每件亏损64元。

盈利和折价问题应用题

盈利和折价问题应用题

盈利和折价问题应用题概述本文档旨在解答与盈利和折价相关问题的应用题。

我们将针对一些实例进行分析,并提供解决方案。

以下是问题及其解答。

应用题一问题:某公司购买了一批商品,总共花费了元。

这批商品的原价是元,但由于某种特殊情况,公司获得了20%的折扣。

公司将这批商品以原价出售。

公司的盈利率是多少?解答:首先,我们要计算公司购买商品的实际花费。

由于公司获得了20%的折扣,实际花费的金额为原价的80%:元 * 80% = 8000元。

然后,我们计算公司的盈利金额。

盈利金额等于出售价格减去实际花费:元 - 8000元 = 4000元。

最后,我们计算盈利率。

盈利率等于盈利金额除以实际花费,再乘以100%:4000元 / 8000元 * 100% = 50%。

所以,该公司的盈利率为50%。

应用题二问题:一家商店以打折价出售商品。

商品原价为150元,商店打了15%的折扣后出售。

某顾客购买了这件商品,并用一张200元的纸币支付。

商店的找零金额是多少?解答:首先,我们要计算商品的实际售价。

由于商店打了15%的折扣,实际售价为原价的85%:150元 * 85% = 127.50元。

然后,我们计算找零金额。

找零金额等于顾客支付的金额减去商品售价:200元 - 127.50元 = 72.50元。

所以,商店的找零金额为72.50元。

结论通过以上两个应用题的解答,我们可以看出在盈利和折价相关问题中的一些基本计算方法。

希望本文档对您有所帮助。

如有更多问题,请随时提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本数量关系:
利润和折扣问题是典型的百分数应用题,其本质还是分数应用题,在解题前要弄清下面几个量之间的关系:
1.进价:就是进货时的价格
2.利润:销售价﹣进价(成本)如:以每件30元的价格购进一批T 恤,以每件60元的价格销售,每销售1件的利润=60-30=30元
3.利润率=(售价-成本)÷成本×100% 利润=进价×利润率
上例中每销售1件T 恤的利润率=(60-30)÷30×100%=100%
4.原价:货物放到货价上的标价也就是售价。

售价=成本(进价)+利润
5.折扣(打折):当打折销售时,售价=原价×折扣 (售价=成本×(1+利润率)×折扣) 如上例中,这种T 恤打8折销售,打折后的售价就等于60×80%=48元 ,打8.5折后,售价等于60×85%=51元
解答利润和折扣问题的基本思路:最终售价-进价=利润
二、探究建模
例题1:某商品打7.5折后,商家仍然可以获得25%的利润。

如果该商品的进价是每件16.8元,那么该商品在货价上的标价是多少?
解题思路:已知进价、利润率,可以得到利润,已知折扣率,可以得到最终售价的表达式,利用最终售价-进价=利润建立等量关系式
设货价上的标价为X 元,最终售价=0.75X 利润=16.8×0.25
列方程如下:0.75X-16.8=16.8×0.25 解得X=28元。

例题2:
某商场以1200元的价格购进甲种跑步机,按标价1800元的9折出售;乙种跑步机进价2000元,按标价3200元的8折出售。

那种跑步机的利润率更高?
利润率=(售价-成本)÷成本×100%即进价
进价)售价-(×100%
根据已知条件,甲种跑步机的利润率=
乙种跑步机的利润率=
答:
三、达标练习
1.某商品进价为400元,标价600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品?
2.某商品进价为1600元,按标价的8折出售利润率为10%,该商品的标价是多少?
3.某商品的售价为780元,为了促销按售价的9折销售并返还30元礼券,此时仍可获利10%。

此商品的进价是多少?
四、课后强化
4.一商场把某型号的液晶电视机按标价的九折出售,仍可获利20%。

若该电视的进价是2400元,那么该型号电视的标价是多少元?
5.某商品的标价为165元,若优惠10%出售,仍可获利10%,那么该商品的进价是多少?
6.某商贩以每个0.24元的价格购进一批鸡蛋,在贩运途中碰坏了12个,剩下的以每个0.28元售出,结果获利11.2元。

该商贩购进了多少只鸡蛋?
7.某学校准备组织部分教师和学生到泰山旅游,其中教师22名。

学校分别联系了甲、乙两家旅行社,其定价相同并且都有优惠条件,甲旅行社对教师免费,学生按八折收费;乙旅行社对教师和学生都按7.5折收费。

经过核算,学校发现甲、乙旅行社实际收费总额相同。

问该学校共有多少学生参加此次旅游?
五.挑战中考:
8.某服装店花2000元进了一批服装,按50%的利润率定价,长时间无人购买后决定打折出售,降价后仍无人购买,结果第二次打折后全部售出。

经过核算,这批服装共盈利430元。

如果两次折扣率相同,折扣率是多少?。

相关文档
最新文档